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Abstract—Today, the most accurate steganalysis
methods for digital media are built as supervised
classifiers on feature vectors extracted from the
media. The tool of choice for the machine learning
seems to be the support vector machine (SVM).
In this paper, we propose an alternative and well-
known machine learning tool – ensemble classifiers
implemented as random forrests – and argue that
they are ideally suited for steganalysis. Ensemble
classifiers scale much more favorably w.r.t. the num-
ber of training examples and the feature dimen-
sionality with performance comparable to the much
more complex SVMs. The significantly lower train-
ing complexity opens up the possibility for the ste-
ganalyst to work with rich (high-dimensional) cover
models and train on larger training sets – two key
elements that appear necessary to reliably detect
modern steganographic algorithms. Ensemble clas-
sification is portrayed here as a powerful developer
tool that allows fast construction of steganography
detectors with markedly improved detection accu-
racy across a wide range of embedding methods. The
power of the proposed framework is demonstrated
on three steganographic methods that hide messages
in JPEG images.

I. Introduction

The goal of steganalysis is to detect the presence
of secretly hidden data in an object. Digital media
files, such as images, video, and audio, are ideal cover
objects for steganography as they typically consist of a
large number of individual elements that can be slightly
modified to embed a secret message. Moreover, such
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empirical covers are rather difficult to model accurately
using statistical descriptors,1 which substantially com-
plicates detection of embedding changes. In particular,
with the exception of a few pathological cases, the de-
tection cannot be based on estimates of the underlying
probability distributions of statistics extracted from
cover and stego objects. Instead, detection is usually
cast as a supervised classification problem implemented
using machine learning.

Although there exists a large variety of various
machine learning tools, support vector machines seem
to be by far the most popular choice. This is due
to the fact that SVMs are backed by a solid mathe-
matical foundation cast within the statistical learning
theory [51] and because they are resistant to overtrain-
ing and perform rather well even when the feature
dimensionality is comparable or larger than the size of
the training set. Moreover, robust and efficient open-
source implementations are available for download and
are easy to use [13], [10].

The complexity of SVM training, however, slows
down the development cycle even for problems of a
moderate size, as the complexity of calculating the
Gram matrix representing the kernel is proportional to
the square of the product of the feature dimensionality
and the training set size. Moreover, the training itself
is at least quadratic in the number of training samples.
This imposes limits on the size of the problem one can
handle in practice and forces the steganalyst to con-
sciously design the features to fit within the complexity
constraints defined by available computing resources.
Ensemble classifiers give substantially more freedom to
the analysts, who can now design the features virtually
without constraints on feature dimensionality and the
training set size to build detectors through a much
faster development cycle.

Early feature-based steganalysis algorithms used
only a few dozens of features, e.g., 72 higher-order
moments of coefficients obtained by transforming an
image using QMFs [14], 18 binary similarity metrics [3],

1In [5], arguments were made that empirical cover sources are
fundamentally incognizable.
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23 DCT features [17], and 27 higher-order moments
of wavelet coefficients [21]. Increased sophistication of
steganographic algorithms together with the desire to
detect steganography more accurately prompted ste-
ganalysts to use feature vectors of increasingly higher
dimension. The feature set designed for JPEG images
described in [42] used 274 features and was later ex-
tended to twice its size [28] by Cartesian calibration,
while 324- and 486-dimensional feature vectors were
proposed in [48] and [11], respectively. The SPAM set
for the second-order Markov model of pixel differences
has a dimensionality of 686 [39]. Additionally, it proved
beneficial to merge features computed from different
domains to further increase the diversity. The 1234-
dimensional Cross-Domain Feature (CDF) set [30]
proved especially effective against YASS [50], [49],
which makes embedding changes in a key-dependent
domain. Because modern steganography [41], [15], [35]
places embedding changes in those regions of images
that are hard to model, increasingly more complex
statistical descriptors of covers are required to capture
a larger number of (weaker) dependencies among cover
elements that might be disturbed by embedding [19],
[18], [23], [29]. This historical overview clearly under-
lies a pressing need for scalable machine learning to
facilitate further development of steganalysis.

To address the complexity issues arising in steganal-
ysis today, in the next section we propose ensemble
classifiers built as random forrests by fusing decisions
of an ensemble of simple base learners that are inex-
pensive to train. By exploring several different possi-
bilities for the base learners and fusion rules, we arrive
at a rather simple, yet powerful design that appears
to improve detection accuracy for all steganographic
systems we analyzed so far. In Sections II-A–II-E, we
discuss various implementation issues and describe the
algorithms for determining the ensemble parameters.
In the experimental Section III, we provide a tell-tale
example of how an analyst might work with the new
framework for JPEG-domain steganography. Compari-
son with SVMs in terms of complexity and performance
appears in Section IV. Finally, the paper is concluded
in Section V.

This paper is a journal version of our recent con-
ference contribution [29]. The main difference is a
complete description of the training process, including
algorithms for determining the ensemble parameters,
and a far more detailed comparison with SVMs. In
our effort to provide an example of usage in practice,
we introduce a compact general-purpose feature set
for the DCT domain and use it to improve detection
of nsF5 [20], Model-Based Steganography (MBS) [43],

and YASS, three representatives of different embedding
paradigms.

We use calligraphic font for sets and collections,
while vectors or matrices are always in boldface. The
symbol N0 is used for the set of positive integers, I

is a unity matrix, and XT is the transpose of X. The
Iverson bracket [P ] = 1 whenever the statement P is
true and it is 0 otherwise.

II. ENSEMBLE CLASSIFICATION FOR
STEGANALYSIS

When a new steganographic method is proposed, it is
required that it not be detectable using known feature
sets. Thus, as the first step in building a detector, the
steganalyst needs to select a model for the cover source
within which the steganography is to be detected.
Another way of stating this is to say that the covers are
represented in a lower-dimensional feature space before
training a classifier. This is usually the hardest and
most time-consuming part of building a detector and
one that often requires a large number of experiments
through which the analyst probes the steganographic
method using various versions of features intuitively
designed to detect the embedding changes. Thus, it is
of utmost importance to be able to run through a large
number of tests in a reasonable time. Moreover, one
will likely desire to use features of high dimension, that
is unless the steganographic method has a weakness
and can be detected using a simple low-dimensional
feature vector. Consequently, one will likely have to
employ larger training sets to prevent overtraining and
to build a more robust detector, which further increases
the computational complexity. In an ideal world, the
process of feature design should be fully automatized.
Unfortunately, as the recent steganalysis competition
BOSS showed [22], [19], [18], the current state of the
art is not advanced enough to reach this goal and
experience and insight still play an important role.
The contribution of this paper can be viewed as a first
step towards automatizing steganalysis. We provide a
general framework together with a scalable machine
learning tool that can substantially speed up the de-
velopment cycle while allowing the steganalyst to work
with very complex and potentially high-dimensional
feature vectors as well as large training sets.

A. The ensemble

The proposed ensemble classifier consists of many
base learners independently trained on a set of cover
and stego images. Each base learner is a simple clas-
sifier built on a (uniformly) randomly selected sub-
space of the feature space. Given an example from
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Figure 1. Diagram illustrating the proposed ensemble classifier. The random subspaces are constructed by selecting dsub ≪ d
features randomly and uniformly from the entire feature space.

the testing set, the final decision is formed by aggre-
gating the decisions of individual base learners. This
supervised ensemble strategy will work only if the
individual base learners are sufficiently diverse in the
sense that they make different errors on unseen data.
In order to further increase the mutual diversity of the
base learners, each learner is trained on a bootstrap
sample2 drawn from the training set rather than on
the whole training set. This strategy, known in the
machine learning community as bootstrap aggregating
or bagging [6], will also allow us to obtain an accurate
estimate of the testing error, which will be important
for determining optimal ensemble parameters. We note
that the bootstrap samples are formed “by pairs,” i.e.,
we make sure that the pairs of cover features and
the corresponding stego features are preserved. This
modification, which is specific for steganalysis, is rather
important as it has been shown that breaking the cover-
stego pairs into two sets, one of which is used for
training and the other, testing, one for error estimation,
may lead to a biased error estimate and, consequently,
to a suboptimal performance [46], [27].

To formally describe our ensemble classifier, we in-
troduce the following notation. The symbol d stands
for the feature space dimensionality, dsub for the di-
mensionality of the feature subspace on which each
base learner operates, N trn and N tst are the number of
training and testing examples from each class,3 and L
is the number of base learners. Furthermore, we reserve
xm, x̄m ∈ R

d, m = 1, . . . , N trn, for the cover and stego
feature vectors computed from the training set and
yk, ȳk ∈ R

d, k = 1, . . . , N tst, for the features obtained

2Bootstrap sample is a uniform sample with replacement.
3It is always assumed that the training set contains the same

number of cover and stego images because the stego images are
obtained by embedding a random message in each cover image
from some finite sample of images from a given source.

Algorithm 1 Ensemble classifier.

1: for l=1 to L do

2: Form a random subspace

Dl ⊂ {1, . . . , d}, |Dl| = dsub < d

3: Form a bootstrap sample N b
l ,

∣

∣N b
l

∣

∣ = N trn by
uniform sampling with replacement from the set
{1, . . . , N trn}

4: Train a base learner Bl on features

Xl =
{

x(Dl)
m , x̄(Dl)

m

}

m∈N b

l

⇒ obtain eigenvector vl and threshold Tl

5: For all test examples y ∈ Ytst make lth decisions:

Bl(y
(Dl)) ,

{

1 when vT

l y(Dl) > Tl

0 otherwise.

6: end for

7: Form the final decisions B(y) by majority voting:

B(y) =











1 when
∑L

l=1 Bl(y
(Dl)) > L/2

0 when
∑L

l=1 Bl(y
(Dl)) < L/2

random otherwise.

8: return B(y), y ∈ Ytst

from the testing cover and stego examples, respectively.
The set of all training and testing samples will be

denoted X trn = {xm, x̄m}
Ntrn

m=1 and Ytst = {yk, ȳk}
Ntst

k=1 .
For D ⊂ {1, . . . , d}, x(D) is a |D|-dimensional feature
vector consisting only of those features from x whose
indices are in D, preserving their original order.

The individual base learners Bl, l = 1, . . . , L, are
mappings R

d → {0, 1}, where 0 stands for cover and 1
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for stego. Note that, even though defined on R
d, all base

learners are trained on feature spaces of a dimension
dsub that can be chosen to be much smaller than the full
dimensionality d, which significantly lowers the com-
putational complexity. Even though the performance
of individual base learners can be weak, the accuracy
quickly improves after fusion and eventually levels out
for a sufficiently large L. The decision threshold of each
base learner is adjusted to minimize the total detection
error under equal priors on the training set:

PE = min
PFA

1

2
(PFA + PMD(PFA)) , (1)

where PFA, PMD are the probabilities of false alarms
and missed detection, respectively.

We recommend to implement each base learner as
the Fisher Linear Discriminant (FLD) [12] because of
its low training complexity; the most time consuming
part is forming the within-class covariance matrices and
inverting their summation. Additionally, such weak and
unstable classifiers desirably increase diversity.

Since the FLD is a standard classification tool, we
only describe those parts of it that are relevant for the
ensemble classifier. The lth base learner is trained on
the set

{

x
(Dl)
i , x̄

(Dl)
i |i ∈ N b

l

}

, where Dl ⊂ {1, . . . , d},

|Dl| = dsub is randomly selected subset and N b
l is a

bootstrap sample drawn from the set {1, . . . , N trn},
|N b

l | = N trn. Each base learner is fully described using
the generalized eigenvector

vl = (SW + λI)−1(µ− µ̄), (2)

where µ, µ̄ ∈ R
dsub are the means of each class

µ =
1

N trn

∑

m∈N b

l

x(Dl)
m , µ̄ =

1

N trn

∑

m∈N b

l

x̄(Dl)
m , (3)

SW =
∑

m

(x(Dl)
m −µ)(x(Dl)

m −µ)T+(x̄(Dl)
m −µ̄)(x̄(Dl)

m −µ̄)T

(4)
is the within-class scatter matrix, and λ is a stabilizing
parameter to make the matrix SW +λI positive definite
and thus avoid problems with numerical instability in
practice when SW is singular or ill-conditioned.4

For a test feature y ∈ Ytst, the lth base learner
reaches its decision by computing the projection
vT

l y(Dl) and comparing it to a threshold (previously
adjusted to meet a desired performance criterion). Af-
ter collecting all L decisions, the final classifier output
is formed by combining them using an unweighted
(majority) voting strategy – the sum of the individual

4The parameter λ can be either fixed to a small constant
value (e.g., λ = 10−10) or dynamically increased once numerical
instability is detected.

votes is compared to the decision threshold L/2. We
note that this threshold may be adjusted within the
interval [0, L] in order to control the importance of the
two different types of errors or to obtain the whole
receiver operating characteristic (ROC curve). In all
experiments in this paper, we adjust the threshold
to L/2 as PE is nowadays considered standard for
evaluating the accuracy of steganalyzers in practice.

The pseudo-code for the entire ensemble classifier is
described in Algorithm 1, while Figure 1 shows its high-
level conceptual diagram. The classifier depends on two
parameters, dsub and L, which are determined using
algorithms from Section II-C.

B. Illustrative example

Before finishing the description of the ensemble clas-
sifier with procedures for automatic determination of
dsub and L, we include a simple illustrative example
to demonstrate the effect of the parameters on per-
formance. We do so for the steganographic algorithm
nsF5 (no-shrinkage F5) [20] as a modern representative
of steganographic schemes for the JPEG domain, using
a simulation of its embedding impact if optimal wet-
paper codes were used.5

The image source is the CAMERA database con-
taining 6,500 JPEG images originally acquired in their
RAW format taken by 22 digital cameras, resized so
that the smaller size is 512 pixels with aspect ratio pre-
served, converted to grayscale, and finally compressed
with JPEG quality factor 75 using Matlab’s command
imwrite. The images were randomly divided into two
halves for training and testing, respectively.

All ensemble classifiers were built to detect stego
images embedded with relative payload 0.1 bpac (bits
per non-zero AC DCT coefficient). Figure 2 (left) shows
the classifier error PE (1) on the testing set as a
function of the number of fused base learners L, for
three different feature sets and a fixed dsub. The feature
sets Finter and Fintra capture inter- and intra-block
dependencies among DCT coefficients and F∗ is their
union. The features are defined in Section III-B; here,
we use them to merely illustrate that the classification
accuracy quickly saturates with L.

The error PE (after saturation) is shown as a function
of the subspace dimensionality dsub in Figure 2 (right).
Observe an initial quick drop followed by a fairly flat
minimum, after which PE starts growing again, which
is mainly because of the following two reasons. First,
the individual base learners become more dependent
and thus the ability of the ensemble classifier to form

5A simulator of nsF5 embedding is provided at http://dde.
binghamton.edu/download/nsf5simulator/.
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Figure 2. Left: Detection error PE quickly saturates with the number of fused learners L. Right: The detection error after saturation
as a function of dsub. The dots represent out-of-bag error estimates EOOB (see Section II-C). Feature sets considered: Finter, Fintra,
and F∗ with dimensionalities 1550, 2375, and 3925 (see Section III). Target algorithm: nsF5 with payload 0.1 bpac.

non-linear boundaries decreases. Second, the individual
FLDs start to suffer from overtraining as the subspace
dimensionality increases while the training size remains
the same.

C. Parameter determination

To complete the description of the classifier, we
now supply a procedure for determining dsub and
L. Since each base learner Bl is trained on Xl =
{x

(Dl)
m , x̄

(Dl)
m }m∈N b

l

, where N b
l is a bootstrap sample

of {1, . . . , N trn} with roughly 63% of unique samples,
the remaining 37% can be used for validation as Bl

provides a single vote for each x /∈ Xl. This procedure
bears similarity to cross-validation in SVM training.

After n base learners are trained, each training sam-
ple x ∈ X trn will collect on average 0.37 ·n predictions
that can be fused using the majority voting strategy
into a prediction B(n)(x) ∈ {0, 1}. The following is an
unbiased estimate of the testing error known as the
“out-of-bag” (OOB) estimate:

E
(n)
OOB =

1

2N trn

Ntrn

∑

m=1

(

B(n)(xm) + 1−B(n)(x̄m)
)

.

(5)

The term comes from bagging (bootstrap aggregat-
ing) which is a well-established technique for reducing
the variance of classifiers [6]. In contrast to bagging, we
use a different random subset of features for training
each base learner. Figure 2 (right) illustrates that

E
(n)
OOB is indeed an accurate estimate of the testing

error.

1) Stopping criterion for L: As is already apparent
from Figure 2 (left), the classification accuracy satu-
rates rather quickly with L. The speed of saturation,
however, depends on the accuracy of individual base
learners, on the relationship between d and dsub, and
is also data dependent. Therefore, we determine L
dynamically by observing the progress of the OOB
estimate (5) and stop the training once the last K
moving averages calculated from µ consecutive EOOB

values lie in an ǫ-tube:

L = arg min
n

{

n;

∣

∣

∣

∣

min
i∈PK (n)

Mµ(i)− max
i∈PK (n)

Mµ(i)

∣

∣

∣

∣

< ǫ

}

,

(6)
where

Mµ(i) =
1

µ

i
∑

j=i−µ+1

E
(j)
OOB (7)

and PK(n) = {n − K, . . . , n}. The parameters K, µ,
and ǫ are user-defined and control the trade-off between
computational complexity and optimality. In all our
experiments in this paper, we fixed K = 50, µ = 5,
and ǫ = 0.005. According to our experiments, this
choice of the parameters works universally for different
steganalysis tasks, i.e., for both small and large values
of d and dsub, for a wide range of payloads (low and high
EOOB values), and different steganographic algorithms.

Note that while E
(L)
OOB is formed by fusing 0.37 · L

decisions (on average), the predictions on testing sam-
ples will be formed by fusing all L decisions. The final
out-of-bag estimate meeting the criterion (6) will be

denoted EOOB ≡ E
(L)
OOB.

2) Subspace dimension dsub: Since the classifica-
tion accuracy is fairly insensitive to dsub around its
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minimum (Figure 2 (right)), most simple “educated
guesses” of dsub give already near-optimal performance,
which is important for obtaining quick insights for the
analyst. Having said this, we now supply a formal
procedure for automatic determination of dsub. Because
PE(dsub) is unimodal in dsub, the minimum can be
found through a one-dimensional search over dsub us-
ing EOOB(dsub) as an estimate of PE(dsub). Since the
matrix inversion in (2) requires O(d3

sub) operations, to
avoid evaluating EOOB(dsub) for large values of dsub,
we approach the minimum “from the left” using a
simple direct-search derivation-free technique inspired
by the compass search [31]. The pseudo-code, shown
in Algorithm 2, can be interpreted as follows. Starting
with a small value of dsub, we keep increasing it by a
pre-defined step ∆d as long as EOOB(dsub) decreases.
Once the error passes its minimum and starts increas-
ing again, we go back to the lowest point and the step
size is refined, ∆d ← ∆d/2, until the solution is found
within the desired tolerance τ (Stage 2).

The parameters τ , ∆d, and ǫd control the trade-
off between the training time and optimality of the
solution. In particular, τ specifies the desired relative
tolerance within which the lowest value of EOOB is to
be found, ∆d determines the initial step size, and ǫd

specifies the robustness w.r.t. statistical fluctuations of
EOOB(dsub) – it identifies the moment when to stop
increasing dsub and proceed to Stage 2.

Similarly as in Section II-C1, the choice of the
parameters seems to be rather universal – in all ex-
periments conducted in this paper we used τ = 0.02,
∆d = 200, and ǫd = 0.005 as a good compromise be-
tween the training time and the classification accuracy.

D. Relationship to prior art

Boosting [45] is a general method of creating an
accurate predictor by combining many weaker learners
through a properly chosen aggregation strategy. Since
the first successful ensemble systems were proposed,
boosting has evolved into a well developed discipline
whose popularity keeps on growing due to the sim-
plicity of the approach, its straightforward parallel
implementation, and high accuracy.

One of the earliest boosting frameworks is AdaBoost
proposed by Freund and Schapire [16]. AdaBoost trains
individual weak learners (base learners) sequentially
and every base learner focuses on those samples that
were more difficult to classify by previous base learners.
This is achieved by a continuous adjustment of the
training sample weights throughout the learning – the
weights of training samples that were misclassified are
increased while the weights of those that were classified

Algorithm 2 One-dimensional search for dsub. To
simplify the boundary issues, we define EOOB(dsub) = 1
for all dsub /∈ [0, d].

1: Set parameters τ , ∆d, and ǫd

2: //Stage 1: first pass with ∆d

3: Initialize k ← 0, E∗
OOB ← 1, d∗

sub ← 0

4: repeat

5: k ← k + 1

6: Train ensemble classifier and obtain out-of-bag
error estimate EOOB(k∆d)

7: if EOOB(k∆d) < E∗
OOB then

8: E∗
OOB ← EOOB(k∆d)

9: d∗
sub ← k∆d

10: end if

11: until EOOB(k∆d) > E∗
OOB + ǫd

12: //Stage 2: localize the minimum by refining ∆d

13: repeat

14: Obtain E1 ≡ EOOB(d∗
sub −∆d)

15: Obtain E2 ≡ EOOB(d∗
sub)

16: Obtain E3 ≡ EOOB(d∗
sub + ∆d)

17: if 1 ≥ 2E2

E1+E3
> 1− τ or ∆d too small then

18: return d∗
sub

19: else

20: E∗
OOB ← min {E1, E2, E3}

21: d∗
sub ← dsub yielding E∗

OOB

22: ∆d ← ∆d/2

23: end if

24: until 1

correctly are decreased. The final decision is formed as
a weighted combination of individual predictions with
weights corresponding to the standalone accuracy of
each base learner. AdaBoost is a deterministic meta-
algorithm applicable to any classifier (base learner)
capable of handling weighted training samples.

A different way of boosting the performance through
an ensemble of weaker learners is bagging (or boot-
strap aggregating) due Breiman [6], a concept already
mentioned in Section II-A as a part of our proposed
steganalysis framework. In bagging, every base learner
is trained on a different bootstrap sample drawn from
the original training set and their individual predictions
are then combined through a simple majority voting
scheme (averaging). The success of bagging relies on
the instability of base learners w.r.t. small changes in
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the training set. An important by-product of bagging
is the ability to continuously monitor the testing error
estimate (OOB).

The random forest [7] is an extended version of
bagging in the sense that it also trains individual base
learners on bootstrap samples of the training set. The
base learners are, however, additionally randomized by
making them dependent on a random vector that is
drawn independently and from one fixed distribution.
In [7], each base learner is a decision tree whose split-
ting variables are chosen randomly as a small subset
of the original variables. The final prediction is again
formed as a majority vote. This additional random-
ization introduces instability (and thus diversity) to
the individual base learners and substantially speeds-
up the training. On the other hand, the accuracy
of individual base learners decreases, which is to be
expected. However, it turns out that the combined
prediction generally yields comparable or even better
results than bagging or AdaBoost. We would like to
stress that unlike in AdaBoost, the random forest treats
individual base learners equally in forming the final
decision – this is because all the base learners were
generated using the same random procedure.

The steganalysis system proposed in Section II-A
could be categorized as a random forest with the FLD
as a base learner. The random component is in the
feature subspace generation and is a crucial part of
the system as using the full feature space would be
computationally intractable due to high feature dimen-
sionality.

The idea of forming random subspaces from the
original feature space is not new and is known un-
der different names. Decision forests [24], attribute
bagging [9], CERP (Classification by Ensembles from
Random Partitions) [1], or the recently proposed RSE
(Random Subsample Ensemble) [47] are all ensemble-
based classifiers sampling the feature space prior base
learner training to either increase the diversity among
classifiers or reduce the original high dimension to
manageable values.

Most ensemble systems described in the literature
use base learners implemented as classification trees
even though other classifiers may be used. For example,
SVMs are used as base learners in [33], while in [2] a
set of different base learners are compared, including
logistic regression, L-SVM, and FLD. Our decision to
select the FLD was based on numerous experiments we
performed and will be discussed in more detail in the
next section. Briefly, FLDs are very fast and provided
overall good performance when combined together into
a final vote.

Besides ensemble classification, there exist numerous
other well-developed strategies for reducing the train-
ing complexity. One popular choice are dimensionality
reduction techniques that can be either unsupervised
(PCA) or supervised (e.g., feature selection [34]) ap-
plied prior to classification as a part of the feature pre-
processing. However, such methods are rarely suitable
for applications in steganalysis when no small subset
of features can deliver performance similar to the full-
dimensional case. The dimensionality reduction and
classification can also be performed simultaneously
either by minimizing an appropriately constructed sin-
gle objective function directly (SVDM [38]) or by
constructing an iterative algorithm for dimensionality
reduction with a classification feedback after every it-
eration. In machine learning, these methods are known
as embedded and wrapper methods [34].

Finally, the idea of using a committee of detectors
for steganalysis appeared in [25]. However, the focus
of the work was elsewhere – several classifiers were
trained individually to detect different steganographic
methods and their fusion was shown to outperform a
single classifier trained on a mixture of stego images
created by those methods.

E. Discussion

To the best of our knowledge, a fully automatized
framework combining random feature subspaces and
bagging into a random forest classifier, together with
an efficient utilization of out-of-bag error estimates for
stopping criterion and the search for the optimal value
of the subspace dimension is a novel contribution not
only in the field of steganalysis, but also in the en-
semble classification literature. The ensemble classifier
as described in Section II provided the best overall
performance and complexity among many different
versions we have investigated. In particular, we studied
whether it is possible to improve the performance by
selecting the features randomly but non-uniformly and
we tested other base learners and aggregation rules for
the decision fusion. We also tried to replace bagging
with cross-validation and to incorporate the ideas of
AdaBoost [16] into the framework. Even though none
of these modifications brought an improvement, we
believe they deserve to be commented on and we
discuss them in this section.

Depending on the feature set and the steganographic
algorithm, certain features react more sensitively to
embedding than others. Thus, it seemingly makes
sense to try improve the performance by selecting the
more influential features more frequently instead of
uniformly at random. We tested biasing the random
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selection to features with a higher individual Fisher
ratio. However, any deviation from the uniform dis-
tribution lead to a drop in the performance of the
entire ensemble. This is likely because biased selection
of features decreases the diversity of the individual base
learners. The problem of optimum trade-off between
diversity and accuracy of the base learners is not
completely resolved in the ensemble literature [36], [8]
and we refrain from further analyzing this important
issue in this paper.

Next, we investigated whether base learners other
than FLDs can improve the performance. In particular,
we tested linear SVMs (L-SVMs), kernelized FLDs [37],
decision trees, naive Bayesian classifiers, and logistic
regression. In summary, none of these choices proved
a viable alternative to the FLD. Decision trees were
unsuitable due to the fact that in steganalysis it is
unlikely to find a small set of influential features (unless
the steganography has some basic weakness). All fea-
tures are rather weak and only provide detection when
considered as a whole or in large subsets. Interestingly,
the ensemble with kernelized FLD, L-SVM, and logis-
tic regression had performance comparable to FLDs,
even though the individual accuracies of base learners
were higher. Additionally, the training complexity of
these alternative base learners was much higher. Also,
unlike FLD, both L-SVM and kernelized FLD require
pre-scaling of features and a parameter search, which
further increases the training time.

The last element we tested was the aggregation
rule. The voting as described in Algorithm 1 could be
replaced by more sophisticated rules [32]. For example,
when the decision boundary is a hyperplane, one can
compute the projections of the test feature vector on
the normal vector of each base learner and threshold
their sum over all base learners. Alternatively, one
could take the sum of log-likelihoods of each projection
after fitting models to the projections of cover and stego
training features (the projections are well-modeled by a
Guassian distribution). We observed, however, that all
three fusion strategies gave essentially identical results.
Thus, we selected the simplest rule – the majority
voting as our final choice.

Apart from optimizing individual components of the
system, we also tried two alternative designs of the
framework as a whole. First, we replaced the bootstrap-
ping and out-of-bag error estimation with k-fold cross-
validation. This modification yielded similar results as
the original system based on OOB estimates.

The second direction of our efforts was to incorporate
the ideas of AdaBoost. There are several ways of doing
so. We can boost individual FLDs using AdaBoost and

use them as base learners for the ensemble framework.
Alternatively, we could use the whole ensemble as
described in Section II as a base learner for AdaBoost.
Both options, however, dramatically increase the com-
plexity of the system. Additionally, we would lose the
convenience of estimating the testing error simply as
OOB estimates.

Another option is to apply AdaBoost into the frame-
work directly by adjusting the training sample weights
as the training progresses and replacing the final ma-
jority voting with a weighted sum of the individual pre-
dictions. There are, however, two complications: every
base learner is trained in a different feature space and
on different training samples. An appealing (and sim-
ple) way of resolving these problems is to use the cross-
validation variant of the ensemble mentioned above.
Using k-fold cross-validation, the entire process could
be viewed as training k parallel ensemble systems, each
of them trained on a different (but fixed) training
set consisting of k − 1 folds. AdaBoost could then
be used to boost each of these k sub-machines, while
the testing error estimation (and thus the automatic
ensemble parameter search procedure) could be carried
out through the folds left out.

We implemented this modified system and subjected
it to numerous comparative experiments under differ-
ent steganalysis scenarios. However, no performance
gain has been achieved. Therefore, we conclude that the
implementation as a random forest built from equally
weighted FLDs trained on different random subspaces
is the overall best approach among those we tested.

More details about our experiments with k-fold
cross-validation and AdaBoost appear in the technical
report [26], where we summarize all the comparative
results mentioned in the previous paragraphs.

III. EXAMPLE: STEGANALYSIS IN JPEG
DOMAIN

We now demonstrate the power and advantages of
the proposed approach on a specific tell-tale example
of how a steganalyst might use ensemble classifiers to
assemble a feature set in practice and build a classifier.
While the detector built here markedly outperforms
existing state of the art, we stress that the purpose of
this illustrative exposition is not to optimize the feature
set design w.r.t. a specific algorithm and cover source.
We intend to study this important topic as part of our
future work.

A. Co-occurrences

Capturing dependencies among pairs of individual
DCT coefficients through co-occurrence matrices is a
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Figure 3. Graphical explanation of features Cxy(∆x, ∆y). The

symbols and denote the first and the corresponding
second DCT mode.

common practice in modern steganalysis [48], [11], [42].
However, the matrices are usually constructed from
all coefficients in the DCT plane, which implies that
coefficients from different DCT modes are, in spite
of their different statistical nature, treated equally.
Since ensemble classifiers are not limited by high di-
mensionality, we explore the possibility of improving
detection by modeling the distribution of pairs of DCT
coefficients on a mode-by-mode basis.

Let D
(i,j)
xy denote the (x, y)th DCT coefficient in the

(i, j)th 8 × 8 block, [x, y] ∈ {0, . . . , 7} × {0, . . . , 7},
i = 1, . . . , 8 ⌈M/8⌉, j = 1, . . . , 8 ⌈N/8⌉, where M × N
are image dimensions. Our features will be formed as
two-dimensional co-occurrence matrices Cxy(∆x, ∆y)
for coefficient pair [x, y] and [x+∆x, y+∆y]. Formally,
Cxy(∆x, ∆y) = {ckl}T

k,l=−T is a (2T + 1)2-dimensional
matrix with

ckl =
1

Z

∑

i,j

[(〈

D(i,j)
xy

〉

T
=k

)

∧
(〈

D
(i,j)
x+∆x,y+∆y

〉

T
= l

)]

,

(8)
where the normalization constant Z ensures that
∑

k,l ckl = 1. The symbol [·] in (8) is the Iverson
bracket, ∧ stands for the logical “and” operator, and
the truncation operator 〈·〉T is defined as

〈x〉T =

{

x if x ∈ [−T, T ]

T · sign(x) otherwise.
(9)

Note that in the definition of Cxy(∆x, ∆y), we do
not constrain ∆x and ∆y and allow [x + ∆x, y + ∆y]
to be out of the range {0, . . . , 7} × {0, . . . , 7} to more
easily describe co-occurrences for inter-block coefficient

pairs (e.g., D
(i,j)
x+8,y = D

(i+1,j)
xy ). Figure 3 illustrates

the notation on selected features, covering examples of
both intra- and inter-block co-occurrences.

Assuming the statistics of natural images do not
change after mirroring about the main diagonal, the
symmetry of DCT basis functions w.r.t. the main block
diagonal allows us to replace Cxy with the more robust

C̃xy(∆x, ∆y) = Cxy(∆x, ∆y) + Cyx(∆y, ∆x). (10)

Moreover, since for natural images {c̃kl}T
k,l=−T will

be sign-symmetrical, c̃kl ≈ c̃−k,−l, we form

C̄xy(∆x, ∆y) = {c̄kl}
T
k,l=−T , (11)

where c̄kl = c̃kl + c̃−k,−l. The redundant portion of
C̄xy(∆x, ∆y) can now be removed obtaining thus the
final form of the co-occurrence, which we denote again
C̄xy(∆x, ∆y), with dimensionality [(2T +1)2−1]/2+1.

B. Building the ensemble

First, we assemble the feature space. By fixing T = 3
for all co-occurrences, each C̄xy(∆x, ∆y) will have
exactly 25 elements. Next, we form ten different sets
of co-occurrence-based features to capture various de-
pendencies among DCT coefficients while focusing on
lower frequencies as they contain the vast majority of
nonzero coefficients. The first six feature sets listed in
Table I capture intra-block relationships among DCT
coefficients: Fh - horizontally and vertically neighbor-
ing pairs; Fd - diagonally and semi-diagonally neigh-
boring pairs; Foh - “skip one” horizontally neighboring
pairs; Fx - pairs symmetrically positioned w.r.t. the
8 × 8 block diagonal; Fod - “skip one” diagonally and
semi-diagonally neighboring pairs; and Fm - “horse-
move” positioned pairs. The remaining four sets cap-
ture inter-block relationships between coefficients from
neighboring blocks: Fih - horizontal neighbors in the
same DCT mode; Fid - diagonal neighbors in the same
DCT mode; Fis - semi-diagonal neighbors in the same
DCT mode; Fix - horizontal neighbors in DCT modes
symmetrically positioned w.r.t. the 8×8 block diagonal.
The union of all six intra-block feature sets is denoted
Fintra, and the union of the four inter-block feature sets
is denoted Finter. Finally, we define F∗ = Fintra∪Finter.

The diagrams in Table I (right) specify the sets of
DCT modes used for the construction of individual
feature sets. The different shapes of these regions are
due to different relative positions of DCT pairs in
the corresponding features and due to symmetrization
defined by (10).

Continuing with the construction of the ensemble
classifier, we will assume that the analyst’s goal is
to attack the nsF5 algorithm for a fixed payload of
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Table I
Description of feature sets defined in the text. The diagrams on the right define the sets of DCT modes, Si,

i = 1, . . . , 6, used in the definitions on the left.

Definition Dim

Fh = {C̄xy(0, 1); [x, y] ∈ S1} 500
Fd = {C̄xy(1, 1); [x, y] ∈ S2} 500

∪{C̄xy(1, −1); [x, y] ∈ S3}
Foh = {C̄xy(0, 2); [x, y] ∈ S4} 350
Fx = {C̄xy(y − x, x − y); [x, y] ∈ S3} 225
Fod = {C̄xy(2, 2); [x, y] ∈ S5} 425

∪{C̄xy(2, −2); [x, y] ∈ S3}
Fm = {C̄xy(−1, 2); [x, y] ∈ S6} 375
Fih = {C̄xy(0, 8); [x, y] ∈ S1} 500
Fid = {C̄xy(8, 8); [x, y] ∈ S2} 275
Fis = {C̄xy(−8, 8); [x, y] ∈ S2} 275
Fix = {C̄xy(y − x, x − y + 8); [x, y] ∈ S1} 500

S1 S2 S3

S4 S5
S6

0.10 bpac.6 The CAMERA database of cover and stego
images is randomly split into a training and testing set
of equal sizes. The analyst first evaluates the perfor-
mance of each feature set listed in Table I individually
and then chooses to merge those sets that give good
detection to build the final ensemble classifier. This
process is carried out on images from the training set
only. The goodness of each feature set is evaluated by
training the ensemble classifier and computing its OOB
error estimate EOOB as explained in Section II-C.

The evolution of the error after merging the in-
dividual feature sets is schematically shown in Fig-
ure 4. Interestingly, with every new added collection
of co-occurrence-matrix-based features, the value of
EOOB decreases. Even though the inter-block features
Finter by themselves perform poorly in comparison with
Fintra, after merging them to form F∗ = Finter∪Fintra,
the error further decreases to 0.1974. The performance
of F∗ is finally improved by an additional 2.5% using
Cartesian calibration [28]. We denote the final 7, 850-
dimensional Cartesian-calibrated feature set as CF∗.

C. Testing phase

Once the features are optimized in terms of the low-
est EOOB (obtained from the training set), we proceed
to the actual testing phase – we create class predictions
for all test images and compare the predicted labels
with the ground truth. The obtained testing error is
PE = 0.1702 and is consistent with the OOB estimate
EOOB = 0.1728. The detection results for other pay-
loads are shown in Figure 5.

Since the feature construction was essentially re-
duced to adding more features capturing different de-
pendencies among DCT coefficients, it is natural to

6As in experiments in Figure 2, the stego images were obtained
using the nsF5 simulator http://dde.binghamton.edu/download/
nsf5simulator/

ask whether the feature set CF∗ is effective for other
steganographic methods. To this end, we steganalyzed
two additional algorithms: YASS [50] with five different
settings (3, 8, 10, 11, and 12)7 as reported in [30] and
MBS [43] with payloads from 0.01 to 0.05 bpac. We
chose these algorithms in order to cover three very
different embedding paradigms – nsF5 minimizes the
embedding impact, YASS masks embedding changes by
additional JPEG compression, and MBS represents a
model-preserving embedding paradigm.

Figure 5 shows the steganalysis results in terms of
the median (MED) error values and median absolute
deviations (MAD) over ten independent splits of the
CAMERA database into training and testing sets. The
detection improved markedly for all three algorithms
when compared with the results obtained using a Gaus-
sian SVM (G-SVM) with CDF or CC-PEV features.

Note that the additional randomization in the pro-
posed framework due to random subspaces and boot-
strapping does not increase the statistical variations in
the test error much as the obtained results of MAD
values are comparable to those obtained using the
G-SVM. In terms of the worst case analysis of the
proposed framework with CF∗ features, we measured
that the worst value of PE is, on average over all three
algorithms and all the considered payloads, only by
0.39% higher then the median value.

IV. Comparison with SVMs

The ensemble classifier is proposed here as an al-
ternative tool to SVMs for feature development in ste-
ganalysis and for building steganalyzers. In this section,
we compare it with both Gaussian and linear SVMs in
terms of training complexity and performance.

7According to [30], these were the five most secure settings that
incorporated the improvements introduced in [44].
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Figure 4. Evolution of EOOB as individual feature sets are
merged together.

A. Complexity

As the feature-space dimensionality and the number
of training samples increase, the complexity and mem-
ory requirements of SVMs increase quite rapidly. The
complexity of training scales at least quadratically with
N trn and grows as the cost parameter8 C increases or
as the classes become less distinguishable. Performing a
proper k-fold cross-validation over the pre-defined grid
of the penalty parameter C ∈ GC requires repeating
the training k · |GC | times. Furthermore, in case of
the non-linear G-SVM, the grid of hyper-parameters
is two-dimensional as we also need to search for the
optimal value of the kernel width γ ∈ Gγ , which makes
the training even more expensive. Additionally, a G-
SVM needs the kernel matrix of size (N trn)2 to be
stored in the memory, which becomes prohibitive even
for moderately large training sets and requires a more

8The parameter C is a cost for misclassification in the objective
function of SVM training.

advanced caching solution.
In contrast, training the ensemble classifier requires

much more moderate computer resources. To com-
pute the scatter matrix SW (4) for one base learner,
O(N trnd2

sub) operations are needed while the matrix
inversion in (2) can be carried out in O(d3

sub) opera-
tions. Thus, the total training complexity for a fixed
value of dsub is O(LN trnd2

sub) + O(Ld3
sub), which is

linear w.r.t. N trn and does not directly depend on d.
As the search for the optimal value of dsub (described
in Section II-C2) is performed essentially by increasing
the value of dsub until the optimal value is found,
the complexity is dominated by the largest value of
the random subspace dimensionality tried during the
search, which is always close to the optimal dsub. We
also note that, unlike SVM, FLD is scale-invariant and
the features do not need to be normalized.

With respect to the memory requirements, each base
learner needs access to only 2N trndsub features at a
time. Therefore, the classifier could be implemented so
that one never needs to load all d-dimensional features
into the memory during training, which is a favorable
property especially for very large d. The ensemble
classifier is represented using the set of L general-
ized eigenvectors (2) and the corresponding thresholds,
which requires the total storage space of O(Ldsub).

B. Experimental comparisons

In the first experiment, we attack the steganographic
algorithm nsF5 using the 548-dimensional CC-PEV
features. We use this fairly low-dimensional feature set9

so that we can easily train the following three classifiers
without running into complexity issues:

• Gaussian SVM implemented using the publicly
available package LIBSVM [10]. The training in-
cludes a five-fold cross-validation search for the
optimal hyper-parameters – the cost parameter C
and the kernel width γ. It was carried out on the
multiplicative grid GC × Gγ , GC = {10a}, a ∈
{0, . . . , 4}, Gγ =

{

1
d
· 2b

}

, b ∈ {−4, . . . , 3}.
• Linear SVM implemented using the package LI-

BLINEAR [13]. The five-fold cross-validation is
used to search over the grid of the cost parameter
C ∈ {10a}, a ∈ {−4, . . . , 3}.

• Ensemble classifier implemented in Matlab as de-
scribed in Section II-A, including the search for
the optimal value of dsub and the automatic de-
termination of L. Our implementation is avail-
able for download at http://dde.binghamton.edu/
download/ensemble/.

9Note the shift in the notion of what constitutes a low-
dimensional feature set.
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Figure 5. Steganalysis of nsF5, YASS, and MBS. The performance of the ensemble classifier using CF∗ features is compared to
the state-of-the-art G-SVM steganalysis with CC-PEV (or CDF) features. We report median (MED) testing error over ten different
splits of the CAMERA database into a training and testing set, as well as the median absolute deviation (MAD) values.
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Splitting the CAMERA database in two halves – one
for training and the other half for testing, a set of
stego images was created for each relative payload
α ∈ {0.05, 0.1, 0.15, 0.2} bpac. Table II shows the
detection accuracy and the training time of all three
classifiers. The time was measured on a computer with
the AMD Opteron 275 processor running at 2.2 GHz.

The performance of all three classifiers is very sim-
ilar, suggesting that the optimal decision boundary
between cover and stego images in the CC-PEV feature
space is linear or close to linear. Note that while the
testing errors are comparable, the time required for
training differs substantially. While the G-SVM took
several hours to train, the training of L-SVMs was
accomplished in 14–23 minutes. The ensemble classifier
is clearly the fastest, taking approximately 2 minutes
to train across all payloads.

With the increasing complexity and diversity of cover
models, future steganalysis must inevitably start using
larger training sets. Our second experiment demon-
strates that the computational complexity of the en-
semble classifier scales much more favorably w.r.t. the
training set size N trn.10 To this end, we fixed the pay-
load to 0.10 bpac and extended the CAMERA database
by 10, 000 images from the BOWS2 competition [4]
and 9, 074 BOSSbase images [40]. Both databases were
JPEG compressed using the quality factor 75. The
resulting collection of images allowed us to increase the
training size to N trn = 25, 000.

Table III shows the training times for different N trn.
The values for the L-SVM and the ensemble classifier
are averages over five independent random selections of
training images. As the purpose of this experiment is
rather illustrative and the G-SVM classifier is appar-
ently computationally infeasible even for relatively low
values of N trn, we report its training times measured
only for a single randomly selected training set and
drop it from experiments with N trn > 5, 000 entirely.
It is apparent that although the L-SVM training is
computationally feasible even for the largest values of
N trn, the ensemble is still substantially faster and the
difference quickly grows with the training set size.

In our last experiment, we compare the performance
of the L-SVM with the ensemble classifier when a high-
dimensional feature space is used for steganalysis. The
G-SVM was not included in this test due to its high
complexity. We consider the 7, 850-dimensional feature
vector CF∗ constructed in Section III and use it to
attack nsF5, YASS, and MBS. This experiment reveals
how well both classifiers handle the scenario when the

10The actual number of training samples is 2Ntrn as we take
both cover and stego features.

Table II
Steganalysis of nsF5 using CC-PEV features. The

running times and PE values are medians (MED) over ten
independent splits of the CAMERA database into
training and testing sets. We also report median

absolute deviation (MAD) values for PE.

bpac Classifier PE Training timeMED MAD

0.05 G-SVM 0.3772 0.00246 7 hr 29 min
L-SVM 0.3802 0.00269 23 min

Ensemble 0.3695 0.00145 2 min

0.10 G-SVM 0.2326 0.00231 6 hr 52 min
L-SVM 0.2421 0.00246 27 min

Ensemble 0.2226 0.00265 3 min

0.15 G-SVM 0.1247 0.00385 5 hr 39 min
L-SVM 0.1342 0.00185 26 min

Ensemble 0.1160 0.00170 3 min

0.20 G-SVM 0.0615 0.00200 4 hr 51 min
L-SVM 0.0638 0.00123 27 min

Ensemble 0.0547 0.00150 3 min

Table III
Dependence of the training time on Ntrn. Target

algorithm: nsF5 with 0.10 bpac.

Ntrn G-SVM L-SVM Ensemble

1,000 33 min 5 min < 1 min
2,000 2 hr 27 min 10 min 1 min
3,000 5 hr 24 min 14 min 1.5 min
4,000 9 hr 31 min 20 min 2 min
5,000 13 hr 47 min 27 min 2 min

10,000 × 54 min 4 min

15,000 × 1 hr 23 min 5 min

20,000 × 1 hr 52 min 6 min

25,000 × 2 hr 21 min 8 min

feature space dimensionality is larger than the number
of training samples. The comparison is reported in
Table IV. The ensemble classifier is substantially faster
and delivers a higher accuracy for all three algorithms
(the decision boundary seems to be farther from linear
than in the case of CC-PEV features).

V. SUMMARY

The current trend in steganalysis is to train classifiers
with increasingly more complex cover models and large
data sets to obtain more accurate and robust detectors.
The complexity of the tool-of-choice, the support vec-
tor machine, however, does not scale favorably w.r.t.
feature dimensionality and the training set size. To
facilitate further development of steganalysis, we pro-
pose an alternative – ensemble classifiers built by fusing
decisions of weak and unstable base learners imple-
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Table IV
Steganalysis using CF∗ features. The L-SVM classifier is

compared with the proposed ensemble classifier.

L-SVM Ensemble
PE time PE time

nsF5 0.05 0.3518 9 hr 27 min 0.3377 31 min
nsF5 0.10 0.1851 8 hr 04 min 0.1737 37 min
nsF5 0.15 0.0809 6 hr 36 min 0.0720 24 min
nsF5 0.20 0.0292 5 hr 37 min 0.0273 15 min

YASS 3 0.0222 5 hr 47 min 0.0146 48 min
YASS 8 0.0377 6 hr 12 min 0.0271 45 min
YASS 10 0.0241 5 hr 35 min 0.0164 59 min
YASS 11 0.0616 5 hr 46 min 0.0437 58 min
YASS 12 0.0711 6 hr 12 min 0.0532 1 min

MBS 0.01 0.3806 13 hr 39 min 0.3710 43 min
MBS 0.02 0.2654 14 hr 58 min 0.2560 1 hr 9 min
MBS 0.03 0.1820 13 hr 52 min 0.1684 57 min
MBS 0.04 0.1094 11 hr 23 min 0.1087 59 min
MBS 0.05 0.0715 10 hr 24 min 0.0684 49 min

mented as the Fisher Linear Discriminant. The training
complexity of the ensemble scales much more favorably
allowing the steganalyst to work with high-dimensional
feature spaces and large training sets, removing thus
the limitations imposed by the available computing
resources that have often curbed the detector design
in the past. The ensemble is especially useful for fast
feature development when attacking a new scheme.
Performance-wise, ensemble classifiers offer accuracy
comparable and often even better to the much more
complex SVMs at a fraction of the computational cost.
We show a specific example how one can build a
diverse high-dimensional feature space for analysis of
JPEG images and readily use it to markedly improve
the detection of nsF5, YASS, and MBS. A Matlab
implementation of the ensemble is available at http:
//dde.binghamton.edu/download/ensemble/.

Our future work will be directed towards optimizing
the feature design for specific cover sources and em-
bedding algorithms to establish new benchmarks for
steganalysis in JPEG as well as the spatial domain.
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