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Abstract— This paper presents a method for detection quality factor 80, OutGuess75). If the quantization
of double JPEG compression and a maximum likelihood matrix used during embedding differs from the original
estimator of the primary quality factor. These methods are matrix, the resulting stego image is double-compressed.

essential for construction of accurate targeted and blind - . . .
ganalysis methods for JPEG images. Th% proposed methods T N statistics of DCT coefficients in double-compressed

use support vector machine classifiers with feature vectors JPEG images may significantly differ from the sta-
formed by histograms of low-frequency DCT coefficients. tistics in single-compressed images. These differences
The performance of the algorithms is compared to prior art  negatively influence the accuracy of some steganalyzers
on a database containing approximatelyt, 200,000 images.  geveloped under the assumption that the stego image has
been compressed only once. This is especially true for
steganalysis methods based on calibration [4], which is
I. INTRODUCTION a process used to estimate macroscopic properties of the

o ] cover image from the stego image. If the steganographic
Double-compression in JPEG images occurs Whengethod performs double compression, the calibration

JPEG image is decompressed to the spatial domain cess has to be modified to mimic what happened
than resaved with a different (secondary) quantizatiqfhring embedding, which requires the knowledge of
matrix. We call the first quantization matrix the primartne primary quantization matrix. Ignoring the effects of

guantization matrix. There are several reasons why W uble-compression may lead to extremely inaccurate
are interested in detecting double-compressed JPEG igsganalysis results [4]. Thus, methods for detection
ages and in the related problem of estimation of thg qouble-compression and estimation of the primary

primary quantization matrix. o quantization matrix are essential for design of accurate
First, detection of double compression is a forensieganalysis.

sic tool useful for recovery of the processing history.

Double-compressed images are also frequently producedsg far, all methods proposed for detection of double-
during image manipulation. By detecting the traces Qompression and for estimation of the primary quanti-
recompression in individual image segments, We Ma4tion matrix [6], [11], [5], [4] were designed under the
be able to identify the forged region because the NoRssumption that the image under investigation is a cover
tampered part of the image will exhibit traces of doublqmage (not embedded). Because the act of embedding
compression [11], [15]. further modifies the statistics of DCT coefficients, there
Second, some steganographic algorithms (JStgg.5 need for methods that can properly detect double
F5 [16], OutGuess [12]) always decompress the covgpmpression in stego images and estimate the primary
JPEG image into the spatial domain before embeddingantization matrix. Methods presented in this paper
During embedding, the image is compressed again, Usjsre developed to handle both cover and stego images,

ally with a default quantization matrix (F5 uses defaulfyhich makes them particularly suitable for applications
_ _ in steganalysis.
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Il. BAsics oOFJPEG ®MPRESSION In a single-compressed JPEG image (only compressed

The JPEG format is the most commonly used imagith quantization matrixQ"), .thekhistogram of DCT
format today. In this section, we only briefly outline thecoefficients for a fixed modg j, D, & € {1,....1}, is
basic properties of the format that are relevant to oijfe!l-modeled with a quantized Laplacian (or generalized
problem. A detailed description of the format can b&aussian) distribution [8]. When a single-compressed
found in [9]. JPEG is decompressed to the spatial domain and com-

During JPEG compression, the image is first divideBréssed again with another quantization mateX,
into disjoint 8 x 8 pixel blocks By, 7,5 = 0,...,7 Q"' # Q?, the histograms of DCT coefficients no longer

Each block is transformed using the Discrete Cosiffallow the Laplacian distribution; they exhibit artifacts
Transformation (DCT) caused by double-compression.
Some of the most visible and robust artifacts in the

histogram of DCT coefficients areeros and double-
peaks[5]. Zeros occur when some multiples «ij?j

in the double-compressed image are not present (see
wherew(0) = LQ, andw(r > 0) = 1. The DCT coef- the odd multiples in Figure 1(b)), which occurs when
ficients d;; are then divided by quantization steps replQ7;|Q;;) A (Q}; # QF;), wherea|b means & divides
resented using the quantization matflx; and rounded b.” Depending on the image and the values of the

dij = Z MCOS %r(?i—i—l)cos 1—7T68(2j+1)BTS

7r,5=0

to integers guantization steps, the zeros may take the form of local
dos minima rather than exact zeros.
D;j = round (Q” ) , 1,7 €{0,...,7}. A double peak occurs when a multiple of}; falls
ij

in the middle of two multiples ofQ?, and no other
We denote the, j-th DCT coefficient in thek-th block multiple of Q?j is closer. Formally, there exist integers
as D, k € {1,....1}, wherel is the number of all v,v >0, such thaw@}; = 1 ((v—1)Q% +vQ%) . In
8 x 8 blocks in the image. The paii, j) € {0,..., 7} x  this case, the multipleQ}; contributes evenly to both
{0,...,7} is called thespatial frequencyor modg of (v — 1) ?j and ngj, Figures 1(c,d) show examples of
the DCT coefficient. The JPEG compression finishes kjpuble-peaks occurring at multiples= 2. 5,8, .. .. For
ordering the quantized coefficients along a zig-zag paty, more detailed description of the impact of double-
encoding them, and finally applying lossless compregompression on the DCT histogram, we refer to [5], [11].
sion. The examples shown in Figure 1 demonstrate that
The decompression works in the opposite order. Aftgifferent combinations of primary and secondary quan-
reading the quantized DCT blocks from the JPEG fileization steps create distinct patterns in the histogram
each block of quantized DCT coefficiensis multiplied of DCT coefficients. Consequently, it is natural to use
by the quantization matrix@, di; = Qi; - Dij, and tools for pattern recognition to match histogram patterns
the Inverse Discrete Cosine Transformation (IDCT) i primary quantization steps. This idea was already
applied tod;;. The values are finally rounded to integergxploited in [5] and is also used in this paper.
and truncated to a finite dynamic range (usufly255]).

The block of decompressed pixel valuBsis thus IIl. PRIOR ART

B = trunc(round(IDCT(Q;5-Dij))), i,j €{0,...,7}.  To the best of our knowledge, the first work dedicated
Due to the rounding and truncatio® will in general to th? problem of estimation of_the primary quanlt|z.at|on
matrix in double-compressed images is due Fridrich et

differ from the original blockB. al. [5]*. Instead of restoring the whole primary quanti-
Although there are not any standardized quantization ’ 9 P y 9

matrices, the JPEG standard [9] recommends the Szé’:|tt|on matrix, _the_ authors flocused on estimation of the
) ; . primary quantization stepg,. for low-frequency DCT
of matrices indexed by auality factor from the set - . K
coefficients(i, j) € {(0,1),(1,1), (1,0)} because the es-
{1,2,...,100}. We refer to these recommended quantl: ; . )
, . . imates for higher frequencies become progressively less
zation matrices astandardmatrices. reliable due to insufficient statistics. Three approaches
We say that a JPEG image has bedouble- ' PP

compressedf the JPEG compression was applied twice €€ discussed. Two of them were based on matching
P P PP She histograms of individual DCT coefficients of the

each time with a different quantization matrix and Wiﬂ?ns ected image with the histoarams calculated from
the same alignment with respect to #he8 grid. We call b 9 9

! . . o : estimates obtained by calibration [3], [4] followed by
the first matrix@* the primary quantization matriand . . ;
5 . . simulated double-compression. Both histogram matching
the second matrig)“ the secondary quantization matrix

Add'tlona"y' we say that a SpeCIfIC DCd'oefﬂmentDij 1The problem of detection of previous (single) JPEG comjmwess
was double-compressed if and onl 11]- #+ ij from bitmap images was also investigated in [2].
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used a collection of neural networks. One neural netwotk and 6(x) = 0 when 2 # 0. Note that the fea-
was trained for each value of the secondary quantizatiture vector (1) does not include(0) and h(1). The

step of mterestQ
prlmary quantlzauon stef®);;
,9}, and in the rangél, 9], for Q7
AII neural networks used the same input feature vectcm'es (4,7)

x = {hj(2), hij(3),...,

6{2

e {1,.
in the range[2, 9] for

hi;(15)}, 1)

whereh,;;(m) denotes the number of occurrencesiof
7; among absolute values of DCT coeﬁicielﬂéfj in
the inspected JPEG image

‘DZJ - Q’?j)? (2)

..,9}, to recognize the reported accuracy of this neural network detector on

cover JPEG images was better the®(%s for estima-
tion of low frequency quantization steps with frequen-

e {(0,1),(,

1),(1,0)}, and better than

95% for quantization steps for frequencids,j) €

{(27 0)7 (27 1)7 (17 2)7 (07 2)}'

In a recent work, Shi et al. [6] proposed an idea for
recovery of compression history of images based on the
observation that the distribution of the first digit of DCT
coefficients in digital images of natural scenes follows



the generalized Benford distribution matrix. Unfortunately, this naive approach is not very
accurate. Better performance can be achieved with a

) , separate double-compression detector (further called the
DC detector) followed by the primary quality factor

wheregq is a free parameter and is a normalization estimator (the PQF estimator) applied only to images

constant. This fact is employed to estimate the quastassified as double-compressed.

tization matrix of images previously JPEG compressed The positive experience with a combination of classi-

but currently stored in some other lossless image formétation tools and features formed by histograms of mul-

such as TIFF or PNG. This method can be adapted fiples of quantization steps in [5] steered our attention in

detect double-compressed images by means of a SuppRi direction. Because of the problem with insufficient

Vector Machine classifier (SVM). We call the histograngtatistics for high-frequency DCT coefficients mentioned

of the first digit of DCT coefficients the Benford featurén the previous section, we also limit the set of DCT

set and investigate this approach in Section V, where Wi@quencies used by both the DC detector and the PQF

compare it to the proposed method. estimator to the set

Popescu et al. [11] presented another approach for de-

tection of double-compression in JPEG images. The au-

thors showed that the Fourier transform of the histogram £={(1,0),(2,0),(3,0),(0,1),(1,1),

of DCT coefficients in double-compressed images ex- (2,1),(0,2),(1,2),(0,3)}.

hibits periodicities. Unfortunately, their paper does not

: . : . Before we describe the details of our method, we
contain any details on how to use this observation for. . o . .

. . riefly discuss another possibility to estimate the pri-
detection of double-compression.

mary quantization matrix from the statistics of DCT
coefficients D;; even though we do not pursue this
method in this paper. We could model the distribution
As already explained in the introduction, for accuratgf DCT coefficients for a fixed spatial frequency in the
steganalysis it is very important to know the compressi@fingle-compressed image using a parametric model (e.g.,
history of a given stego image. Methods based Qmuplacian) and estimate the primary quantization step,
calibration (estimation of the cover image) are especialfygether with the nuisance model parameters, using the
vulnerable as they may produce completely misleadingaximum Likelihood (ML) principle and avoid using
results when the effect of double-compression is not agrassification altogether. While this choice does sound
counted for. Reliable detection of double-compressionigmpting, the distribution of DCT coefficients may be
also important for so called multi-classifiers that attemgjgnificantly affected by embedding and thus the ML
to not only detect the presence of a secret messagifimator may produce inaccurate results because of a
but also classify the stego image to a known stegangrdel mismatch. Indeed, the F5 algorithm modifies the
graphic method. For example, the blind multi-classifiegistribution of DCT coefficients in a substantial manner.
described in [10] consists of a double-compression deven OutGuess modifies the distribution of coefficients
tector and two separate classifiers—one trained for singlg individual frequencies (it only preserves tiygobal
compressed images and one specially built for doublgistogram).
compressed images. The double-compression detector
thus serves as a pre-classification. When it decides tlz&at
an image has been double-compressed, it already points
to those methods that can produce such images—F5The double-compression detector is implemented us-
and OutGuess. Mistakenly detecting a single-compresdgfl @ soft-margin support vector machin€{SVM)
image as doub'e_compressed may thus introduce |ar\géh the Gaussian kernel. Its feature VeCIE)rCOI’]SiStS
classification errors for the entire multi-classifier besgau Of histograms (2) for spatial frequencies from the Set

it can now only answer either cover, F5, or OutGuessormally,

=N-log |1
p(z) Og( T

IV. PROPOSED APPROACH

Detection of double-compression

What is needed is a double-compression detector with 1 o
a low probability of false positives, which means low?® = { o (hij(0), hiz (1), ..., hij(15))| (3,4) € E} ,
probability of detecting a single-compressed image as ! o

where Cii are normalization constants

double-compressed. -
The problem of double-compression detection couIéCij = Z:jzo hij (m)) . The dimension of this

be thought of as a sub-problem of the primary quantizéeature set (further called the Multiple-counting feature

tion matrix estimation. We could detect if the image waset) is16 x 9 = 144.

double-compressed by comparing the estimated primaryBecause the DC detector is a binary classifier, it is

guantization matrix with the secondary quantizatiopasy to adjust its bias towards one class. As already



SQS Detectable PQS #SVMs L .
Q ‘ Q the votes are counted and the quantization step with most
1 Si=13,4,5,6,7,8} 15 . . . o
5 Ss = {2,3.4,5,6,7,8,9,10} 36 votes is selected as the winner. All binary classifiers are
6  Se={4,5,6,7,8,9,10,11,12} 36 soft-margin Support Vector Machine€ ¢ SVM) with
T 8r=1{234,567,8,910} 36 the Gaussian kernél (z,y) = exp(—~||z — y||?
8  Ss={3,5,6,7,89,10,11,12} 36 (@, y) p(—llz ~y[%).

Note that the feature vector (3) cannot distinguish

TABLE | between the following three caseg;; is a divisor of
PRIMARY QUANTIZATION STEPS(PQS)DETECTABLE BY THE lzj, le = 1, and Qzlg _ % Thus, we classify all

MULTI -CLASSIFIER FOR A GIVEN SECONDARY QUANTIZATION STEP these cases into one common Cl@% _ 2 ThlS
. * . - /LJ..

(SQS). HE LAST COLUMN (#SVMs) SHOWS THE NUMBER OF - hhaenomenon imposes a fundamental limitation on the
BINARY SUPPORTVECTORMACHINES IN THE MULTI-CLASSIFIER performance Of the detector Fortunately the double—
compressed image in all these three cases does not
exhibit any discernible traces of double-compression,
r%nd hence influences steganalysis in a negligible manner.
In other words, our failure to distinguish between these
cases is not essential for steganalysis.

mentioned in the introduction to this section, this featu
is important for applications in steganalysis.

B. Detector of primary quantization steps C. Matching the closest standard quantization matrix

The double-compression detector described in theTpe primary quantization step detector presented in
previous section only provides binary output—the imag@e previous section only estimates the primary quan-
is either single or double-compressed. In this section, Weation steps for a small set of spatial frequencies
introduce a method for detecting the individual primaryrom the set£. Since we wish to recover the whole
quantization steps and then in Section IV-C, we explagyantization matrix (e.g., in order to carry our calibratio
the process of matching the detected quantization St§RSsteganalysis), we need a procedure that will find the
to the closest standard matrix. whole primary quantization matrix. Moreover, because

We only detect the primary quantization steps fohe detection will sometimes produce incorrect values
spatial frequencies from the sét This detector consists of the primary quantization steps, we need a procedure
of a collection of SVM-based multi-classifiefS,: for that will reveal such outliers and replace them with
each value of the secondary quantization sfgh. In  correct values. We achieve both tasks by finding the
our experiments, we created five multi-classifiers fatlosest standard quantization matrix using a Maximum
the secondary quantization ste@% € {4,5,6,7,8} Likelihood estimator.
because this is the range of quantization steps for spatiaDenoting the detected and the true primary quanti-
frequenciesC from secondary quantization matrices wittration steps aQ}j and Q}j, respectively, the closest
quality factors75 and 80 (the default quality factors in standard quantization matrix can be obtained using the
F5 and OutGuess). Table | shows the primary quantL estimator
zation steps detectable by the multi-classifiers for each A ) A
secondary quantization step and the number of SVMs in Q = arg oer H P(Qi;1Qi, Q%),
the multi-classifier. The feature vecterfor the multi- LieL
classifier 72 is formed by the histogram of absolutewhere 7 is the set of standard quantization matrices.
values of the firstl6 multiples of lej of all DCT The sgtT can be modified to incorporate side knowl-
coefficients| D[ for all k = 1,....1 edge if available (_for examp_le some camera manufac-

' turers use customized quantization matrices). The value

- i(hzij(o),hzij(l),---,hij(15)), 3) P(Qj;1Qj;, fj.) is the pr_oba_bility that the classifier

¢ detects the primary quantization st@p}j when the cor-
where C' is a normalization constant chosen so thakct primary quantization step '@gj and the secondary
Z:,f:o T, = 1. The multi-classifiet7. consists of a quantization step isij. These probabilities can be
collection of binary classifiers. Since there is one binampirically estimated from images used for training the
classifier for every combination of two different primarydetector.
guantization steps, the number of binary classifiers isWe note that it is possible to incorporate a priori
(’2‘) where n is the number of classes. For examplénowledge about the distribution of primary quantization
for the secondary quantization stdpwe classify into tables into the estimation procedure and switch to a MAP
n = 6 classes, for which we nee@) = 15 binary estimator. This a priori information could be obtained by
classifiers. During classification, the feature vector §3) crawling the web and collecting the statistics about the
presented to all binary classifiers. Every binary classifi@PEG quality tables. In this paper, however, we do not
gives vote to one primary quantization step. At the engursue this approach.



V. EXPERIMENTAL RESULTS All classifiers were implemented using the soft-margin

In this section, we present experimental results afd—SYM and were trained oh0000 examples of single-

compare them to prior art. Al results in this sectionCOmPressed images (cover images and images embedded

including the prior art evaluation, were calculated offY the6 aforementioned steganographic algorithms) and
a database created fro6006 raw images. Before con- 9" 10000 exgmples of double-compressed images (cover
ducting any experiments, the images were divided in{B'29€S and images embedded by F5 a.nd OutGuess). The
a training subset containing500 raw images and a nyper-parameteré’ andy were determined by a grid-

testing subset containir&§06 raw images. This allowed S€arch on the multiplicative grid
us to estim.ate the performancg on images that WeTED ) € {(2i72j)|i €{0,...,19},i € {_7’.”,5}}’
never used in any form in the training phase. The testing
subset contains images taken by different cameras armmbined with5—fold cross-validation.
photographers. Figure 2 shows the accuracy of the DC detector on
The double-compressed stego images were createddspble-compressed JPEG images from the testing set.
OutGuess and F5. We embedded message lengtlis, We can see that the accuracy on cover images and images
50%, and 25% of embedding capacity for each algoembedded by OutGuess is very good. The accuracy on
rithm and image. These two steganographic algorithri® images is worse, especially on images containing
were selected because their implementations produoeger messages. We attribute this loss of accuracy to the
double-compressed images. The double-compressed fast that F5 considerably alters the shape of histograms
ages were prepared withd different primary quality of DCT coefficients. As the primary quality factor in-
factors Qs34 = {63,64,...,93,94,96,98} and with two creases, artifacts of double-compression are becoming
different secondary quality factors:5, which is the more subtle and the accuracy of the detector decreases,
default quality factor of OutGuess, argd, the default which is to be expected.
quality factor of F5. In Figure 2, we can observe sharp drops in the accu-
Because we need to test the performance of thacy of the detector on images with primary quality fac-
DC detector also on single-compressed images to eviirs96 and98, and on images with primary quality factor
uate its false positive rate, we also prepared singlé4 and secondary quality factats. These sharp drops
compresed images with quality factaisands80 embed- correspond to situations when the histograms of DCT
ded by the following steganographic algorithms: F5 [16F0efficients are not affected by double-compression—
Model Based Steganography without [13] (MBS1) andll primary quantization steps for frequencies frafn
with [14] deblocking (MBS2), JP Hide&Seek [1], Out-are divisors of the secondary quantization steps. The
Guess [12], and Steghide [7]. We embedded messaggmntization steps for alp frequencies from£L for
of three different lengths100%, 50%, and 25% of standard matrices with quality facto®8 and98 are all
the embedding capacity for each algorithm. All MBS2nes. Similarly, the quantization steps in the standard
images were embedded only wisd% of the capacity quantization matrices with quality factorgl and 75
of MBS1 because during embedding of longer messaggatisfyQ;;(74) = Q.;(75), (i, 7) € L. Consequently, the
the deblocking part of MBS2 usually fails. decision of the detector is correct, since in these cases,
The resulting database, which contains both doublthe DCT coefficients inC are not double-compressed.
and single-compressed images, contains cover imagifs note that we avoided using images with these com-
with the same combinations of primary and secondabjnations of quality factors in the training set.
quality factors as the stego images. The total number ofFigure 3 shows the accuracy of the double-
images in the database wa$ x 2 x 7 x 6006 + 17 x compression detector on single-compressed JPEG im-
6006 ~ 3,000, 000. ages embedded by various steganographic algorithms.
Almost all of the tested steganographic algorithms pre-
serve the histogram of DCT coefficients, which helps
the detector to maintain its good accuracy. The only

In this section, we describe the details for constructingkception is F5, already commented upon above.
the detector of double-compressed images with sec-

ondary quality factorsr5 and 80 (see Section IV-A).

Due to extensive computational complexity, instead & Benford features

training a general double-compression detector for bothin Section Ill, we mentioned an approach proposed
quality factors, we decided to train a special doubldsy Shi et al. [6] to use the histogram of the distribution
compression detector for each secondary quality factof the first digit of DCT coefficients as a feature vector
(The complexity of training @ —-SVM is O(N?3), where for a classifier detecting double-compression. In order to
N is the number of examples.). compare Benford features to Multiple-counting features

A. Double-compression detector
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Fig. 3. Accuracy of double-compression detector on sicgl@pressed JPEG images with quality factébsand 80.

Benford  Multiple . . . . .
. of cover images is close to random guessing with bias
Single-compressed 61.74%  98.64%

Double-compressed 30.91%  97.11% towqrds the sjngle-comprgssed class, the accuracy of
Multiple-counting features is abod8%.

TABLE II
ACCURACY OF DOUBLECOMPRESSION DETECTOR EMPLOYING
BENFORD AND MULTIPLE-COUNTING FEATURES DETECTORs ARe  C- EStimation of primary quantization coefficients
TRAINED AND TESTED ON COVER IMAGES ONLY This section presents experimental results of the de-
tector of the primary quantization steps. As described
in Section IV-B, the detector is implemented by a
collection of “max-wins” multi-classifiers, where each
described in Section IV-A, we prepared two—SVM  multi-classifier consists of the set of soft-margin Sup-
classifiers—one for each feature set. Both classifiepert Vector Machines {—SVM) with the Gaussian
were trained on cover images with the (secondariernel. The training set for eaci—SVM contained
quality factor75. The size of the training set wa800 20000 examples—+0000 from each class. The hyper-
examples. parametersC and v were estimated by means of a
Table Il shows the detection accuracy of both cla$—fold cross-validation on the multiplicative grid
sifiers calculated on images from the testing set. W PN .
excluded double—compres?sed images with prirgnary quaI?—C’ 7)€ {(2 e, 1851 €{=8, . "6}}'
ity factors 74, 96, and 98 because DCT coefficientsFor training, we used’ and~ corresponding to the point
with spatial frequencies i are not technically double- with the least cross-validation error.
compressed in those cases. Table Il shows that whileTables Il and IV compare the accuracy of the SVM-
the performance of the Benford features on our databas&sed primary quantization step detector with the Neural



AccURACY OFNEURAL NETWORK (NN) AND SUPPORTVECTORMACHINE (SVM) PRIMARY QUANTIZATION STEPS DETECTORS ON
COVERIMAGES FROM THE TESTING SETPQSAND SQSSTAND FOR PRIMARY AND SECONDARY QUANTIZATION STEPSRESPECTIVELY

S0S 6
PQS | SVM NN SVM NN SVM NN SVM NN SVM NN
1 06.03% 08.60% | 85220 B87.46% | 92.47% O1.41% | 79.85% 05.76% | 67.81% 90.97%
96.23% 98.63% | 95.32% 74.79% | 92.12% 91.82% | 86.38% 74.18% | 69.37% 91.47%
3 08.85% 96.95% | 98.75% 87.29% | 93.64% 90.15% | 88.24% 77.88% | 77.80% 52.81%
4 95.70% 98.75% | 96.83% 94.43% | 98.66% 90.32% | 90.75% 77.05% | 71.14% 91.86%
5 99.80% 95.08% | 84.30% 86.45% | 95.32% 91.06% | 96.29% 81.47% | 95.13% 65.28%
6 99.15% 98.44% | 99.47% 85.72% | 91.62% 91.07% | 89.95%  89.90% | 90.75%  94.09%
7 99.51% 98.91% | 99.45% 90.38% | 98.54% 96.47% | 80.04% 95.66% | 83.67% 59.00%
8 99.84% 99.80% | 98.89%  97.01% | 99.54% 96.07% | 95.40% 88.23% | 67.02% 91.22%
9 — — 98.35% 98.69% | 97.23% 95.84% | 98.65% 84.61% | 92.24%  81.35%
10 — — 99.72% — 99.85% = — 98.73% — 93.64% —
11 — — — — 92.01%  — — — 97.91% —
12 — — — — 97.38%  — — — 99.08% —
TABLE Il

S0S 6
PQS | SVM NN SVM NN SVM NN SVM NN SVM NN
1 95.24% 98.56% | 86.75% B87.92% | 91.01% 90.95% | 78.74% 95.79% | 66.03% 90.31%
2 95.51% 98.50% | 84.17% 45.16% | 90.99% 91.67% | 65.32% 44.59% | 66.64% 90.31%
3 95.19% 67.41% | 94.15% 59.20% | 92.43% 89.78% | 81.99% 52.19% | 72.06%  36.79%
4 94.23% 98.62% | 95.12% 71.84% | 94.62% 59.41% | 83.46% 52.16% | 70.69% 90.67%
5 99.43% 78.47% | 83.99% 86.32% | 94.03% 70.68% | 91.33% 51.50% | 87.67%  40.48%
6 99.36% 76.86% | 98.26% 66.45% | 88.40% 89.93% | 85.02% 70.87% | 83.60% 68.27%
7 99.58% 61.72% | 99.47% 61.72% | 97.20% 81.09% | 77.21% 94.35% | 79.22%  42.00%
8 99.40% 72.16% | 98.92%  70.29% | 99.40% 59.26% | 93.78% 58.32% | 63.42% 88.89%
9 — — 97.56% 72.37% | 97.79% 80.80% | 97.39% 58.90% | 87.50% 58.26%
10 — — 99.23% — 99.58% = — 98.75% — 91.17%  —
11 — — — — 90.45%  — — — 96.98% = —
12 — — — — 96.08% = — — — 98.87%  —
TABLE IV

AccuURACY OF NEURAL NETWORK (NN) AND SUPPORTVECTORMACHINE (SVM) PRIMARY QUANTIZATION STEPS DETECTORS ON
COVERAND STEGOIMAGES FROM THE TESTING SETPQSAND SQSSTAND FOR PRIMARY AND SECONDARY QUANTIZATION STEPS
RESPECTIVELY.

Network (NN) detectdr from [5] on images from the D. Estimation of the standard quantization matrix
testing set. The comparison is done for the secondary ) L
quantization steps 4, 5, 6, 7, and 8. The NN detectorThe es_t|mator of the standard quant|zat|on___ma-
detects only the quantization steps in the rafig®]. tI’IXAerQllJII’eS2 the knowledge of the probabilities
We have to point out that while the SVM detector wad (Qi;Qi;, @7;) describing the accuracy of the detector
trained on cover and stego images, the NN detector w@kthe Primary quantization steps. As mentioned in Sec-
trained on cover images only. Because of this differencion 1V-C, we evaluated these probabilities empirically
we present the results on a mixed database of coWdt images from the training set.

and stego images (Table V) and on cover images only Figure 4 shows the accuracy calculated on images
(Table Il). In most cases, the SVM based detectdfom the testing set as a function of the true primary
outperformed the NN detector. The rare occassions wh@Hality factor. We conclude that the accuracy is not much
the NN detector gave better results corresponded d§ected by embedding. The detection on stego images
the situation when the primary quantization step was&nbedded by F5 is worse (especially on fully embedded
divisor of the secondary step. As explained in Section Nthages) due to F5's influence on the histogram.

B, incorrect primary step detection in these cases hasAll sharp drops in accuracy have the same cause,
virtually no influence on steganalysis. with the exception of images embedded by OutGuess

with primary quality factor75 and secondary quality
factor80. We will discuss this case later. As explained in
Section IV-B, the cases when the primary quantization

2The trained detector was kindly provided to us by the autbbfs]. stepQ}j is a divisor of the secondary quantization step
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fj, the primary quantization step is detected by defauthages processed using steganographic algorithms. By

as ij. Let us assume tha) and Q' are two primary comparing our method to prior art, we showed that the
quantization matrices for which proposed solution offers higher accuracy.
, 9 PR . Second, we built a maximum likelihood estimator of

Qi # Qi = Qiy|Qi; and @y;|Q3, for (i.7) € £ 0 primary quality factor in double-compressed JPEG
Let wus further assume that for instancémages. Since the main application is steganalysis, the
[L e P(Q1Qi5,QF) > Tl er P(Q}1Qi;, Q7). estimator was constructed to work for both cover and
When detecting images with primary quantizatiostego images. We evaluated the accuracy of the estimator
matrix @’ (if all quantization steps are detectedn a large test of JPEG images with primary quality
correctly), the ML estimator will incorrectly outpu factors and2 secondary quality factors (the default
instead of@’ becausel) has a larger likelihood. This factors of F5 and OutGuess). Generally, the accuracy is
failure is, fortunately, not going to impact subsequeritetter tharf0% and is not much affected by embedding
steganalysis because when the primary quantizatioperations. There exist combinations of the primary and
steps are divisors of the secondary quantization steggcondary quality factors, where the accuracy is low.
the impact of double-compression is negligible. They all correspond to situations when the effects of

We illustrate this phenomenon on an example of indouble-compression are negligible and thus the failures
ages with the primary quality fact88 and the secondary do not influence subsequent steganalysis. To the best
quality factor75. Most of the time, the primary quality of our knowledge, this is the first complete solution to
factor is estimated as89. We denote the quantizationthe problem of estimation of the primary quality factor
matrices corresponding to quality fact@$, 88, and75 in double-compressed JPEG images in the context of
asQ(89), Q(88), andQ(75), respectively. By examining steganalysis.
the quantization steps @J(89) and Q(88) for frequen-
cies(i,7) € L, we observe thaf)(88) and Q(89) only
differ when (i,5) = (0,1), in which caseQ},(89) =
3, Q01(88) = 2, and Q5,(75) = 6. If all primary 3 4o pigegseek. htpilinuxo1.gwdg.delalatham/stégi.
quantization steps are correctly detect@g,(is detected [2] z. Fan and R. L. de Queiroz. Identification of bitmap com-
as 6), then the estimator of the primary quality factor pression history: JPEG detection and quantizer estimalitiiE
will prefer the quality faciors9 over s because the ;| T™rscions o image Prcesstg(o 2235 209
conditional pfObapl“tyP(Q(ln = 6|Q(1)1 = 37@31 =3) implications for future design of steganographic schemés.
is larger thanP(Q};, = 6|Q%; = 2,Q3, = 3) (see J. Fridrich, editor,Information Hiding, 6th International Work-
Table 1V) and all other involved probabilities are the zg‘zgl"o%’gg 3200 otecture Notes in Computer Scien@ages
same. [4 J. Frid’rich, M. Goljan, and D. Hogea. Steganalysis of GPE

The drop in the accuracy on images embedded by images: Breaking the F5 algorithm. In F. A. P. Petitcolastoed
OutGuess with the primary quality fact®s and the Information Hiding, 5th International Workshppolume 2578 of
secondary quality facto75 is caused by the effect [
of embedding. The majority of incorrectly estimated
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