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Detection of double-compression for
applications in steganography

Tomáš Pevný and Jessica Fridrich

Abstract— This paper presents a method for detection
of double JPEG compression and a maximum likelihood
estimator of the primary quality factor. These methods are
essential for construction of accurate targeted and blind ste-
ganalysis methods for JPEG images. The proposed methods
use support vector machine classifiers with feature vectors
formed by histograms of low-frequency DCT coefficients.
The performance of the algorithms is compared to prior art
on a database containing approximately1, 200, 000 images.

I. I NTRODUCTION

Double-compression in JPEG images occurs when a
JPEG image is decompressed to the spatial domain and
than resaved with a different (secondary) quantization
matrix. We call the first quantization matrix the primary
quantization matrix. There are several reasons why we
are interested in detecting double-compressed JPEG im-
ages and in the related problem of estimation of the
primary quantization matrix.

First, detection of double compression is a foren-
sic tool useful for recovery of the processing history.
Double-compressed images are also frequently produced
during image manipulation. By detecting the traces of
recompression in individual image segments, we may
be able to identify the forged region because the non-
tampered part of the image will exhibit traces of double-
compression [11], [15].

Second, some steganographic algorithms (JSteg,
F5 [16], OutGuess [12]) always decompress the cover
JPEG image into the spatial domain before embedding.
During embedding, the image is compressed again, usu-
ally with a default quantization matrix (F5 uses default
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quality factor 80, OutGuess75). If the quantization
matrix used during embedding differs from the original
matrix, the resulting stego image is double-compressed.
The statistics of DCT coefficients in double-compressed
JPEG images may significantly differ from the sta-
tistics in single-compressed images. These differences
negatively influence the accuracy of some steganalyzers
developed under the assumption that the stego image has
been compressed only once. This is especially true for
steganalysis methods based on calibration [4], which is
a process used to estimate macroscopic properties of the
cover image from the stego image. If the steganographic
method performs double compression, the calibration
process has to be modified to mimic what happened
during embedding, which requires the knowledge of
the primary quantization matrix. Ignoring the effects of
double-compression may lead to extremely inaccurate
steganalysis results [4]. Thus, methods for detection
of double-compression and estimation of the primary
quantization matrix are essential for design of accurate
steganalysis.

So far, all methods proposed for detection of double-
compression and for estimation of the primary quanti-
zation matrix [6], [11], [5], [4] were designed under the
assumption that the image under investigation is a cover
image (not embedded). Because the act of embedding
further modifies the statistics of DCT coefficients, there
is a need for methods that can properly detect double
compression in stego images and estimate the primary
quantization matrix. Methods presented in this paper
were developed to handle both cover and stego images,
which makes them particularly suitable for applications
in steganalysis.

This paper is organized as follows. We briefly re-
view the basics of JPEG compression in Section II and
continue with the discussion of prior art in Section III.
Section IV describes the proposed methods for detecting
double-compressed images and estimating the primary
quantization matrix. In Section V, we show experimental
results and compare them to prior art. We also discuss
limitations of the proposed methods and their impact
on subsequent steganalysis. Section VI contains conclu-
sions.
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II. BASICS OFJPEG COMPRESSION

The JPEG format is the most commonly used image
format today. In this section, we only briefly outline the
basic properties of the format that are relevant to our
problem. A detailed description of the format can be
found in [9].

During JPEG compression, the image is first divided
into disjoint 8 × 8 pixel blocks Brs, r, s = 0, . . . , 7.
Each block is transformed using the Discrete Cosine
Transformation (DCT)

dij =

7
∑

r,s=0

w(r)w(s)

4
cos

π

16
r(2i+1) cos

π

16
s(2j+1)Brs

wherew(0) = 1√
2
, andw(r > 0) = 1. The DCT coef-

ficients dij are then divided by quantization steps rep-
resented using the quantization matrixQij and rounded
to integers

Dij = round

(

dij

Qij

)

, i, j ∈ {0, . . . , 7}.

We denote thei, j-th DCT coefficient in thek-th block
as Dk

ij , k ∈ {1, . . . .l}, where l is the number of all
8×8 blocks in the image. The pair(i, j) ∈ {0, . . . , 7}×
{0, . . . , 7} is called thespatial frequency(or mode) of
the DCT coefficient. The JPEG compression finishes by
ordering the quantized coefficients along a zig-zag path,
encoding them, and finally applying lossless compres-
sion.

The decompression works in the opposite order. After
reading the quantized DCT blocks from the JPEG file,
each block of quantized DCT coefficientsD is multiplied
by the quantization matrixQ, d̂ij = Qij · Dij , and
the Inverse Discrete Cosine Transformation (IDCT) is
applied tod̂ij . The values are finally rounded to integers
and truncated to a finite dynamic range (usually[0, 255]).
The block of decompressed pixel valuesB̂ is thus

B̂ = trunc(round(IDCT(Qij ·Dij))), i, j ∈ {0, . . . , 7}.

Due to the rounding and truncation,̂B will in general
differ from the original blockB.

Although there are not any standardized quantization
matrices, the JPEG standard [9] recommends the set
of matrices indexed by aquality factor from the set
{1, 2, . . . , 100}. We refer to these recommended quanti-
zation matrices asstandardmatrices.

We say that a JPEG image has beendouble-
compressedif the JPEG compression was applied twice,
each time with a different quantization matrix and with
the same alignment with respect to the8×8 grid. We call
the first matrixQ1 the primary quantization matrixand
the second matrixQ2 thesecondary quantization matrix.
Additionally, we say that a specific DCTcoefficientDij

was double-compressed if and only ifQ1

ij 6= Q2

ij .

In a single-compressed JPEG image (only compressed
with quantization matrixQ1), the histogram of DCT
coefficients for a fixed modei, j, Dk

ij , k ∈ {1, . . . .l}, is
well-modeled with a quantized Laplacian (or generalized
Gaussian) distribution [8]. When a single-compressed
JPEG is decompressed to the spatial domain and com-
pressed again with another quantization matrixQ2,

Q1 6= Q2, the histograms of DCT coefficients no longer
follow the Laplacian distribution; they exhibit artifacts
caused by double-compression.

Some of the most visible and robust artifacts in the
histogram of DCT coefficients arezeros and double-
peaks [5]. Zeros occur when some multiples ofQ2

ij

in the double-compressed image are not present (see
the odd multiples in Figure 1(b)), which occurs when
(Q2

ij |Q
1

ij) ∧ (Q1

ij 6= Q2

ij), wherea|b means “a divides
b.” Depending on the image and the values of the
quantization steps, the zeros may take the form of local
minima rather than exact zeros.

A double peak occurs when a multiple ofQ1

ij falls
in the middle of two multiples ofQ2

ij and no other
multiple of Q2

ij is closer. Formally, there exist integers
u, v ≥ 0, such thatuQ1

ij = 1

2

(

(v − 1)Q2

ij + vQ2

ij

)

. In
this case, the multipleuQ1

ij contributes evenly to both
(v − 1)Q2

ij andvQ2

ij . Figures 1(c,d) show examples of
double-peaks occurring at multiplesv = 2, 5, 8, . . .. For
a more detailed description of the impact of double-
compression on the DCT histogram, we refer to [5], [11].

The examples shown in Figure 1 demonstrate that
different combinations of primary and secondary quan-
tization steps create distinct patterns in the histogram
of DCT coefficients. Consequently, it is natural to use
tools for pattern recognition to match histogram patterns
to primary quantization steps. This idea was already
exploited in [5] and is also used in this paper.

III. PRIOR ART

To the best of our knowledge, the first work dedicated
to the problem of estimation of the primary quantization
matrix in double-compressed images is due Fridrich et
al. [5]1. Instead of restoring the whole primary quanti-
zation matrix, the authors focused on estimation of the
primary quantization stepsQ1

ij for low-frequency DCT
coefficients(i, j) ∈ {(0, 1), (1, 1), (1, 0)} because the es-
timates for higher frequencies become progressively less
reliable due to insufficient statistics. Three approaches
were discussed. Two of them were based on matching
the histograms of individual DCT coefficients of the
inspected image with the histograms calculated from
estimates obtained by calibration [3], [4] followed by
simulated double-compression. Both histogram matching

1The problem of detection of previous (single) JPEG compression
from bitmap images was also investigated in [2].
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Fig. 1. Examples of double-compression artifacts in histograms of absolute values of DCT coefficients for fixed mode(0, 1).

approaches were outperformed by the third method that
used a collection of neural networks. One neural network
was trained for each value of the secondary quantization
step of interest,Q2

ij ∈ {1, . . . , 9}, to recognize the
primary quantization stepQ1

ij in the range[2, 9], for
Q2

ij ∈ {2, . . . , 9}, and in the range[1, 9], for Q2

ij = 1.

All neural networks used the same input feature vector

x = {hij(2), hij(3), . . . , hij(15)}, (1)

wherehij(m) denotes the number of occurrences ofm ·
Q2

ij among absolute values of DCT coefficientsDk
ij in

the inspected JPEG image

hij(m) =

l
∑

k=0

δ
(
∣

∣Dk
ij

∣

∣ − m · Q2

ij

)

, (2)

where δ is the indicator function,δ(x) = 1 if x =
0 and δ(x) = 0 when x 6= 0. Note that the fea-
ture vector (1) does not includeh(0) and h(1). The
reported accuracy of this neural network detector on
cover JPEG images was better than99% for estima-
tion of low frequency quantization steps with frequen-
cies (i, j) ∈ {(0, 1), (1, 1), (1, 0)}, and better than
95% for quantization steps for frequencies(i, j) ∈
{(2, 0), (2, 1), (1, 2), (0, 2)}.

In a recent work, Shi et al. [6] proposed an idea for
recovery of compression history of images based on the
observation that the distribution of the first digit of DCT
coefficients in digital images of natural scenes follows
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the generalized Benford distribution

p(x) = N · log

(

1 +
1

1 + xq

)

,

whereq is a free parameter andN is a normalization
constant. This fact is employed to estimate the quan-
tization matrix of images previously JPEG compressed
but currently stored in some other lossless image format,
such as TIFF or PNG. This method can be adapted to
detect double-compressed images by means of a Support
Vector Machine classifier (SVM). We call the histogram
of the first digit of DCT coefficients the Benford feature
set and investigate this approach in Section V, where we
compare it to the proposed method.

Popescu et al. [11] presented another approach for de-
tection of double-compression in JPEG images. The au-
thors showed that the Fourier transform of the histogram
of DCT coefficients in double-compressed images ex-
hibits periodicities. Unfortunately, their paper does not
contain any details on how to use this observation for
detection of double-compression.

IV. PROPOSED APPROACH

As already explained in the introduction, for accurate
steganalysis it is very important to know the compression
history of a given stego image. Methods based on
calibration (estimation of the cover image) are especially
vulnerable as they may produce completely misleading
results when the effect of double-compression is not ac-
counted for. Reliable detection of double-compression is
also important for so called multi-classifiers that attempt
to not only detect the presence of a secret message
but also classify the stego image to a known stegano-
graphic method. For example, the blind multi-classifier
described in [10] consists of a double-compression de-
tector and two separate classifiers—one trained for single
compressed images and one specially built for double-
compressed images. The double-compression detector
thus serves as a pre-classification. When it decides that
an image has been double-compressed, it already points
to those methods that can produce such images—F5
and OutGuess. Mistakenly detecting a single-compressed
image as double-compressed may thus introduce large
classification errors for the entire multi-classifier because
it can now only answer either cover, F5, or OutGuess.
What is needed is a double-compression detector with
a low probability of false positives, which means low
probability of detecting a single-compressed image as
double-compressed.

The problem of double-compression detection could
be thought of as a sub-problem of the primary quantiza-
tion matrix estimation. We could detect if the image was
double-compressed by comparing the estimated primary
quantization matrix with the secondary quantization

matrix. Unfortunately, this naïve approach is not very
accurate. Better performance can be achieved with a
separate double-compression detector (further called the
DC detector) followed by the primary quality factor
estimator (the PQF estimator) applied only to images
classified as double-compressed.

The positive experience with a combination of classi-
fication tools and features formed by histograms of mul-
tiples of quantization steps in [5] steered our attention in
this direction. Because of the problem with insufficient
statistics for high-frequency DCT coefficients mentioned
in the previous section, we also limit the set of DCT
frequencies used by both the DC detector and the PQF
estimator to the set

L = {(1, 0), (2, 0), (3, 0), (0, 1), (1, 1),

(2, 1), (0, 2), (1, 2), (0, 3)} .

Before we describe the details of our method, we
briefly discuss another possibility to estimate the pri-
mary quantization matrix from the statistics of DCT
coefficients Dij even though we do not pursue this
method in this paper. We could model the distribution
of DCT coefficients for a fixed spatial frequency in the
single-compressed image using a parametric model (e.g.,
Laplacian) and estimate the primary quantization step,
together with the nuisance model parameters, using the
Maximum Likelihood (ML) principle and avoid using
classification altogether. While this choice does sound
tempting, the distribution of DCT coefficients may be
significantly affected by embedding and thus the ML
estimator may produce inaccurate results because of a
model mismatch. Indeed, the F5 algorithm modifies the
distribution of DCT coefficients in a substantial manner.
Even OutGuess modifies the distribution of coefficients
for individual frequencies (it only preserves theglobal
histogram).

A. Detection of double-compression

The double-compression detector is implemented us-
ing a soft-margin support vector machine (C−SVM)
with the Gaussian kernel. Its feature vectorx consists
of histograms (2) for spatial frequencies from the setL.
Formally,

x =

{

1

Cij

(hij(0), hij(1), . . . , hij(15))

∣

∣

∣

∣

(i, j) ∈ L

}

,

where Cij are normalization constants
(

Cij =
∑

15

m=0
hij(m)

)

. The dimension of this
feature set (further called the Multiple-counting feature
set) is16 × 9 = 144.

Because the DC detector is a binary classifier, it is
easy to adjust its bias towards one class. As already



5

SQS Detectable PQS #SVMs

4 S4 = {3, 4, 5, 6, 7, 8} 15
5 S5 = {2, 3, 4, 5, 6, 7, 8, 9, 10} 36
6 S6 = {4, 5, 6, 7, 8, 9, 10, 11, 12} 36
7 S7 = {2, 3, 4, 5, 6, 7, 8, 9, 10} 36
8 S8 = {3, 5, 6, 7, 8, 9, 10, 11, 12} 36

TABLE I

PRIMARY QUANTIZATION STEPS (PQS)DETECTABLE BY THE

MULTI -CLASSIFIER FOR A GIVEN SECONDARY QUANTIZATION STEP

(SQS). THE LAST COLUMN (#SVMS) SHOWS THE NUMBER OF

BINARY SUPPORTVECTORMACHINES IN THE MULTI -CLASSIFIER.

mentioned in the introduction to this section, this feature
is important for applications in steganalysis.

B. Detector of primary quantization steps

The double-compression detector described in the
previous section only provides binary output—the image
is either single or double-compressed. In this section, we
introduce a method for detecting the individual primary
quantization steps and then in Section IV-C, we explain
the process of matching the detected quantization steps
to the closest standard matrix.

We only detect the primary quantization steps for
spatial frequencies from the setL. This detector consists
of a collection of SVM-based multi-classifiersFQ2

ij
for

each value of the secondary quantization stepQ2

ij . In
our experiments, we created five multi-classifiers for
the secondary quantization stepsQ2

ij ∈ {4, 5, 6, 7, 8}
because this is the range of quantization steps for spatial
frequenciesL from secondary quantization matrices with
quality factors75 and80 (the default quality factors in
F5 and OutGuess). Table I shows the primary quanti-
zation steps detectable by the multi-classifiers for each
secondary quantization step and the number of SVMs in
the multi-classifier. The feature vectorx for the multi-
classifierFQ2

ij
is formed by the histogram of absolute

values of the first16 multiples of Q2

ij of all DCT
coefficients|Dk

ij | for all k = 1, . . . , l

x =
1

C
(hij(0), hij(1), . . . , hij(15)), (3)

where C is a normalization constant chosen so that
∑

15

m=0
xm = 1. The multi-classifierFQ2

ij
consists of a

collection of binary classifiers. Since there is one binary
classifier for every combination of two different primary
quantization steps, the number of binary classifiers is
(

n
2

)

, where n is the number of classes. For example,
for the secondary quantization step4, we classify into
n = 6 classes, for which we need

(

6

2

)

= 15 binary
classifiers. During classification, the feature vector (3) is
presented to all binary classifiers. Every binary classifier
gives vote to one primary quantization step. At the end,

the votes are counted and the quantization step with most
votes is selected as the winner. All binary classifiers are
soft-margin Support Vector Machines (C−SVM) with
the Gaussian kernelK(x, y) = exp(−γ‖x − y‖2).

Note that the feature vector (3) cannot distinguish
between the following three cases:Q1

ij is a divisor of
Q2

ij , Q1

ij = 1, and Q1

ij = Q2

ij . Thus, we classify all
these cases into one common classQ1

ij = Q2

ij . This
phenomenon imposes a fundamental limitation on the
performance of the detector. Fortunately, the double-
compressed image in all these three cases does not
exhibit any discernible traces of double-compression,
and hence influences steganalysis in a negligible manner.
In other words, our failure to distinguish between these
cases is not essential for steganalysis.

C. Matching the closest standard quantization matrix

The primary quantization step detector presented in
the previous section only estimates the primary quan-
tization steps for a small set of spatial frequencies
from the setL. Since we wish to recover the whole
quantization matrix (e.g., in order to carry our calibration
in steganalysis), we need a procedure that will find the
whole primary quantization matrix. Moreover, because
the detection will sometimes produce incorrect values
of the primary quantization steps, we need a procedure
that will reveal such outliers and replace them with
correct values. We achieve both tasks by finding the
closest standard quantization matrix using a Maximum
Likelihood estimator.

Denoting the detected and the true primary quanti-
zation steps aŝQ1

ij and Q1

ij , respectively, the closest
standard quantization matrix can be obtained using the
ML estimator

Q̂ = arg min
Q∈T

∏

i,j∈L
P (Q̂1

ij |Q
1

ij , Q
2

ij),

where T is the set of standard quantization matrices.
The setT can be modified to incorporate side knowl-
edge if available (for example some camera manufac-
turers use customized quantization matrices). The value
P (Q̂1

ij |Q
1

ij , Q
2

ij) is the probability that the classifier
detects the primary quantization step̂Q1

ij when the cor-
rect primary quantization step isQ1

ij and the secondary
quantization step isQ2

ij . These probabilities can be
empirically estimated from images used for training the
detector.

We note that it is possible to incorporate a priori
knowledge about the distribution of primary quantization
tables into the estimation procedure and switch to a MAP
estimator. This a priori information could be obtained by
crawling the web and collecting the statistics about the
JPEG quality tables. In this paper, however, we do not
pursue this approach.
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V. EXPERIMENTAL RESULTS

In this section, we present experimental results and
compare them to prior art. All results in this section,
including the prior art evaluation, were calculated on
a database created from6006 raw images. Before con-
ducting any experiments, the images were divided into
a training subset containing3500 raw images and a
testing subset containing2506 raw images. This allowed
us to estimate the performance on images that were
never used in any form in the training phase. The testing
subset contains images taken by different cameras and
photographers.

The double-compressed stego images were created by
OutGuess and F5. We embedded message lengths100%,

50%, and 25% of embedding capacity for each algo-
rithm and image. These two steganographic algorithms
were selected because their implementations produce
double-compressed images. The double-compressed im-
ages were prepared with34 different primary quality
factorsQ34 = {63, 64, . . . , 93, 94, 96, 98} and with two
different secondary quality factors:75, which is the
default quality factor of OutGuess, and80, the default
quality factor of F5.

Because we need to test the performance of the
DC detector also on single-compressed images to eval-
uate its false positive rate, we also prepared single-
compresed images with quality factors75 and80 embed-
ded by the following steganographic algorithms: F5 [16],
Model Based Steganography without [13] (MBS1) and
with [14] deblocking (MBS2), JP Hide&Seek [1], Out-
Guess [12], and Steghide [7]. We embedded messages
of three different lengths:100%, 50%, and 25% of
the embedding capacity for each algorithm. All MBS2
images were embedded only with30% of the capacity
of MBS1 because during embedding of longer messages
the deblocking part of MBS2 usually fails.

The resulting database, which contains both double-
and single-compressed images, contains cover images
with the same combinations of primary and secondary
quality factors as the stego images. The total number of
images in the database was34 × 2 × 7 × 6006 + 17 ×
6006 ≈ 3, 000, 000.

A. Double-compression detector

In this section, we describe the details for constructing
the detector of double-compressed images with sec-
ondary quality factors75 and 80 (see Section IV-A).
Due to extensive computational complexity, instead of
training a general double-compression detector for both
quality factors, we decided to train a special double-
compression detector for each secondary quality factor
(The complexity of training aC−SVM is O(N3), where
N is the number of examples.).

All classifiers were implemented using the soft-margin
C−SVM and were trained on10000 examples of single-
compressed images (cover images and images embedded
by the6 aforementioned steganographic algorithms) and
on 10000 examples of double-compressed images (cover
images and images embedded by F5 and OutGuess). The
hyper-parametersC and γ were determined by a grid-
search on the multiplicative grid

(C, γ) ∈
{

(2i, 2j)|i ∈ {0, . . . , 19}, i ∈ {−7, . . . , 5}
}

,

combined with5−fold cross-validation.
Figure 2 shows the accuracy of the DC detector on

double-compressed JPEG images from the testing set.
We can see that the accuracy on cover images and images
embedded by OutGuess is very good. The accuracy on
F5 images is worse, especially on images containing
longer messages. We attribute this loss of accuracy to the
fact that F5 considerably alters the shape of histograms
of DCT coefficients. As the primary quality factor in-
creases, artifacts of double-compression are becoming
more subtle and the accuracy of the detector decreases,
which is to be expected.

In Figure 2, we can observe sharp drops in the accu-
racy of the detector on images with primary quality fac-
tors96 and98, and on images with primary quality factor
74 and secondary quality factor75. These sharp drops
correspond to situations when the histograms of DCT
coefficients are not affected by double-compression—
all primary quantization steps for frequencies fromL
are divisors of the secondary quantization steps. The
quantization steps for all9 frequencies fromL for
standard matrices with quality factors96 and98 are all
ones. Similarly, the quantization steps in the standard
quantization matrices with quality factors74 and 75
satisfyQij(74) = Qij(75), (i, j) ∈ L. Consequently, the
decision of the detector is correct, since in these cases,
the DCT coefficients inL are not double-compressed.
We note that we avoided using images with these com-
binations of quality factors in the training set.

Figure 3 shows the accuracy of the double-
compression detector on single-compressed JPEG im-
ages embedded by various steganographic algorithms.
Almost all of the tested steganographic algorithms pre-
serve the histogram of DCT coefficients, which helps
the detector to maintain its good accuracy. The only
exception is F5, already commented upon above.

B. Benford features

In Section III, we mentioned an approach proposed
by Shi et al. [6] to use the histogram of the distribution
of the first digit of DCT coefficients as a feature vector
for a classifier detecting double-compression. In order to
compare Benford features to Multiple-counting features



7

F5 100% F5 50% F5 25%

25%

Primary Quality Factor

D
et

ec
tio

n
A

cc
ur

ac
y

0

20

40

60

80

80

100

65 70 75 85 90 95

(a) F5, secondary quality factor 75

F5 100% F5 50% F5 25%

Primary Quality Factor

D
et

ec
tio

n
A

cc
ur

ac
y

0

20

40

60

80

80

100

65 70 75 85 90 95

(b) F5, secondary quality factor 80

OutGuess 100% OutGuess 50% OutGuess 25%

Primary Quality Factor

D
et

ec
tio

n
A

cc
ur

ac
y

0

20

40

60

80

80

100

65 70 75 85 90 95

(c) OutGuess, secondary quality factor 75

OutGuess 100% OutGuess 50% OutGuess 25%

Primary Quality Factor

D
et

ec
tio

n
A

cc
ur

ac
y

0

20

40

60

80

80

100

65 70 75 85 90 95

(d) OutGuess, secondary quality factor 80
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Fig. 2. Accuracy of double-compression detector for secondary quality factors 75 and 80 on double-compressed cover images and images
embedded with F5 and OutGuess algorithms. Graphs are drawn with respect to the primary quality factor.
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Fig. 3. Accuracy of double-compression detector on single-compressed JPEG images with quality factors75 and80.

Benford Multiple

Single-compressed 61.74% 98.64%
Double-compressed 30.91% 97.11%

TABLE II

ACCURACY OF DOUBLE-COMPRESSION DETECTOR EMPLOYING

BENFORD AND MULTIPLE-COUNTING FEATURES. DETECTORS ARE

TRAINED AND TESTED ON COVER IMAGES ONLY.

described in Section IV-A, we prepared twoC−SVM
classifiers—one for each feature set. Both classifiers
were trained on cover images with the (secondary)
quality factor75. The size of the training set was6800
examples.

Table II shows the detection accuracy of both clas-
sifiers calculated on images from the testing set. We
excluded double-compressed images with primary qual-
ity factors 74, 96, and 98 because DCT coefficients
with spatial frequencies inL are not technically double-
compressed in those cases. Table II shows that while
the performance of the Benford features on our database

of cover images is close to random guessing with bias
towards the single-compressed class, the accuracy of
Multiple-counting features is about98%.

C. Estimation of primary quantization coefficients

This section presents experimental results of the de-
tector of the primary quantization steps. As described
in Section IV-B, the detector is implemented by a
collection of “max-wins” multi-classifiers, where each
multi-classifier consists of the set of soft-margin Sup-
port Vector Machines (C−SVM) with the Gaussian
kernel. The training set for eachC−SVM contained
20000 examples—10000 from each class. The hyper-
parametersC and γ were estimated by means of a
5−fold cross-validation on the multiplicative grid

(C, γ) ∈
{

(2i, 2j)|i ∈ {4, . . . , 18}, i ∈ {−8, . . . , 6}
}

.

For training, we usedC andγ corresponding to the point
with the least cross-validation error.

Tables III and IV compare the accuracy of the SVM-
based primary quantization step detector with the Neural
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SQS 4 5 6 7 8
PQS SVM NN SVM NN SVM NN SVM NN SVM NN

1 96.03% 98.69% 85.22% 87.46% 92.47% 91.41% 79.85% 95.76% 67.81% 90.97%
2 96.23% 98.63% 95.32% 74.79% 92.12% 91.82% 86.38% 74.18% 69.37% 91.47%
3 98.85% 96.95% 98.75% 87.29% 93.64% 90.15% 88.24% 77.88% 77.80% 52.81%
4 95.70% 98.75% 96.83% 94.43% 98.66% 90.32% 90.75% 77.05% 71.14% 91.86%
5 99.80% 95.08% 84.30% 86.45% 95.32% 91.06% 96.29% 81.47% 95.13% 65.28%
6 99.15% 98.44% 99.47% 85.72% 91.62% 91.07% 89.95% 89.90% 90.75% 94.09%
7 99.51% 98.91% 99.45% 90.38% 98.54% 96.47% 80.04% 95.66% 83.67% 59.00%
8 99.84% 99.80% 98.89% 97.01% 99.54% 96.07% 95.40% 88.23% 67.02% 91.22%
9 — — 98.35% 98.69% 97.23% 95.84% 98.65% 84.61% 92.24% 81.35%
10 — — 99.72% — 99.85% — 98.73% — 93.64% —
11 — — — — 92.01% — — — 97.91% —
12 — — — — 97.38% — — — 99.08% —

TABLE III

ACCURACY OF NEURAL NETWORK (NN) AND SUPPORTVECTORMACHINE (SVM) PRIMARY QUANTIZATION STEPS DETECTORS ON

COVERIMAGES FROM THE TESTING SET. PQSAND SQSSTAND FOR PRIMARY AND SECONDARY QUANTIZATION STEPS, RESPECTIVELY.

SQS 4 5 6 7 8
PQS SVM NN SVM NN SVM NN SVM NN SVM NN

1 95.24% 98.56% 86.75% 87.92% 91.01% 90.95% 78.74% 95.79% 66.03% 90.31%
2 95.51% 98.59% 84.17% 45.16% 90.99% 91.67% 65.32% 44.59% 66.64% 90.31%
3 95.19% 67.41% 94.15% 59.20% 92.43% 89.78% 81.99% 52.19% 72.06% 36.79%
4 94.23% 98.62% 95.12% 71.84% 94.62% 59.41% 83.46% 52.16% 70.69% 90.67%
5 99.43% 78.47% 83.99% 86.32% 94.03% 70.68% 91.33% 51.50% 87.67% 40.48%
6 99.36% 76.86% 98.26% 66.45% 88.40% 89.93% 85.02% 70.87% 83.60% 68.27%
7 99.58% 61.72% 99.47% 61.72% 97.20% 81.09% 77.21% 94.35% 79.22% 42.00%
8 99.40% 72.16% 98.92% 70.29% 99.40% 59.26% 93.78% 58.32% 63.42% 88.89%
9 — — 97.56% 72.37% 97.79% 80.80% 97.39% 58.90% 87.50% 58.26%
10 — — 99.23% — 99.58% — 98.75% — 91.17% —
11 — — — — 90.45% — — — 96.98% —
12 — — — — 96.08% — — — 98.87% —

TABLE IV

ACCURACY OF NEURAL NETWORK (NN) AND SUPPORTVECTORMACHINE (SVM) PRIMARY QUANTIZATION STEPS DETECTORS ON

COVERAND STEGOIMAGES FROM THE TESTING SET. PQSAND SQSSTAND FOR PRIMARY AND SECONDARY QUANTIZATION STEPS,

RESPECTIVELY.

Network (NN) detector2 from [5] on images from the
testing set. The comparison is done for the secondary
quantization steps 4, 5, 6, 7, and 8. The NN detector
detects only the quantization steps in the range[1, 9].
We have to point out that while the SVM detector was
trained on cover and stego images, the NN detector was
trained on cover images only. Because of this difference,
we present the results on a mixed database of cover
and stego images (Table IV) and on cover images only
(Table III). In most cases, the SVM based detector
outperformed the NN detector. The rare occassions when
the NN detector gave better results corresponded to
the situation when the primary quantization step was a
divisor of the secondary step. As explained in Section IV-
B, incorrect primary step detection in these cases has
virtually no influence on steganalysis.

2The trained detector was kindly provided to us by the authorsof [5].

D. Estimation of the standard quantization matrix

The estimator of the standard quantization ma-
trix requires the knowledge of the probabilities
P (Q̂1

ij |Q
1

ij , Q
2

ij) describing the accuracy of the detector
of the primary quantization steps. As mentioned in Sec-
tion IV-C, we evaluated these probabilities empirically
on images from the training set.

Figure 4 shows the accuracy calculated on images
from the testing set as a function of the true primary
quality factor. We conclude that the accuracy is not much
affected by embedding. The detection on stego images
embedded by F5 is worse (especially on fully embedded
images) due to F5’s influence on the histogram.

All sharp drops in accuracy have the same cause,
with the exception of images embedded by OutGuess
with primary quality factor75 and secondary quality
factor80. We will discuss this case later. As explained in
Section IV-B, the cases when the primary quantization
stepQ1

ij is a divisor of the secondary quantization step
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(a) F5, secondary quality factor 75

F5 100% F5 50% F5 25%

Primary Quality Factor

D
et

ec
tio

n
A

cc
ur

ac
y

0

20

40

60

80

80

100

65 70 75 85 90 95

(b) F5, secondary quality factor 80
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(c) OutGuess, secondary quality factor 75
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(d) OutGuess, secondary quality factor 80
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(e) Cover, secondary quality factor 75
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(f) Cover, secondary quality factor 80

Fig. 4. Accuracy of primary quality factor estimator for secondary quality factors75 and80 on double-compressed cover images and images
embedded with F5 and OutGuess algorithms. Graphs are drawn with respect to the true primary quality factor.
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Q2

ij , the primary quantization step is detected by default
as Q2

ij . Let us assume thatQ and Q′ are two primary
quantization matrices for which

Qij 6= Q′
ij ⇒ Qij |Q

2

ij andQ′
ij |Q

2

ij , for (i, j) ∈ L.

Let us further assume that for instance
∏

i,j∈L P (Q̂1

ij |Qij , Q
2

ij) >
∏

i,j∈L P (Q̂1

ij |Q
′
ij , Q

2

ij).
When detecting images with primary quantization
matrix Q′ (if all quantization steps are detected
correctly), the ML estimator will incorrectly outputQ
instead ofQ′ becauseQ has a larger likelihood. This
failure is, fortunately, not going to impact subsequent
steganalysis because when the primary quantization
steps are divisors of the secondary quantization step,
the impact of double-compression is negligible.

We illustrate this phenomenon on an example of im-
ages with the primary quality factor88 and the secondary
quality factor75. Most of the time, the primary quality
factor is estimated as89. We denote the quantization
matrices corresponding to quality factors89, 88, and75
asQ(89), Q(88), andQ(75), respectively. By examining
the quantization steps ofQ(89) andQ(88) for frequen-
cies (i, j) ∈ L, we observe thatQ(88) andQ(89) only
differ when (i, j) = (0, 1), in which caseQ1

01
(89) =

3, Q1
01(88) = 2, and Q2

01(75) = 6. If all primary
quantization steps are correctly detected (Q̂1

01
is detected

as 6), then the estimator of the primary quality factor
will prefer the quality factor89 over 88 because the
conditional probabilityP (Q̂1

01
= 6|Q1

01
= 3, Q2

01
= 3)

is larger thanP (Q̂1
01 = 6|Q1

01 = 2, Q2
01 = 3) (see

Table IV) and all other involved probabilities are the
same.

The drop in the accuracy on images embedded by
OutGuess with the primary quality factor85 and the
secondary quality factor75 is caused by the effect
of embedding. The majority of incorrectly estimated
images have the primary quality factor estimated as84
instead of85. The difference between the quantization
matricesQ(84) andQ(85) is for frequency(0, 1), where
Q01(84) = 4 and Q01(85) = 3. BecauseQ01(75) = 6,

this is not the case of divisors discussed above. From
Figure 4(c), we see that the accuracy of estimation im-
proves on images with shorter messages, which confirms
our hypothesis about the influence of embedding.

VI. CONCLUSION

The contribution of this paper is two-fold. First, we
presented a reliable method for detection of double-
compressed JPEG images. It is based on classification
using support vector machines with features derived from
the first order statistics of individual DCT modes of
low-frequency DCT coefficients. An important feature
of the proposed method is it’s ability to detect double-
compression not only for cover images but also for

images processed using steganographic algorithms. By
comparing our method to prior art, we showed that the
proposed solution offers higher accuracy.

Second, we built a maximum likelihood estimator of
the primary quality factor in double-compressed JPEG
images. Since the main application is steganalysis, the
estimator was constructed to work for both cover and
stego images. We evaluated the accuracy of the estimator
on a large test of JPEG images with34 primary quality
factors and2 secondary quality factors (the default
factors of F5 and OutGuess). Generally, the accuracy is
better than90% and is not much affected by embedding
operations. There exist combinations of the primary and
secondary quality factors, where the accuracy is low.
They all correspond to situations when the effects of
double-compression are negligible and thus the failures
do not influence subsequent steganalysis. To the best
of our knowledge, this is the first complete solution to
the problem of estimation of the primary quality factor
in double-compressed JPEG images in the context of
steganalysis.
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