
Determining Approximate Age of Digital Images Using

Sensor DefectsJessica Fridrich∗ and Miroslav GoljanDepartment of Electrical and Computer Engineering, Binghamton University, State Universityof New YorkABSTRACTThe goal of temporal forensics is to establish temporal relationship among two or more pieces of evidence. In thispaper, we focus on digital images and describe a method using which an analyst can estimate the acquisition timeof an image given a set of other images from the same camera whose time ordering is known. This is achievedby �rst estimating the parameters of pixel defects, including their onsets, and then detecting their presence inthe image under investigation. Both estimators are constructed using the maximum-likelihood principle. Theaccuracy and limitations of this approach are illustrated on experiments with three cameras. Forensic and law-enforcement analysts are expected to bene�t from this technique in situations when the temporal data stored inthe EXIF header is lost due to processing or editing images o�-line or when the header cannot be trusted. Reliablemethods for establishing temporal order between individual pieces of evidence can help reveal deception attemptsof an adversary or a criminal. The causal relationship may also provide information about the whereabouts ofthe photographer.Keywords: Temporal forensics, digital image forensics, imaging sensor defects, camera sensor aging, imageorigin. 1. INTRODUCTIONEstablishing temporal order among individual pieces of evidence helps analysts deduce causal relationship ofevents in a court case. When the objects under investigation are represented in a digital form, we speak oftemporal forensics of digital objects. This �eld is relatively new � the �rst works the authors are aware ofinclude14 and.16 This paper deals with the problem of establishing an approximate acquisition time of digitalimages. It is assumed that an analyst is given a set of trusted digital images whose acquisition time is known �for example, it can be extracted from the EXIF header, the image content, or some other context. The analystis simultaneously given one or more other images, whose acquisition time is unknown, and attempts to estimateit using the set of trusted images.Recently, the following imperfections of digital imaging sensors were shown to be useful for forensic purposes:the photo-response non-uniformity,4, 13 the dark current and defective pixels,9 and sensor dust.2 Not all suchimperfections, however, exhibit changes over time and thus not all are suitable for determining the age ofphotographs. Reasonable candidates are the defective pixels and sensor dust because they accumulate over time.Both, however, have natural limitations. The sensor protective glass that collects the dust can be cleaned, whichmay mislead an analyst trying to extract temporal information by detecting traces of dust in images. Moreover,this method is applicable only to cameras with removable lens. Pixel defects seem more promising because theyoccur randomly in time and space on the sensor independently of each other3, 10�12 and new defects appearsuddenly and with a constant rate (It is a Poisson process.). Most importantly, once a defect occurs, it becomesa permanent part of the sensor and does not heal itself.The main cause of new pixel defects is environmental stress, primarily due to impacting cosmic rays. Ingeneral, smaller pixels are more vulnerable to point defects than larger pixels. Sensors age both at high altitudesand at the sea level. They do age faster at high altitudes or during airplane trips where cosmic radiation isstronger. Consequently, the defect accumulation may not be linear in time.
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The main technical problem of using pixel defects for temporal forensics is that they may not be easilydetectable in individual images, depending on the image content, camera settings, exposure time, and processing.Also, the defects can be corrected for by upgrading the camera �rmware or by post processing the images o�-line.Despite these limitations, defective pixels may provide valuable forensic information in many practical scenarios asmost photographers typically do not remove the defects from photographs. Consequently, the defects accumulateand thus provide basis for determining the acquisition time.The main contribution of this paper is providing methodology for estimating pixel defects and their onsetsfrom regular images of natural scenes and for estimating an approximate acquisition time for an unknown image.In Section 2, we describe the basic types of pixel defects and introduce a model for the output of a defectivepixel. In Section 3, we derive a maximum-likelihood estimator for the model parameters and for the unknownacquisition time. Practical implementation issues are discussed in Section 4. The accuracy and limitations of theproposed method are the subject of the experimental Section 4. Finally, Section 6 summarizes the contributionand outlines future directions.1.1 NotationEverywhere in this chapter, boldface font will denote vectors (or matrices) of length speci�ed in the text, e.g.,
X and Y can be vectors or matrices with X(i) denoting the ith component of X. Unless mentioned otherwise,all operations among vectors or matrices, such as product, ratio, raising to a power, etc., are elementwise. Fora logical statement P , we also make use of the Iverson bracket de�ned as [P ] = 1 when P is true and [P ] = 0when P is false. 2. SENSOR DEFECTSIn the heart of every electronic device capable of taking digital pictures is an imaging sensor. There exist twotypes of sensors � CCD (Charge-Coupled Device) and CMOS (Complementary Metal-Oxide Semiconductor).Both sensors consist of a large number of photo detectors commonly called pixels. Pixels are made of siliconand capture light by converting photons into electrons using the photoelectric e�ect.5, 7 The charge accumulatedat every pixel is transferred out of the sensor, ampli�ed, and then run through an AD converter that convertsit to a digital signal. The digitized signal is further processed before the data is stored as an electronic �le(JPEG, TIFF, etc.) on the camera storage device. The pixels are several microns across and have a rectangularshape. In theory, the amount of electrons (charge) outputted by a pixel should depend solely on the intensityof the incident light. In reality, however, there are many factors that introduce both systematic and randomdeviations. In this paper, we are interested in pixels that behave systematically abnormally to the point thatthe defect is detectable in a single image. Such abnormally-behaving pixels are extreme cases of photo-responsenon-uniformity and dark current. Both concepts are explained below.2.1 Photo-response non-uniformityThe charge generated in a pixel depends on the physical dimensions of the pixel photosensitive area and on thehomogeneity of silicon. The pixels' physical dimensions slightly vary due to imperfections in the manufacturingprocess. Also, the inhomogeneity naturally present in silicon contributes to variations in quantum e�ciencyamong pixels (the ability to convert photons to electrons). The variations in quantum e�ciency among pixelscan be captured with a matrix K ∈ R

m×n of the same dimensions as the sensor. When an imaging sensor isilluminated with light intensity I ∈ R
m×n, in the absence of other noise sources or imperfections, the sensorwould register a noisy scene I + IK instead. (We remind that the product IK is an element-wise product ofmatrices) The term IK is usually referred to as the photo-response non-uniformity or PRNU. A large value of

K leads to a point defect called �pixel with abnormal sensitivity.�2.2 Dark currentEven when a pixel is not exposed to light during picture taking, it contains a small number of free electrons dueto thermal e�ects. Their number increases with temperature and exposure.5�7 It is also a�ected by ISO setting.In the absence of all other defects, the pixel's output is I+ τD+c, where τD is called the dark current and c theo�set. Here, τ ≥ 0 is a multiplicative factor whose value is determined by the temperature, exposure, and ISO



Figure 1. Top: A stuck pixel in an image and its close up. The pixel happens to be red because it has a red color �lter infront of it. Bottom: An example of a dark frame. Notice that there appears to be a degree of �hotness� among the pixelscaptured by the matrix D.(higher ISO leads to a larger value of τ), and D, c ∈ R
m×n are matrices. In images taken with a short exposure(e.g., 1/60th of a second or shorter), the dark current is usually very weak. However, it may start dominatingthe sensor output for dark scenes (I ≈ 0) when τ becomes large (large ISO and/or temperature and/or longexposure).An extremely high value of D produces the most common defect called a hot pixel. A high value of theo�set c leads to another defect type commonly recognized as a stuck pixel. Both defects were proposed forforensic tasks in 1999 by Kurosawa,9 who demonstrated that as long as a video clip contained some dark frames,hot/stuck pixels can be used to uniquely identify digital video cameras. In this paper, we propose to use thesedefects for determining an approximate image acquisition time.2.3 Pixel output modelConsidering the impact of all the defects discussed so far, we arrive at the following model for the raw output ofa sensor:

Y = I+ IK+ τD+ c+Θ. (1)We remind that τ is a scalar multiplicative factor whose value is determined by exposure, temperature, and ISOsettings. The matrix c is the matrix of o�sets and the dark current factor D is a noise-like signal due to leakageof electrons into pixels' electron wells (Fig. 1 right). Finally, the reader recognizes K as the PRNU factor. Themodeling noise Θ is a collection of all other noise sources, which are mostly random in nature and thus di�cultto use for forensic purposes (readout noise, shot noise, also known as the photonic noise, quantization noise,etc.).For spike pixel defects, such as hot or stuck pixels, at least one of the three parameters,K, D, and c, becomeslarge. Even though the parameters could be accurately estimated by taking special test pictures, such as picturesof dark scenes with long exposure, in forensic setting the camera may not be available and the challenge becomesto estimate these three matrices from the limited set of images available to the analyst. We also need to designan estimator for the onset of a defect and an estimator for the acquisition time of an unknown image by detectingin it the presence of defects. This is the subject of the next section.



3. DERIVING THE ESTIMATORSEven though sensor defects can be easily estimated in a laboratory environment by taking test images undercontrolled conditions, a forensic analyst must work with a given set of images taken with camera settings thatmay be quite unfavorable for estimating certain defects. For example, the dark current is di�cult to estimatereliably from images of bright scenes taken with a short exposure time and low ISO.To improve the signal to noise ratio between the signal of interest (defect) and the observable Y, we willwork with the noise residual W = Y − F (Y), obtained using a denoising �lter F . Since hot pixels (and stuckpixels with a large o�set) are spiky in nature, denoising �lters of the type15 that extract additive white Gaussiannoise are likely a poor choice for estimating point defects. Instead, non-linear �lters, such as the median �lter,are more likely to extract the spike correctly. In this paper we use the median �lter.The model of the residual becomes:
W = Y − F (Y)

= IK+ τD+ c+ I− F (Y) +Θ

= IK+ τD+ c+Ξ, (2)where Ξ stands for the sum of the modeling noise and the remnant of the content I− F (Y) due to the inabilityof the denoising �lter to separate content from noise. The term I− F (Y) is especially large in textured regionsand around edges.Let Yk, k = 1, . . . , d, be d images of regular scenes with their noise residuals Wk taken at known times
t1, . . . , td:

Wk(i) = Ik(i)K(i) + τkD(i) + c(i) +Ξk(i), (3)where k and i are the image and pixel indices, respectively. We have experimented with two models for the noiseresidual � the Gaussian model and the Laplacian model. Since the experiments with the much more complexLaplacian noise model lead to very similar results, we next describe the estimators for the Gaussian model only.Thus, we model Ξk(i), k = 1, . . . , d, as an i.i.d. Gaussian sequence with zero mean and variance σ2(i). Theknown quantities in the model are Ik ≈ F (Yk) and τk (the exposure time). Note that Wk are observables.From now on, all derivations will be carried out for a �xed pixel i. This will allow us to drop the pixel indexand make the expressions more compact. The unknown vector parameter θ = (K,D, c, σ) (for a �xed pixel,
θ ∈ R

4) can be estimated using the maximum likelihood principle:
θ̂ = argmax

θ

L(W1, . . . ,Wd|θ), (4)where L is the likelihood function
L(W1, . . . ,Wd|θ) = (2πσ2)−d/2 exp

(

−
1

2σ2

d
∑
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(Wk − IkK− τkD− c)2

)

. (5)Because the modeling noise Ξk is Gaussian, the ML estimator becomes the least squares estimator.8 Additionally,the model linearity allows us to �nd the maximum in (9) in the following well-known form:
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(8)is a matrix of known quantities and W = (W1, . . . ,Wd)
′ the vector of observations (noise residuals).



3.1 Determining defect onsetWe now extend the estimator derived above to the case when we have observations (pixel intensities) acrosssome time span during which the pixel becomes defective. Our goal is to estimate θ before and after the onset,
θ
(0), θ(1), and the onset time j. The estimator derived in the previous section easily extends to this case

(θ̂
(0)

, θ̂
(1)

, ĵ) = arg max
(θ(0),θ(1),j)

Lj(W1, . . . ,Wd|θ
(0), θ(1)), (9)where

Lj(W1, . . . ,Wd|θ
(0), θ(1)) = L(W1, . . . ,Wj|θ

(0))× L(Wj+1, . . . ,Wd|θ
(1)) (10)is the likelihood function written in terms of (5). Because of the form of (10), the maximization in (9) factorizes:

(θ̂
(0)

, θ̂
(1)

, ĵ) = argmax
j

{

argmax
θ(0)

L(W1, . . . ,Wj|θ
(0))× argmax

θ(1)
L(Wj+1, . . . ,Wd|θ

(1))

}

, (11)which converts the problem of onset estimation to the problem of estimating the pixel defect parameters addressedin the previous section.3.2 Determining approximate acquisition timeWe are now ready to develop the algorithm for placing a given image I under investigation among other d images,
I1, . . . , Id, whose time of acquisition is known, monotone increasing, and whose pixel defects are known, includingthe onset time and the parameters before and after the onset. This problem is again addressed using the MLapproach. This time, only the time index j of I is the unknown as the parameters of all defective pixels arealready known. Denoting the set of all defective pixels D, the estimator becomes:

ĵ = argmax
j

∏

i∈D

L(WI(i)|θ
([j>j(i)])(i)) (12)written in terms of (5). The superscript of θ is the Iverson bracket.3.3 Con�dence intervalsIn forensic setting, the analyst will likely be interested in statements of the type �the probability that image Iwas taken in time interval [t, t′] is at least p.� The approach outlined above allows the analyst to quantify theresults in this way because the conditional probabilities Pr(WI|j) =

∏

i∈D
L(WI(i)|θ

[j>j(i)](i)) are known foreach j. From the Bayes formula
Pr(j|WI) =

Pr(WI|j)Pr(j)

Pr(WI)
. (13)Thus, the probability that I was taken in time interval [t, t′] is

Pr(j ∈ [t, t′]|WI) =

∑

k∈[t,t′] Pr(WI|k)Pr(k)
∑

k Pr(WI|k)Pr(k)
. (14)Depending on the situation at hand, the prior probabilities Pr(k) may be known from other forensic evidenceor may be completely unknown. In the absence of any information about the priors, one could resort to theprinciple of maximum uncertainty and assume the least informative prior distribution � that the owner of thecamera was taking images at a uniform rate, leading to Pr(k) = 1/(tk− tk−1) for all k, where tk is the time whenthe kth trusted image was taken.4. PRACTICAL IMPLEMENTATION ISSUESIn this section, we discuss some implementation issues when applying the above framework in practice. The nextsection reports the results of speci�c experiments.
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Figure 2. Example of a noise residual for a defective pixel with onset at k ≈ 64. Note that, in agreement with themodel (3), the residual of a correctly-functioning pixel (before k = 64) is much smaller than after the defect onset.4.1 Selecting candidate defective pixelsThe �rst issue concerns the estimation of the model parameters θ̂. Running the estimation procedure of Section 3for all pixels would not be feasible due to excessive computational demands. Thus, prior to estimation, we selecta much smaller set of �candidate defects� that contains with high probability all defective pixels.Fig. 2 shows an example of the noise residual Wk(i) for a defective pixel with defect onset at around k = 64.One can clearly see that the noise residual of defective pixels �uctuates much more than for non-defective pixels.Thus, we identify the set of candidate defects simply by thresholding the sample variance of Wk(i), k = 1, . . . , d.Note that any pixel that appeared to be located at the image 1-pixel border was not considered since the median�lter has a small support there.4.2 Verifying the modelFig. 3 shows the noise residual Wk(i) for k = 1, . . . , d and a �xed i versus the model (3) obtained using themethod described in Section 3. The left �gure shows the case of a defective pixel that follows the model ratherwell, while the right �gure is for a defect whose behavior is compatible with the model to a lesser degree. Wehypothesize that the mis�t is probably caused by an unknown parameter in the model (3), which is the ISOsetting. Some cameras set the ISO automatically, based on the scene, but do not store this information in theEXIF header. Since we determine the factor τ from the exposure only, it does not accommodate the potentiallyvarying ISO. Thus, hot pixels with a large of D (right �gure) are expected to be modeled less accurately thanpixels with abnormal sensitivity that have a large K (left �gure) and small D. A potential remedy is to use asimpler model for the defective pixel, the so-called Kc model, in which D is set to 0, and the dark current isincluded into the modeling noise. The parameter estimation simpli�es as only two parameters now need to beestimated for each defect � K and c.4.3 Other issuesThe likelihood function maximized in (12) returns an index ĵ � the approximate acquisition time for the testedimage. However, the likelihood is constant between two consecutive defect onsets and thus it is not clear whichtime should be returned as the estimated age of the tested image (follow Fig. 4). In the absence of any otherinformation, it is tempting to return the average time of all images Ij with the same maximal value of thelikelihood. However, this may lead to a bias in the estimate because it is far more likely that a defect is notdetected than detecting a false defect. Therefore, the estimated time tends to be smaller than the true date.5. EXPERIMENTS5.1 Tests on Canon PS SD400 #1The �rst set of images we experimented with came from a Canon PS SD 400 #1 with native resolution of
2592× 1944 pixels. As all cameras included in this experimental section, this camera has a 1/2.5" CCD sensor.
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Figure 3. The noise residual Wk(i) versus the model (3) for two defective pixels i. Left: Estimated defect parameters:
K = −0.895,D = 63.9, c = 219.7. Right: Estimated defect parameters: K = −0.333,D = 953.0, c = 61.34.
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Figure 4. Example of the log-likelihood function with maximum average at ĵ = 85 while the true date is at j = 141.The available set of images was split to d = 329 images of a known acquisition time, from which the parametersof defective pixels were obtained, and a set of 155 test images that would be tested by the proposed method.Before the experiment, all d images were converted to grayscale and 200 candidate defective pixels were locatedby the largest sample variance of the noise residual Wk(i), k = 1, . . . , d, obtained using a 3 × 3 median �lter.An initial visual inspection of the plots of Wk(i) lead to a set of defective pixels D0 containing 110 pixels. Thepixels formed 12 clusters on the camera sensor while two defective pixels appeared isolated (see Fig. 5).We tested the proposed framework with several di�erent models for the noise residual: the KDc model (3)containing three unknown parameters, K,D, c, and the simpler Kc model with D ≡ 0. This simpli�ed versionof the noise residual was included because the factor τ in the model depends on an unknown ISO setting, asdiscussed in Section 4.2. Thus, it might be bene�cial to simply include this uncertainty into the noise componentinstead of attempting to model it. We also tested the Laplacian noise model for Ξ. The results of all experimentswere evaluated using the Mean Absolute Error (MAE) expressed in the number of days (see Table 1).Overall, the Laplacian noise model did not lead to more accurate estimates when compared to the Gaussianmodel. And since it is signi�cantly more complicated for implementation, the Gaussian model is the preferredchoice. The best average error of about 77 days was obtained using the Gaussian KDc model. This result isquite reasonable considering the fact that the 329 trusted images spanned the total of 802 days. The accuracywith which one can expect to estimate the acquisition time obviously depends on the number of new defectsduring the time span at hand. Thus, in addition to MAE we report the relative time estimation error as theratio between the MAE and the average time between onsets of new defects. Both MAE and the relative errorare shown in Table 1. We remind that there were total 19 new defects for this camera. In �ve cases, two defectsappeared at the same time (both were counted as separate events).



Figure 5. Defective pixel locations for CanonSD400 #1 detected by visual inspection of noise residuals with large variance(enhanced by small circles). Kc model Gauss KDc model Gauss Kc model Lapl. KDc model Lapl.MAE of dating / relative error 78.30 / 1.74 76.97 / 1.71 85.99 / 1.91 81.06 / 1.80Table 1. MAE and the relative error for 155 images from Canon PS SD400 #1 for four di�erent estimators di�ering bythe number of estimated parameters and the modeling noise distribution.Fig. 6 shows the true date versus the estimated date in days for all 155 tested images obtained from theGaussian KDc model. The crosses on the diagonal correspond to the set of 329 trusted images with known dates.They show the temporal distribution of the trusted images. Note that no images appear between time 400 and500, limiting thus our ability to date images within this time interval.5.2 Tests on Canon PS SD400 #2To obtain a better insight about the reliability of the proposed method, we repeated the same experiments as inthe previous section for another camera of the same model � Canon PS SD400 #2. We worked with 300 imagesspanning 649 days for establishing pixel models and with 200 test images. This camera had substantially fewernew defects that were clustered in �ve groups (see Fig. 7 left), which yielded a larger MAE than for the �rstcamera. The results appear in Table 2. The MAE was approximately 111 days. Even though this error mayseem rather large, it may be su�cient to reliably answer the question whether a given image was taken beforeor after a certain event.The detected onset of each of the 58 defective pixels plotted in Fig. 7 right is in agreement with �ve physicaldefects. (shown in Table 2).5.3 Tests on Canon PS S2In the last experiment with the third camera, 237 images obtained in a time span of more than 1000 days weredivided into a set of 150 trusted images and 87 test images. Total of 42 defective pixels were identi�ed fromthe trusted set. Grouping these pixels by their location revealed one very large defect (consisting of 23 pixels)that appeared between May 21 and May 29, 2006. There were three other smaller defects and a few individualdefective pixels that lead to the total of 6 defect onsets during the span of 1411 days. The onsets are separatedby dashed lines in Fig. 8. The low number of new defects limits the accuracy of date estimation for images fromthis camera.The MAE and the relative error appears in Table 3.Kc model Gauss KDc model Gauss Kc model Lapl. KDc model Lapl.MAE of dating/ relative error 113.3 / 0.87 113.3/ 0.87 111.6 / 0.86 111.2 / 0.86Table 2. MAE and the relative error for 200 images from Canon PS SD400 #2 for four di�erent estimators.
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Figure 6. True acquisition date (in days) versus date estimated using (12) based on detecting pixel defects.
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Figure 8. Canon PS S2: Left: Defective pixels location. Right: Defect occurrence in time grouped by pixel's location.Kc model Gauss KDc model Gauss Kc model Lapl. KDc model Lapl.MAE of dating / relative error 150.25 / 0.64 140.49 / 0.60 138.63 / 0.59 141.27 / 0.60Table 3. MAE and the relative error for 87 images from Canon PS SD400 #2 for four di�erent defect estimators.



6. CONCLUSIONSCausal forensic of digital objects is a relatively new �eld. The �rst works the authors are aware of are14 and.16 Theformer proposed the mutual information between sensor �ngerprint estimates as the quantity that can establishcausal relation among digital objects via the information inequality.1 The authors applied this framework todigital images using estimates of sensor �ngerprints13 as the forensic quantity. Assuming the individual elementsof a sensor �ngerprint are realizations of an iid Gaussian signal, the mutual information is the normalizedcorrelation between �ngerprints. Even though the authors reported that normalized correlation can be used toestablish temporal information among digital objects, we were unable to repeat the experiments reported in.14In fact, it appears that the experiments were negatively a�ected using an unintentional programming error.We determined experimentally that the only temporal changes in the �ngerprint are due to onset of newdefective pixels. This motivated our e�ort presented in this paper. The methodology is applicable wheneverthe analyst has a set of trusted images with known acquisition times and wishes to determine an approximateacquisition time for an unknown image. It works by �rst estimating the model parameters of all defectivepixels, including their onset using a maximum-likelihood estimator. Then, the unknown time of acquisition isestablished by detecting the presence of defective pixels in the image under investigation. Again, a maximum-likelihood approach is used. The accuracy of the proposed method depends on how often new defects appear onthe sensor. For one camera, we were able to determine the age with an average accuracy of about 80 days whilenew defects appeared on average every 45 days. For other cameras with a lower frequency of occurrence of newdefects, the method was less accurate (average accuracy of about 111 and 140 days). Even this lower accuracymay be useful in court in situations when only a rough (binary) time granularity is needed, such as when thequestion is whether an image was taken before or after a certain event.7. ACKNOWLEDGMENTSThis research was supported by an NSF award no. CNF-0830528. We would like to thank Gaurav Sharma forinspiring our work and many useful discussions.REFERENCES1. T. M. Cover and J. A. Thomas. Elements of Information Theory. New York: John Wiley & Sons, Inc.,2006.2. A. E. Dirik, H. T. Sencar, and N. Memon. Digital single lens re�ex camera identi�cation from traces ofsensor dust. IEEE Transactions on Information Forensics and Security, 3(3):539�552, September 2008.3. J. Dudas, L. M. Wu, C. Jung, G. H. Chapman, Z. Koren, and I. Koren. In R. A. Martin, J. M. DiCarlo,and N. Sampat, editors, Identi�cation of in-�eld defect development in digital image sensors, volume 6502,page 65020Y. SPIE, 2007.4. J. Fridrich. Digital image forensic using sensor noise. IEEE Signal Processing Magazine, 26(2):26�37, 2009.5. G. E. Healey and R. Kondepudy. Radiometric CCD camera calibration and noise estimation. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 16(3):267�276, March 1994.6. G. C. Holst. CCD Arrays, Cameras, and Displays. JCD Publishing & SPIE Press, USA, 2nd edition, 1998.7. J.R. Janesick. Scienti�c Charge-Coupled Devices, volume PM83. SPIE Press Monograph, 2001.8. S. M. Kay. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory, volume II. UpperSaddle River, NJ: Prentice Hall, 1998.9. K. Kurosawa, K. Kuroki, and N. Saitoh. CCD �ngerprint method � identi�cation of a video camera fromvideotaped images. In Proc. IEEE International Conference on Image Processing (ICIP), pages 537�540,October 1999.10. J. Leung, G. H. Chapman, I. Koren, and Z. Koren. Automatic detection of in-�eld defect growth in imagesensors. In DFT '08: Proceedings of the 2008 IEEE International Symposium on Defect and Fault Toleranceof VLSI Systems, pages 305�313, Washington, DC, 2008. IEEE Computer Society.
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