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Abstract—Sensor photo-response non-uniformity has been 
proposed as a unique identifier (fingerprint) for various 
forensic tasks, including digital-camera ballistics in which an 
image is matched to a specific camera that took it. The 
problem investigated here concerns the situation when an 
adversary estimates the sensor fingerprint from a set of images 
and superimposes it onto an image from a different camera to 
frame an innocent victim. This paper proposes a reliable 
method for detecting such fake fingerprints under rather mild 
and general assumptions about the adversary’s activity and 
the means available to the victim. The proposed method is 
subjected to experiments to evaluate its reliability as well as its 
limitations. The conclusion that can be made from this study is 
that planting a sensor fingerprint in an image without leaving 
a trace is significantly more difficult than previously thought. 

 
Index Terms—Camera identification, digital forensics, 

photo-response non-uniformity, sensor fingerprint, counter-
forensics. 

I. INTRODUCTION 
Photo-response non-uniformity (PRNU) of imaging 

sensors can be used as a unique fingerprint to address 
various forensic tasks involving digital images and video 
[1]. One of the most important applications of this 
technology is matching an image or a video clip to the 
camera that took it, which is a task similar in spirit to 
matching a bullet to a gun barrel. Since every image taken 
by a given sensor contains its PRNU signal, an image can 
be matched to the sensor (camera) by proving that its noise 
residual contains the same PRNU. The sensor fingerprint 
can be estimated by averaging noise components of natural 
images [2][3]. Because the fingerprint is essentially a 
random spread-spectrum signal, it can be detected using 
some form of a matched filter [2]–[4]. 

Since the inception of this technology in 2005, 
researchers have realized that the fingerprint can be copied 
onto an image that did not come from the camera and thus 
frame an innocent victim. In the most typical and quite 
plausible scenario, Alice, the victim, posts her images on 
the Internet. Eve, the adversary, estimates the fingerprint of 
Alice’s camera and properly superimposes it onto another 
image. Indeed, as already shown in the original publication 
[2] and, more recently, in [5][6], threshold-based 
correlation detectors cannot distinguish between a genuine 
fingerprint and a fake one. 

The goal of this paper is to develop a countermeasure 
against this fingerprint-copy attack. In the next section, we 
introduce the notation and include the basics of sensor-
based camera identification needed in this work. Section III 
discusses the options available to the adversary and 
explains the assumptions under which we will work. The 

actual techniques are described in Section IV, which is 
divided into two subsections, each addressing a different 
scenario depending on the means available to the adversary 
and the victim. Experimental validation of all proposed 
techniques and analysis of their limitations appear in 
Section V. The last experimental Section VI contains the 
results of experiments whose aim is to evaluate how the 
strength with which the adversary adds the fake fingerprint 
influences the reliability of the proposed methods. The 
paper is concluded in Section VII, where we summarize the 
paper and discuss the consequences of the newly obtained 
results. 

II. BACKGROUND 

A. Notation 
Everywhere in this article, boldface symbols represent 

either vectors or matrices. At times, it will be convenient to 
index a matrix using a one-dimensional index instead of an 
index pair. It is hoped that switching between these two 
index types will cause no confusion. For two matrices of 
the same dimensions, X and Y, their element-wise product 
(or element-wise division) is a matrix Z of the same 
dimensions, Z[i,j] = X[i,j] Y[i,j] (or Z[i,j] = X[i,j] / Y[i,j]), 
and we simply write Z = XY (or Z = X/Y). The dot product 
is denoted as  with 

1
[ ] [ ]

i
i i

=
= ∑X Y X Y: || || =X X:X  

being the L2 norm of X. Denoting the sample mean with a 
bar, the normalized correlation is defined as 
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B. Fingerprint estimation and detection 
For any digital image I and a denoising filter F, the 

noise residual of I is defined as WI = I − F(I). The PRNU 
signal can be captured using a multiplicative factor K, 
which plays the role of a sensor “fingerprint.” Adopting the 
model described in [7], the noise residual has the form: 

 ,= +IW aIK Θ       (2) 
where stands for all other noise components, such as the 
shot noise or the readout noise, and a is an attenuation 
factor of the same dimension as K. In general, a depends on 
the image content and the processing to which I was 
subjected to. 

Θ

When modeling Θ  in (2) as an i.i.d. Gaussian, the 
maximum likelihood estimator of the PRNU factor K from 
N noise residuals  i = 1, …, N, has the form ( )

( )iW ,i=
I

W
[7]: 
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[Fingerprint estimation] Eve has access to N 
images,  from C and estimates its fingerprint 
using an algorithm Φ : 

(1) ( ), , ,NI I…

The quality of the fingerprint estimate is defined as K̂             (6) (1) ( )
E

ˆ ( , , ; ).N PΦ=K I I…
ˆ( , ).q corr= K K     (4) The symbol PK stands for the settings of the estimation 

procedure, which might include the choice of the denoising 
filter used to extract the noise component from images, the 
parameters of this filter, or the formula for aggregation of 
the noise residuals. Fundamentally, any estimation 
procedure will be some form of averaging of the noise 
residuals: 

For camera identification, it is important that the 
fingerprint not contain any other artifacts (called Non-
Unique Artifacts or NUAs in [8]) that might be common 
across sensors/cameras of the same make because such 
artifacts are not unique to each particular sensor and would 
increase the false alarm. Since most of these artifacts are 
due to demosaicking algorithms that depend on the Color 
Filter Array (CFA) and are periodic in nature, they can be 
removed by zero-meaning the rows and columns of  
separately for each pixel type as defined by the CFA. 
Assuming  is an m×n matrix, for the Bayer CFA there 
are four types of pixels forming four interleaved 
submatrices T∈{G1,G2,R,B}, where  is of 
dimension (m/2)×(n/2). The operation of zero-meaning is 
described using the following pseudo-code executed for all 
four T: 

K̂

K̂

Tˆ ,K TK̂
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where ( ) 1/i N=h  for simple averaging [9] or 
for the estimator (3). ( ) ( ) ( ) 2

1
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= ∑h I I

[Preprocessing] Having estimated the fingerprint, Eve 
may preprocess J to suppress the PRNU term JK′ 
introduced by the sensor in C’ and/or to remove any 
artifacts in J that are incompatible with C. Because 
suppressing the PRNU term is not an easy task [10], quite 
likely the best option for Eve is to skip this step altogether. 
This is because the PRNU component JK′ in J is very 
weak1 to be detected per se and because the chances that 
Alice will gain access to C’ may be rather small. In fact, 
Eve should avoid processing J too much as it may introduce 
artifacts of its own. 
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If Eve compresses her forgery using JPEG, she needs to 

make sure that the quantization table is compatible with 
camera C, otherwise Alice will know that the image has 
been manipulated and did not come directly from her 
camera. If camera C’ uses different quantization tables than 
C, Eve will inevitably introduce double-compression 
artifacts into J, giving Alice again a starting point of her 
defense. 

for  j=1 to n/2 {  for i=1, …, m/2} T Tˆ ˆ[ , ] [ , ] ji j i j c←K K

Reassembling the four submatrices into one matrix, the 
final fingerprint estimate is further processed in the DFT 
domain using a Wiener filter W:  to further 
suppress any remaining NUAs, such as non-periodic 
artifacts 

ˆ ˆ ˆW( )← −K K K

[8]. 
Unless C and C’ are of the same model, the forged 

image may contain color-interpolation artifacts of C’ 
incompatible with those of C. Alice could leverage upon 
techniques developed for camera brand/model identification 
[11] and prove that there is a mismatch between the camera 
model and the color interpolation artifacts. A 
knowledgeable adversary may, in turn, attempt to remove 
such artifacts of C’ and introduce interpolation artifacts of 
C, for example, using the method described in [12]. It is 
now apparent that it is far from easy to create a “perfect” 
forgery. 

If no geometric transform was applied to image J (e.g., 
cropping, scaling, and digital zoom), the presence of the 
camera fingerprint in J is established through the 
correlation detector: 

ˆ( , )corrρ = JW JK             (5) 
where  is a fingerprint estimate. Alternative statistics 
proposed for the detection based on different modeling 
assumptions include the generalized matched filter (GMF) 

K̂

[7] and the peak to correlation energy (PCE) ratio [4]. 

III. THE FINGERPRINT-COPY ATTACK 
In this section, we position ourselves into the role of the 

adversary Eve and analyze the impact of her actions on how 
difficult it will be for Alice to reveal the copied fingerprint. 
We assume that Alice owns a digital camera C. Eve takes 
an image J from a different camera C’ with fingerprint 
K′ ≠ K and makes it appear as if it was taken by C. She 
does so by first estimating the fingerprint of C from some 
set of Alice’s images and then properly superimposes it 
onto J. Next, we detail Eve’s options in her forging activity. 

While it is certainly possible for Alice to utilize traces of 
previous compression or color interpolation artifacts, no 
attempt is made in this paper to exploit these discrepancies 
to reveal the forged fingerprint. Our goal is to develop 
techniques capable of identifying images forged by Eve 
even in the most difficult scenario for Alice when C’ is of 
exactly the same model as C to avoid any incompatibility 
issues discussed above. Thus, we do not allow Alice to take 
advantage of knowing any a priori information about C’. 

                                                           
1 The energy of the PRNU component is around 51dB depending on the 

camera model and the average luminance of J. 
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[Forging] The final step for Eve is to plant the 
estimated fingerprint in J, creating thus the forged image J′. 
In her attempt to mimic the acquisition process, and in 
accordance with (2), Eve superimposes the fake fingerprint 
multiplicatively, which is what would happen if J was 
indeed taken by C: 

second case detailed in Section IV.B, Eve has forged two or 
more images, J1′ and J2′. 

A. Single forged image 
In this scenario, some of the N images used by Eve to 

estimate  are available to Alice but Alice does not know 
which they are. She has a set of Nc ≥ N candidate images 
that Eve may have possibly used. This is a very plausible 
scenario because, unless Eve gains access to Alice’s camera 
and takes images of her own and then removes them from 
the camera before returning the camera to Alice, Eve will 
have little choice but to use images taken by Alice, such as 
images posted by Alice on the Internet. In this case, Alice 
can prove that the forged image did not originally come 
from her camera by identifying among her candidate 
images those used by Eve. 

EK̂

 ,   (8) E
ˆ' [ 1 )]α= +J J( K

where α > 0 is a scalar fingerprint strength and [x] is the 
operation of rounding x to integers forming the dynamic 
range of J. Finally, Eve saves J′ as JPEG with the same or 
similar quantization table as that of the original image J. 
Formula (8) should be understood as three equations for 
each color channel of J. 

As already reported in [2][5][6], this attack succeeds in 
fooling the camera identification algorithm in the sense that 
the response of the fingerprint detector on J′ (either the 
correlation (5), the GMF [7], or the PCE [13]) will be high 
enough to indicate that J′ was indeed taken by camera C. 

We now explain the key observation based on which 
Alice can construct her defense. Let I be one of the N 
images available to Alice that Eve used to forge J′. Since 
the noise residual WI participates in the computation of  
through the averaging formula (7), J′ will contain a scaled 
version of the entire noise residual WI = aIK + θI. Thus, 
besides the PRNU term, WI and WJ′ will share another 
signal – the noise θI. Consequently, the correlation 

= corr(WI, WJ′) will be larger than what it would be if 
the only common signal between I and J′ was the PRNU 
component (which would be the case if J′ was not forged). 
As this increase may be quite small and the correlation 
itself may fluctuate significantly across images, the test that 
evaluates the statistical increase must be calibrated. We call 
this test the triangle test. 

EK̂

, 'cI J

A very important issue for Eve is the choice of the 
strength α. We call α the “natural” strength if J′ elicits the 
same response of the GMF fingerprint detector [7] 
implemented with the true fingerprint K as when J′ was 
indeed taken by C. By selecting the natural strength, Eve 
essentially creates the most natural-looking forgery in 
which the fingerprint is not suspiciously weak or strong as 
this would likely give Alice additional avenues for her 
defense.2

The natural strength can be estimated using a predictor 
of the detector response Pred(J′,K), such as the one 
described in [7]. While it is certainly true that Eve cannot 
easily construct the predictor because she does not have 
access to the true fingerprint K, she may select the natural 
strength α by pure luck. To be more precise here, we grant 
Eve the ability to guess the natural strength instead of 
giving her access to K. We note that similar assumptions 
postulating a clairvoyant adversary are commonly made in 
many branches of information security. 

1) The triangle test 

The main bulk of experiments described in Section V is 
carried out with the natural fingerprint strength. In Section 
VI, we investigate how the performance of the proposed 
methods changes when Eve uses other values of α. 

 

IV. DETECTING FAKE FINGERPRINTS 
Here, we describe a test using which Alice can decide 

whether an image indeed came from her camera or whether 
it was forged by Eve as described in Section III. We 
separately discuss two cases that differ by what data is 
available to Alice for her forensic investigation and by the 
actions of Eve. The first and perhaps more plausible case is 
analyzed in Section IV.A. It is assumed that Eve created 
one forged image J′ and Alice has access to at least one of 
the images, used by Eve to estimate . In the (1) ( ), , ,NI I… EK̂

                                                           

,

Alice starts her defense by computing an estimate  of 
the fingerprint of her camera from images guaranteed to not 
have been used by Eve. For instance, she can take new 
images with her camera C. Then, for a candidate image I, 
she computes  and 

 (follow the diagram below). 

AK̂

, ' ,cI J A
ˆ A,

ˆ( , )c corr= II K W K

A
ˆ ' A',

ˆ( , )c corr= JJ K W K

AK̂  

IW  
corr 

corr corr 

'JW  

 
The test is based on the fact that for images I that were 

not used to forge J′, the value of  can be estimated from 

A
 and while when I was used in the forgery, the 

correlation  will be higher than the estimate. 

, 'cI J

ˆ,
c

I K A
ˆ',

,c
J K

, 'cI J

In order to obtain a more accurate relationship, we will 
work by blocks of pixels, denoting the signals constrained 
to block b with subscript b. We adopt the model (2) for the 
noise residuals and a similar model for Alice’s fingerprint:  

2 This strategy may not be the most advantageous to an adversary who 
is aware of the methods presented in this paper. More on this issue appears 
in Section VI. 
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The reason why (15) cannot be turned into a simple 
hypothesis test is that the distribution of  when I is used 
for forgery is not available to Alice and it cannot be 
determined experimentally because Alice does not know 
what strategy Eve used. Thus, we set our decision threshold 
t to bound the probability of false alarm, PFA: 

, 'cI J
             (9) , , ', '

A,

,   ' ,
ˆ .

b b b b b b b b b b

b b b

a a

= +

I I, I J J , JW I K Θ W J K Θ

K K ξ
',= + = +

In (9), we assume that the attenuation factor aI,b ≡ aI,b is 
constant on each block. When I was not used by Eve, under 
some fairly mild assumptions about the noise terms in the 
models (9), the following estimate of  is derived in the 
appendix: 

, 'cI J

, ' , ' 0 FAˆPr( | H ) .c c t Pλ η− − > =I J I J        (16) 

Note that, depending on J′, the constant of 
proportionality λ > 1, which suggests the presence of an 
unknown multiplicative hidden parameter in (10) most 
likely due to some non-periodic NUAs that were not 
removed using zero-meaning and Wiener filtering as 
described in Section II.B. The quality of Alice’s fingerprint, 
q, can be considered unknown (or simply set to 1) as 
different q will just correspond to a different λ (scaling of 
the x axis in the diagram of  vs. λ ). , 'cI J , 'ĉI J

2
, ' A ' A

ˆ ˆˆ ( , ) ( , ) ( , ') ,c corr corr qμ −=I J I JW K W K I J       (10) 

where μ (I,J′) is the “mutual-content factor,” 
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and the bar denotes the sample mean. The integer NB is the 
number of blocks and q ≤ 1 is the quality of 

The 

attenuation factors can be estimated by computing the 
following block-wise correlations:

A
ˆ ,K

A

2 1
ˆ1 ( ) ,q SNR− −= + K A

2
ˆ || || / || || .SNR =K K ξ 2

3

 , 2
, ,

2
A,

|| || ˆ( , )
ˆ|| ||
b

b b

b b

a corr −= I
I I

W
W I K

I K
A,b b q . (12) 

Alice now has two options. She can test each candidate 
image I separately by evaluating its p-value and thus, on a 
certain level of statistical significance, identify those 
images that were used by Eve for estimating her fingerprint. 
Alternatively, Alice can test for Nc candidate images I all at 
once whether −λ, 'cI J , 'ĉ η−I J ~ fJ′(x). This “pooled test” will 
be a better choice for her for large N when the reliability of 
the triangle test for individual images becomes low. 

Continuing the analysis of the case when I was not used 
by Eve, we consider  and  as random variables over 
different images I for a fixed J′. The dependence between 
these two random variables is well fit with a straight line 

 = λ

, 'cI J , 'ĉI J

, 'cI J , 'ˆ .c η+I J  Because the distribution of the deviation 
from the linear fit does not seem to vary with  (see , 'ĉI J Fig. 
2), we make a simplifying assumption that the conditional 
probability 

B. Multiple images with forged fingerprints 

, ' , ' , ' 'ˆ ˆPr( | ) ( ),c c x c f xλ η− − = ≈I J I J I J J         (13) 

is independent of . , 'ĉI J

When I was used by Eve in the multiplicative forgery, 
due to the additional common signal θI, the correlation 

= corr(WI, WJ′) increases to , where β is the 
following multiplicative factor derived in the appendix: 

, 'cI J , 'cβ I J

2
', ,

2
, ',

' || ||
1 .

' || ||

b b b
b

b b b b b
b

a

N a a
αβ = +

∑
∑

J I

I J

J Θ

I J K
   (14) 

In this paper, we consider another plausible scenario in 
which Eve forges more than one image and presents them 
as evidence to the judge. She may do so with the hope to 
make her case against Alice stronger. To be more precise, 
Eve superimposes the same fingerprint estimate  to at 
least two different images, J1 and J2, and obtains two 
forged images, J1′ and J2′. Interestingly, in this case, Alice 
will have another option for her defense – she can run the 
triangle test for the triple J1′, J2′,  Indeed, the test 
should work as the common component between the noise 
residuals of J1′ and J2′ will include the modeling noise of 
the estimated fingerprint . Note that Alice can run this 
test even when she has no access to images 

 used by Eve to estimate ! 

EK̂

A
ˆ .K

EK̂

(1) ( ), , NI I… EK̂

V. EXPERIMENTS 
This section contains experimental evaluation of the 

triangle test under the assumption that Eve selects the 
natural strength α for the fake fingerprint as explained in 
Section III. The results for other values of α appear in 
Section VI. 

In all tests, the signals entering the triangle test were 
preprocessed by zero-meaning. Wiener filtering, as 
described in Section II.B to suppress the NUAs, was only 
applied to WJ′ and not to WI to save the computation time. 
The camera C’ is the 4-megapixel Canon PS A520 while C 
is Canon PS G2, which has the same native resolution. Both 
cameras were set to take images at the highest quality JPEG 

Notice that the percentual increase is proportional to the 
fingerprint strength α and the energy of the common noise 
component θI, and it is inversely proportional to N. 

Alice now runs the following composite binary 
hypothesis test for every candidate image I from her set of 
Nc candidate images: 

0 , ' , ' '

1 , ' , ' '

ˆH : ~ ( ),
ˆH : ~ ( ).

c c f x
c c f x

λ η

λ η

− −

− − /
I J I J J

I J I J J

        (15) 

                                                           
3 Eq. (12) holds independently of whether or not I was used by Eve. It 

is derived in the appendix. 
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A. Single forged image (individual test) compression and the largest resolution. The picture-taking 
mode was set to “auto.” We first tested how reliably Alice can identify which 

images were used by Eve (the triangle test applied to each 
candidate image individually). By far the most influential 
element is the number of images used by Eve, N, and the 
content of the forged image J. We used N∈{20,50,100,200} 
and six randomly selected test images J shown in Fig. 1. To 
give the reader a sense of the extent of Eve’s forging 
activity, in Table I we report the PSNR between J′ before it 
is JPEG compressed and J. The PSNR between J′ and J 
measures the total distortion that includes the slight 
denoising, F(J), and quantization to 24-bit colors after 
adding the fingerprint. The PSNR between J′ and the 
slightly denoised F(J) measures the energy of the PRNU 
term only. 

As explained in Section III, the fingerprint estimation 
algorithm Φ and the forging algorithm depend on many 
parameters. To obtain a compact yet comprehensive report 
on the performance of the triangle test, the experiments 
were designed to show the effect of only the most 
influential parameters – the number of images used by Eve, 
N, the number of candidate images, Nc , the target false 
alarm rate PFA , and the fingerprint strength α. To improve 
the readability, we summarize the range of these parameters 
for each particular experiment in a table. 

Eve estimates the fingerprint using the most accurate 
estimator she can find in the literature (3) implemented 
using the denoising filter F described in [14] with the 
wavelet-domain Wiener filter parameter σ = 3 (valid for 8-
bit per channel color images). From our experiments, the 
reliability of the triangle test is insensitive to the denoising 
filter or the mismatch between the filters used by Eve and 
Alice. 

 
TABLE I. PSNR BETWEEN THE ORIGINAL IMAGE J AND THE FORGERY J′ 
BEFORE JPEG COMPRESSION FOR SIX TEST IMAGES (SEE THE EXPERIMENT 
IN SECTION V.A).  

PSNR(F(J), J′) [dB] PSNR(J, J′) [dB] #
N 20 50   100  200    20    50   100   200 

1  48.8  51.8  53.2  53.9  47.6  49.5  50.3  50.7 
2  49.0  51.8  53.1  53.8  47.8  49.8  50.6  50.9 
3  50.1  51.8  52.9  53.4  48.7  49.8  50.5  50.8 
4  54.5  56.4  57.5  58.7  49.5  50.0  50.2  50.4 
5  49.5  52.2  53.2  54.0  47.7  49.3  49.7  50.1 
6  50.8  53.2  54.3  55.1  49.3  51.0  51.6  52.1 

Then, Eve forges a 24-bit color image J from camera C’ 
to make it look as if it came from camera C. She first 
slightly denoises J using the same denoising filter F (with 
its Wiener filter parameter σ = 1) to suppress the fingerprint 
from camera C’ and possibly other artifacts introduced by 
C’. The filter is applied to each color channel separately. 
Then, Eve adds the fingerprint to J, J′ = J + αJKE, and 
saves the result as JPEG with quality factor Q = 90, which 
is slightly smaller than the typical qualities of the tested 
JPEG images J. 

 
In all our experiments, the pdf fJ′(x) (13) was often very 

close to a Gaussian but for some images J, the tails 
exhibited a hint of a polynomial dependence. Thus, to be 
conservative, we used Student’s t-distribution for the fit. 
The distribution was estimated from 358 images from 
camera C that were not used by Eve. All these images were 
taken within a period of about four years. In practice, 
depending on the situation, statistically significant 
conclusions may be obtained using a much smaller sample. 

The fingerprint strength α is determined so that the 
response of the GMF (Equation (11) in [7]) matches its 
prediction Pred(J,K). The predictor was constructed exactly 
as described in [7]; it is a mapping that assigns a predicted 
value of the GMF to the pair consisting of a JPEG 90 image 
J and the true fingerprint K. The function Pred(⋅,⋅) was 
implemented as a linear combination of intensity, texture, 
and flattening features, and their second-order terms (total 
15 terms). The coefficients of the linear fit were determined 
from 20 images of natural scenes using the least square fit. 

For a given probability of false alarm, PFA, the Student’s 
t-fit was used to set a threshold on the test statistic using 
(16). To verify the threshold, we computed the triangle-test 
statistic from all images from C available to us (total of 937 
images). These images were taken within the time period of 
seven years; a portion of them were stored as JPEG with 
varying quality factors, while some were in the raw TIFF 
format. All these images were recompressed to JPEG 
quality 90 and converted to grayscale before running the 
test. For the threshold computed for PFA = 10−3 and 10−4, we 
observed two and zero false alarms in the right tail, 
respectively. Although these results are compatible with the 
theoretical false alarm rates, this experiment does not 
confirm the Student’s t-model as one needs to observe at 
least 30 false alarms for a reliable estimate (Doddington’s 
rule of 30 [16]). Unfortunately, an unreasonably large 
amount of images (30,000) would have to be taken with 
camera C to confirm the false alarms experimentally. 

Note that because Eve adjusts α so that the JPEG-
compressed J′ elicits the same GMF value as the prediction 
Pred(J,K), the proper value of α must be found, e.g., using 
a binary search. 

The true fingerprint K was estimated from 300 JPEG 
images of natural scenes. 

On the defense side, Alice estimates her fingerprint 
 from NA = 15 blue-sky raw images (fingerprint quality 

was q = 0.56). Surprisingly, the quality of has little 
impact on the triangle test. Tests with NA = 70 produced 
essentially identical results. In particular, it is not necessary 
for Alice to work with a better quality fingerprint than Eve! 

AK̂

AK̂

In all experiments, the block size was 128×128 pixels. 
The triangle test performed equally well for blocks as small 
as 64×64 and as large as 256×256. Table II summarizes the parameters investigated in the 

experiment in this section. 
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TABLE  II. PARAMETERS FOR THE SINGLE FORGED IMAGE EXPERIMENT 
(INDIVIDUAL TEST). 

Images 6 
N 20, 50, 100, 200 
Nc N/A 
α  natural 
PFA 10−3, 10−4 

 

 
Fig. 1: Six original images J from a Canon PS A520 numbered by rows 
(#1, #2, #3); (#4, #5, #6). 
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Fig. 2: True correlation  vs. the estimate  for image no. 5. Eve’s 
fingerprint was estimated from N = 20 images (top) and N = 100 (bottom). 

, 'cI J , 'ĉI J

 
Fig. 2 presents a typical plot of  vs.  for N = 20 

and N = 100. As expected, the separation between images 
used by Eve and those not used deteriorates with increasing 
N. When applying the triangle test individually to each 
candidate image, after setting the decision threshold using 

(16) to satisfy a desired probability of false alarm, PFA, the 
probability of correct detection PD in the hypothesis test 
(15) is shown in Table III. Each value of PD was obtained 
by running the entire experiment as explained in Section 
IV.A and counting how many images  used by 
Eve were correctly identified by the triangle test. 

, 'cI J , 'ĉI J

(1) ( ), , NI I…

The lower detection rate for image no. 4 is due to the 
low energy of the fingerprint (see the corresponding row in 
Table I) dictated by the predictor. Because the image has a 
smooth content, which is further smoothened by the 
denoising filter, the fingerprint PSNR in the noise residual 
W is higher than for other images. Consequently, a low 
fingerprint energy is sufficient to match the predicted 
correlation. 

Image no. 3 also produced lower detection rates, mostly 
due to the fact that 27.6% of the image content is 
overexposed (the entire sky) with fully saturated pixels. The 
attenuation factor a in (9) is thus effectively equal to zero 
for such pixels, while it is estimated in (12) under H1 as 
being relatively large due to the absence of the noise term 

 A possible remedy is to apply the triangle test only to 
the non-saturated part of the image. However, then we 
experience a lower accuracy again due to a smaller number 
of pixels in the image. At this point, we note that if the 
adversary makes the forgery using (8) without attenuating 
the PRNU in saturated areas, the fingerprint there will be 
too strong, which could be used by Alice to argue that the 
fingerprint has been artificially added and the image did not 
come from her camera. 

', .bJΘ

  
TABLE III. DETECTION RATE PD [%] FOR SIX TEST IMAGES FOR THE 
EXPERIMENT IN SECTION V.A. 

PD [%] for PFA = 10−3 PD [%] for PFA = 10−4 #
N 20 50 100 200 20 50 100 200 

1 100 92 63 15 100 80 44 6 
2 100 84 40 5 100 74 26 0 
3 95 78 35 4 95 66 14 0 
4 95 64 21 3 95 42 8 1 
5 100 90 56 11 100 82 41 2 
6 100 94 59 14 100 90 40 2 

 

B. Single forged image (pooled test) 
Table III shows that the triangle test for individual 

images is quite reliable for small N. If Eve has enough 
resources and obtains a large number of images, say 
N > 200, the reliability of the triangle test applied to each 
image one by one may become quite low depending on the 
content of the forged image. As discussed in Section IV.B, 
Alice’s goal is to prove that J′ was forged rather than 
identify which images Eve used. This hypothesis test can be 
decided more reliably by testing for all Nc candidate images 
I whether –λ, 'cI J , 'ĉ η−I J ~ fJ’(x). Since the differences are 
independent across different images, the scaled log-
likelihood of all Nc observations, 

( )
c

c

( ) ( )
' , ' , '

1c

1 ˆlog ( )
N

i i
N

i

L f c c
N

λ η
=

= −∑ J I J I J − ,       (17) 
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is asymptotically Gaussian under H0. Here,  and  are  ( )
, '
icI J

( )
, 'ˆ icI J

the correlations for the ith image, i = 1, …, Nc. 
To determine the limits of the pooled triangle test in 

practice, we evaluated how its reliability depends on the 
image content, the number of images used by Eve, N, and 
the ratio Nc/N. Table IV summarizes the parameters 
investigated in the experiment in this section. 

TABLE  IV. PARAMETERS FOR THE SINGLE FORGED IMAGE EXPERIMENT 
(POOLED TEST). 

Images 3 
N 100, 150, 200, 250, 300 
N/Nc [0, 1] 
α  natural 
PFA 10−3, 10−4 
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The following test was run for images no. 2, 3, and 5. 

As before, for each tested image J′ the Gaussian fit for the 
log-likelihood (17) was estimated from 358 90% quality 
JPEG images I not used by Eve. For the pooled test, a 
random set of k = 60 images was selected out of Nc 
candidate images and its p-value was computed. A 
successful detection was declared when p < PFA. The final 
value of the probability of detection PD was obtained by 
bootstrapping (repeating this process over the random 
selection of k images) 30,000 times. 

The results of the pooled test are shown in Fig. 3 for 
PFA = 10−4. Here, we increased the number of images used 
by Eve to 300. The pooled triangle test can correctly detect 
forged images for N/Nc > 0.5 for N up to 200. There exists a 
strong correlation between the test performance and the 
detection statistic (5). In general, the test performs better for 
images exhibiting larger correlation (smooth and high-
luminance images). The detection is still possible when 
N = 300 as long as N/Nc > 0.5. 
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C. Multiple images with forged fingerprints 
In this section, we experimentally study the scenario 

when Eve has forged two images, J1′ and J2′. As explained 
in Section IV.B, the triangle test can be applied to J1′ and 
J2′ to reveal the forgery. This has the advantage that Alice 
does not need access to the images from which Eve 
estimated her fingerprint . EK̂

Fig. 3: Probability of revealing the forgery as a function of the ratio N/Nc 
for the pooled test for images no. 2, 3, and 5 for PFA=10−4; N is the number 
of images used by Eve to estimate the fake fingerprint and Nc is the 
number of candidate images. 

We used additional 147 images J from camera C’ and, 
for each choice of N, we created 147 forgeries by adding 
Eve’s fingerprint to them as described at the beginning of 
Section V. All other images were reused from the previous 
section. Fig. 4 and Table VI are the equivalents of Fig. 2 
and Table III. Because the same fingerprint was added to 
each forgery, the PSNR between J and J′ was the same as 
indicated in Table I. This experiment was run separately for 
N = 20, 50, 100, 200, 300. 

 

TABLE  V. PARAMETERS FOR THE MULTIPLE FORGED IMAGE EXPERIMENT. 

Images 147 pairs 
N 20, 50, 100, 200, 300 
N/Nc N/A 
α  natural 
PFA 10−3, 10−4 

Table V summarizes the parameters investigated in the 
entire experiment. 
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TABLE VI: DETECTION RATE PD [%] FOR THE MULTIPLE FORGED IMAGE 
TEST FOR PFA = 10−4. 
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PD [%] #
N  20 50 100 200 300 

1 100.0 100.0 100.0 99.3 99.3 
2 100.0 100.0 98.6 97.3 95.9 
3 100.0 99.3 98.0 93.2 86.4 
4 100.0 96.6 76.9 55.8 40.8 
5 100.0 100.0 100.0 98.0 97.3 
6 100.0 100.0 98.6 98.6 94.6 

TABLE VII: DETECTION RATE PD [%] OF THE TRIANGLE TEST FOR A SINGLE 
FORGED IMAGE NO. 2 WHEN SCALING THE NATURAL FINGERPRINT 
STRENGTH BY FACTOR r  FOR TWO FALSE ALARM RATES AND FOUR 
VALUES OF N (SECTION VI). 
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PD[%] for PFA = 10−3 
r\N 20 50 100 200 
0.10 80 26 1 0 
0.25 100 54 30 0 
0.50 100 76 32 3 
0.75 100 84 37 5.5 
1.00 100 84 40 4.5 
2.00 100 88 52 9.5 

PD[%] for PFA = 10−4 
0.10 70 8 0 0 
0.25 95 14 2 0 
0.50 100 58 14 0 
0.75 100 72 22 0 
1.00 100 74 26 0 
2.00 100 88 37 1 
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VI. EFFECT OF FINGERPRINT STRENGTH 
All tests reported in Section V were carried out under 

the assumption that Eve chooses the natural strength for the 
fake fingerprint to avoid creating a forgery with a 
suspiciously weak or strong fingerprint as that could be the 
starting point of other attacks. However, if Eve is aware of 
the triangle test, she may try to adjust the strength to 
minimize the chances of being caught by this particular test. 
We are obviously facing the typical cat-and-mouse scenario 
when an attack elicits a counter-measure, which in turn 
elicits an attack, etc. 

Inspecting the expression for the triangle test statistic 
(14) and its dependence on α, it may seem that the best 
option for Eve to minimize the chances of triggering the 
triangle test is to use the smallest α that still elicits positive 
identification in a threshold-based correlation detector. 
However, it will not be easy for Eve to do this as she does 
not have access to the true fingerprint (Alice does), and thus 
Eve cannot really be sure if the strength is large enough for 
positive identification. Another problem is that a 
suspiciously low correlation that is incompatible with the 
predicted correlation would imply that the image was 
subject to processing, which, in turn, points to violation of 
the chain of evidence (evidence integrity).  

Instead of delving into arguments about the best strategy 
for Eve, we use the remaining space left in this paper to 
inform the reader about the performance limitations of the 

Fig. 4: True correlation  vs. estimated  for the multiple-image test.  
I = J2′ ran through 147 forged images, while J = J1′ was fixed to image no. 
5. Top to bottom: N = 20, 100, and 300. 

, 'cI J , 'ĉI J

 
In general, the larger the correlation between J1′ and J2′, 

the more reliably the triangle test can decide between the 
hypotheses (15). In this test, PD does not drop with N as fast 
as when applying the triangle test to each image 
individually (see Section V.A and Table III). Reliable 
detection is possible even for N = 300. 
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triangle test when Eve uses a strength for her fingerprint 
that is different from the natural value. The results indicate 
that the performance decreases rather slowly with decreased 
strength, and that Eve would need to decrease the natural 
strength by a rather large margin to escape the triangle test. 

Next, we repeat the individual test, the pooled test, and 
the multiple-forgery test for six different fingerprint 
strengths obtained by scaling the natural strength by the 
factor of r ∈ {0.10, 0.25, 0.50, 0.75, 1.00, 2.00}. 

 

The crucial breakthrough we experienced in our study 
came from positioning ourselves into the role of the 
adversary and realizing what information and data will be 
available to both Eve and Alice. In her activity, Eve will 
likely have to rely on images taken by Alice that she 
decided to share with others, for example on her Facebook 
site. However, the estimation error of the camera fingerprint 
estimated from such images will contain remnants of the 
entire noise residual from all images used by Eve. This fact 
is the basis of the test we proposed (the “triangle test”) 
using which Alice can identify the images that Eve used for 
her forgery and, in doing so, prove her innocence. This test 
was then extended to the case when none of the images is 
available to the victim but the victim has at least two forged 
images to analyze. We demonstrated the test's performance 
experimentally and investigated its limitations. In 
particular, the test can be applied when Eve uses a high-
quality fingerprint estimated from 300 images. The 
conclusion that can be made from this study is that planting 
a sensor fingerprint in an image without leaving a trace 
is significantly more difficult than previously thought. 

A. Single forged image 
Due to limited space left in this paper, this experiment 

was carried out only for image No. 2.4 The detection rates 
for the false alarm rates 10−3 and 10−4 are displayed in Table 
VII. As expected, the triangle test becomes less reliable 
with decreasing strength α. Fortunately, the decrease is 
rather slow and does not necessarily invalidate the triangle 
test, depending on the number of images N used by Eve. 

 

B. Single forged image (pooled test) 
Next, we repeated the pooled test for image No. 2 for 

the same range of six scaled values of the fingerprint 
strength. The results are depicted in a graphical form in Fig. 
5 for N = 100 and 200 for two values of the false alarm 
(total of four plots). Although the success rate of the 
triangle test understandably decreases with decreasing α 
and N/Nc, it is rather interesting that the pooled test is still 
80% reliable even when N = 100, N/Nc = 1/2, and PFA = 
10−4. 

 

TABLE VIII: DETECTION RATE PD [%] OF THE TRIANGLE TEST FOR THE 
MULTIPLE IMAGE TEST WHEN SCALING THE NATURAL FINGERPRINT 
STRENGTH BY FACTOR r  FOR TWO FALSE ALARM RATES AND FOUR 
VALUES OF N. 

PD [%] for PFA = 10−3 
r\N 20 50 100 200 
0.10 55.8 6.1 1.4 1.4 
0.25 98.6 71.4 44.9 17.0 
0.50 100 98.6 91.8 78.9 
0.75 100 100 99.3 97.3 
1.00 100 100 100 99.3 
2.00 100 100 100 100 

PD [%] for PFA = 10−4 
0.10 24.5 1.4 1.4 1.4 
0.25 89.8 47.6 19.1 1.4 
0.50 100 93.9 80.3 58.5 
0.75 100 100 95.2 87.8 
1.00 100 100 98.6 97.3 
2.00 100 100 100 100 

C. Multiple images with forged fingerprints 
The last experiment of this section is the multiple image 

forgery test as described in Section V.C. Again, the test was 
repeated with pairs of images whose fingerprint strength 
was scaled by six different factors. One of the images, J′, 
(image no. 2) was fixed while the other forged image I in 
the pair was obtained from 147 images. Table VIII shows 
the percentage of successfully revealed forgeries out of the 
147 tested pairs for two false alarm rates and four different 
values of the number of images N used by Eve to create 
both forgeries. VIII. ACKNOWLEDGMENT 

This research was supported by an NSF award CNF-
0830528. VII. CONCLUSIONS 

Camera identification using sensor noise works by 
establishing the presence of the camera's sensor 
fingerprint in the image under investigation. An adversary 
(Eve) may attempt to fool the identification algorithm by 
pasting a camera fingerprint onto an image that did not 
come from the camera. In doing so, an innocent victim 
(Alice) would be framed. In this paper, we investigate 
techniques that the victim may use to prove that the 
fingerprint was not inserted during the image acquisition, as 
the adversary claims, but was later maliciously added. 
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APPENDIX by introducing 
We model the noise residuals WI and WJ and Alice’s 

fingerprint  using (9). Furthermore, we adopt the 
following simplifying assumptions. 

AK̂
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Uncorrelatedness. For any two images I and J, not 
necessarily different, and for every block b  

To determine the factors aI,b, we write 
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In reality, these assumptions really mean that the dot 
products are small compared to other quantities in the 
derivations below. 

Dot product. We will need the following approximate 
equality valid whenever Kb[i] are i.i.d. realizations of a 
scalar random variable with finite variance: 
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From here after some simple algebra, 
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the last approximate equality in (A.2), realize that for an 
i.i.d. signal Kb[i], i = 1, …, Nb, with variance 2σ K : 

− .    (A.8) 

From (1), we obtain another equation for both unknowns 
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Because the solution to the system which is the sample pmf of the signal . [ ] [ ]b bi iI J
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          (A.10) Our goal is to find a relationship between 
and the 

quantities we can compute for any two images I, J, and an 
estimated fingerprint  Using (A.1) and (A.2), we first 
express
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+ +

∑

∑ ∑

∑

∑ ∑

I I

I

I I

I

I I

I K Θ K ξ
W K

I K Θ K ξ

I K

I K Θ K ξ

:

�

and because in our case R is the r.h.s. of (A.8), 
2 2|| ||b bd = I K , , 2

,|| ||bS = IW 2
,bx aI� , we obtain 

A

A

2
,2

, 1

2 2 2 2 2
,

ˆ

2
, 2

,2 2
ˆ

|| ||

1|| || || || 1 1

|| || 1     1 .
|| ||

b
b

b b b b b

b
b

b b

a

SNR

SNR

−

−

=
⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟+ + −⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

I
I

I
K

I
I

K

W

I K I K c

W
c

I K

 

)

 

(A.11) 
(A.4) 

Assuming the SNR  is 

independent of b, because 
A

2 2
ˆ|| || / || ||b b SNR= KK ξ

2 2
A,

ˆ|| || || || || ||b b= +K K

which can be simplified to 

A

A

2
,

2 2 2 2
,

ˆ

2
,

1

2 2 2
,

ˆ

|| ||

1|| || 1 || || 1

|| ||
|| ||

1 1|| || 1 1

b b b
b

b b b b
b b

b b b
b

b b b
b

a

a
SNR SNR

a

a
SNR SNR

−

=
+ +

=
+ +

∑

∑ ∑

∑

∑

I

I
I K

I

I
I K

I K

I K K

I K
K

I K

1

 

2
bξ , we 

obtain after some simple algebra: 

 

A

2
A,2

ˆ

ˆ|| ||
|| || .

11

b
b

SNR

=
+

K

K
K   (A.12) 

Thus, (A.11) can finally be written to involve the norm 
of  rather than Kb: A,

ˆ
bK

(A.5) 
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In (A.17), we made a simplifying assumption that 
E1/ ,i iN a a∑ I K K� which is reasonable for all but small N. 

Eve superimposes  using (8), obtaining EK̂

 
A

2
2

,2 2
, ,2 2

ˆA ,

|| || 11
ˆ|| ||

b
b b

b b

a
SNR

⎛ ⎞
⎜= +
⎜
⎝ ⎠

I
I I

K

W
c

I K
.⎟

⎟
           (A.13) 

Now, we derive the expression for when  
I was not used to forge image J. Here, the only common 
signal between WI and WJ is the PRNU: 

( , )corr I JW W

E E
2

ˆ' ,
N

i
i

a
N N
α αα α

=

= + = + + + ∑IJ J JK J JK JΘ J Θ
  

(A.18) 

where, without loss of generality, we assumed that I1 = I. In 
this paper, we assume that Eve creates the perfect forgery in 
the sense that J′ elicits the same detector response as if it 
was not forged. In other words, E 1aα = . Using this and the 
model for the noise residual on each block (2), 

2
, ,

2 2 2 2 2 2
, ,

|| ||
( , )

|| || || ||

1                      .
1 11 1

b b b b b
b

b b b b b b
b b

a a
corr

a a

SNR SNR

=

×
+ +

∑

∑ ∑

I J

I J

I J

I J

I J K
W W

I K J K

    (A.14) 

', ',
', ', , , ',

2

' ,
N

b b
b b b b b b b i b

i

a a
a

N N
α α

=

= + + +∑J J
J J I JW J K J Θ J Θ Θ b

b

 

(A.19) 
By comparing (A.5) and (A.14), we see that 

A

A A

2
, ,

2
2 2

ˆ, ,

ˆ ˆ( , ) ( , ) ( , )

|| ||
1|| || 1 .

|| || || ||

b b b b b
b

b b b b b b
b b

corr corr corr

a a

SNRa a

=

⎛
⎜× +
⎜ ⎟⋅ ⎝

∑
∑ ∑

I J I J

I J

I J K

W W W K W K

I J K
K

I K J K

⎞
⎟
⎠

   (A.15) 

Note that this expression is of the form 
 for some appropriately 

defined noise term  and 

', ', , ', ,b b b b b b ba δ= + +J J I JW J K J Θ Θ

',bJΘ ',b
b

a
N

α
δ = J . The derivation of 

the expression for  now follows exactly the 
same steps as above with one exception. The dot product  

'( , )corr I JW W

Rewriting  using the norm of  rather than 
the unknown norm of K, 

( , )corr I JW W AK̂

A

A A

2
, , A,

2 2
, A, , A,

2
A

ˆ

ˆ ˆ( , ) ( , ) ( , )
ˆ|| ||

                     ˆ ˆ|| || || ||

1ˆ                      || || 1 .

b b b b b
b

b b b b b b
b b

corr corr corr

a a

a a

SNR

=

×
⋅

⎛ ⎞
⎜ ⎟× +
⎜ ⎟
⎝ ⎠

∑
∑ ∑

I J I J

I J

I J

K

W W W K W K

I J K

I K J K

K

            

2 2
' , ', ', ,' || || || ||b b b b b b b b

b b

a a a
N
α

= +∑ ∑I J I J J IW W I J K J Θ:
 

(A.20) 
now has an additional component because the two noise 
residuals share more than the PRNU signal. The rest of the 
expression coincides with that of ( , )ρ I JW W  in (A.5). 

Because the fingerprint is zero mean, 'b b=J J  and the 
increase in correlation can thus be expressed via the ratio 

2
', ,

'
2

, ',

' || ||
( , )

1 .
( , ) ' || ||

b b b
b

b b b b b
b

a

N a a
ρ α
ρ

= +
∑

∑
J I

I J

I J I J

J Θ
W W
W W I J K

    (A.21) (A.16) 

For the case when I was used to forge image J, the noise 
residuals WI and WJ will have another common component 
besides the PRNU. It is the non-PRNU noise . Assuming 

for simplicity that Eve estimates her fingerprint  simply 
by averaging the noise residuals of  in the form (2) 

IΘ

EK̂

1, , NI I…

in terms of the forged image J′ only. 
 

 

E E
1 1

1 1ˆ ( ) .       (A.17) 
N N

i i i i
i i

a a
N N= =

= + +∑ ∑K I K Θ K Θ�
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