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Abstract
Camera identification using sensor fingerprints is

nowadays a well-established technology for reliably linking
an image or a video clip to a specific camera. The sen-
sor fingerprint is typically estimated from images (video
frames) provably taken by the imaging device. An image
or a video clip is then associated with the fingerprint when
some form of a matched filter exceeds a certain threshold,
which is set to achieve a prescribed false alarm. However,
when the images from which the sensor fingerprint is esti-
mated are lossy compressed, the statistical properties of the
detection statistic change, which requires an adjustment of
the decision threshold to guarantee the same false-alarm
rate. In this paper, we study this effect both theoretically
and experimentally. A very good match between the theoret-
ical and experimental results validates our approach. This
study is especially important for video forensic because of
the higher compression rates.

Motivation
Today, camera identification based on sensor finger-

print is a mature area of research [1, 7, 10, 17]. The
method works by first estimating the so-called sensor fin-
gerprint from a set of images positively known to have
been taken by the camera. To prove that a given im-
age (or a video clip) under investigation was acquired by
the exact same camera (not just the same model), one
establishes the presence of the fingerprint in the image
using signal detection techniques. A positive match be-
tween an image and a camera fingerprint ties the image
with a very high certainty to the camera. Applications
of this technology include all cases when a crime is com-
mitted by taking a picture, such as in child pornography
and movie piracy cases. It can also be used for detec-
tion of malicious image manipulation [4, 5, 12, 6] and for
general intelligence gathering. In July 2011, the methodol-
ogy passed the Daubert challenge (http://en.wikipedia.
org/wiki/Daubert_standard) in the State of Alabama. It
has also been used in high-profile cases, such as the “Oper-
ation Algebra” (http://p10.hostingprod.com/@spyblog.
org.uk/blog/2009/05/).

The methodology is applicable to all digital imag-
ing devices that contain CCD or CMOS sensors. The
vast majority of published work focuses on still images
with only a handful of papers directed to digital video-
cameras [3, 8, 18, 19, 13]. Lossy compression that is typ-
ically applied to images and video complicates setting ap-

propriate detection thresholds to guarantee a preset false
alarm (mistakenly identifying an image as coming from a
specific camera). The authors are not aware of any system-
atic and rigorous study of the effect of lossy compression
on sensor-based camera identification. For still images, a
large scale test [10] was used to experimentally determine
the decision thresholds for the Peak Correlation to Energy
ratio (PCE) [3]. No such study is currently available for
video.

Although this forensic technique is applicable to both
still images and video, there are some important differ-
ences: video usually has a much lower spatial resolution,
harsher compression, and widely varying ISO. On the other
hand, many more images (frames) for both estimation and
detection of sensor fingerprint are available. The lower spa-
tial resolution is somewhat compensated for by the large
number of frames typically available for analysis, i.e., the
total amount of information, which can be in the first ap-
proximation expressed using the file size, is typically much
larger for video than for digital images. On the other hand,
if there is a systematic artifact or modulation present in
the compressed signal, it gets undesirably enhanced dur-
ing fingerprint estimation. It has been recognized already
in [3] that sensor fingerprints estimated from video frames
contain “artifacts of JPEG compression” that need to be
filtered out to lower the false-alarm rate. In [3], a filter in
the Fourier domain was proposed for this purpose. How-
ever, the effectiveness of this filter in controlling the false
alarm (and its effect on positive detection) was never prop-
erly studied.

The main goal of this paper is to analyze the effect
of lossy compression on the detection statistic in order
to properly adjust the decision threshold for a given false
alarm. In the next section, we provide a brief overview of
the technology behind camera identification using sensor
fingerprints. Then, in the third section, we carry out the-
oretical analysis of the effect of lossy compression on the
detection statistic PCE. The following section contains ex-
periments carried out on still images as well as video. A
close match between the theoretically derived results and
experiment is observed. The focus of the study is on the
statistical properties of the detection statistic under the
null hypothesis when the fingerprints do not match as this
is what determines the threshold for a fixed false-alarm
rate. The paper is concluded in the last section.

Boldface symbols will be used for vectors and matrices,
while their elements will be denoted with the correspond-

http://en.wikipedia.org/wiki/Daubert_standard
http://en.wikipedia.org/wiki/Daubert_standard
http://p10.hostingprod.com/@spyblog.org.uk/blog/2009/05/
http://p10.hostingprod.com/@spyblog.org.uk/blog/2009/05/


ing non-bold font. For example, pixel values in an un-
compressed 8-bit grayscale image X will be denoted with
Xij ∈ I , {0, . . . ,255}, 1≤ i≤ n1,1≤ j ≤ n2, where n1×n2
are image dimensions. Whenever the range of indices i, j
is not specified for brevity, it will always be assumed to be
1≤ i≤ n1,1≤ j ≤ n2. We will use N (µ,σ2) for a Gaussian
random variable with mean µ and variance σ2. The fact
that a random variable X follows distribution f will be
denoted X ∼ f . The probability of an event E is Pr{E}.
The operation of rounding to integers is ’round’.

Preliminaries
The main part of the sensor fingerprint is the

so-called Photo-Response Non-Uniformity (PRNU) [14],
which quantifies the fact that each pixel on the sensor out-
puts a photon count (charge) that slightly but consistently
differs from its nominal value. Consequently, each image
the sensor takes is overlaid with a unique noise-like pattern
modulated by the scene light intensity.

Let us assume that we have N grayscale images taken
by a single camera (alternatively, N luminance frames from
a digital video). The pixel intensity of the i, j-th pixel
in the kth image X(k) will be denoted X

(k)
ij , 1 ≤ i ≤ n1,

1≤ j ≤ n2. Furthermore, we will denote the noise residual
of the kth image as

W(k) = X(k)−F (X(k)), k = 1, . . . ,N, (1)

where F is a denoising filter estimating the pixels’ expec-
tation. In this paper, we use the wavelet based denoising
filter as described in our prior work [1, 7, 10, 17].

Assuming the following linearized sensor model for the
residual [2, 16, 9],1

W(k) = K ·X(k) +Ξ(k), (2)

where Ξ(k) is an n1×n2 matrix of independent and iden-
tically distributed (i.i.d.) Gaussian random variables with
zero mean, the maximum likelihood estimator of the PRNU
multiplicative factor K (the fingerprint) is:

K̂ =
∑N
k=1 X(k) ·W(k)∑N
k=1(X(k))2

. (3)

We note that in Eqs. (2)–(3) all matrices are of di-
mension n1 × n2 and all matrix operations are executed
elementwise.

Given two fingerprint estimates, K̂1 and K̂2, the de-
tector is facing the following two-channel hypothesis testing
problem

H0 : K1 6= K2,

H1 : K1 = K2, (4)

with observables

K̂1 = K1 +Ξ1, K̂2 = K2 +Ξ2, (5)

1Note that the gamma correction factor has been absorbed
into the PRNU matrix K.

and a Gaussian corrupting noise Ξ1,2 ∼N (µ,σ2
Ξ). A com-

putationally efficient approximation to the generalized like-
lihood ratio test for the above hypothesis testing prob-
lem [11] is the normalized correlation ρ(K̂1,K̂2;0,0) be-
tween K̂1 and K̂2, which we conveniently introduce here
using the cross-correlation:

ρ(U,V;τ1, τ2) =∑
i,j(Uij −U)(Vi+τ1,j+τ2 −V)√∑

i,j(Uij −U)2
√∑

i,j(Vi+τ1,j+τ2 −V)2
, (6)

with the bar standing for the sample mean and the range
of indices i, j,τ1, τ2 is 1≤ i,τ1 ≤ n1,1≤ j,τ2 ≤ n2.

Note that under H0, we are correlating two i.i.d. Gaus-
sian signals since the fingerprint itself is well modeled by
an i.i.d. Gaussian random variable. It can be easily es-
tablished from the central limit theorem that in this case
ρ(K̂1,K̂2;0,0) ∼ N (0,1/N). Thus, in order to set a fixed
threshold for the correlation that guarantees a prescribed
false alarm, it needs to be scaled by

√
N :

ρ(K,K̂;0,0)→
√
Nρ(K,K̂;0,0). (7)

A frequently used detection statistic in practice is the
Peak Correlation to Energy ratio (PCE) or signed PCE also
referred to as the Circular Correlation Norm (CCN) [15]
defined as:

PCE(K,K̂) =

ρ2(K,K̂;0,0)× sign
(
ρ(K,K̂;0,0)

)
1

n1·n2−|Nmax|
∑

(τ1,τ2)/∈Nmax
ρ2(K,K̂;τ1, τ2)

, (8)

where Nmax is a small neighborhood around the origin and
|Nmax| is the number of elements in the neighborhood.
Note that the PCE can be viewed as another way to nor-
malize the correlation – the denominator is an estimate of
the variance of the correlation under the assumption that
it has a zero mean. One of the main results of this paper
is the fact that in the presence of JPEG compression, this
variance estimate is biased, which will necessitate an ad-
justment of the decision threshold for the PCE when the
fingerprints are estimated from JPEG compressed images.

Denoting the pixel values in the bth 8× 8 block by
X

(b)
ij , i, j = 0, . . . ,7, their discrete cosine transform (DCT)

coefficients C(b) = DCT(X(b)) are C(b)
kl =

∑7
i,j=0 f

kl
ij X

(b)
ij ,

where

fklij = 1
4wkwl cos π16k(2i+ 1)cos π16 l(2j+ 1) (9)

w0 = 1/
√

2, wk = 1 for 1≤ k ≤ 7. (10)

During JPEG compression, DCT coefficients C(b)
kl are

divided by quantization steps Qkl, rounded to integers, and
clipped to the required dynamic range if necessary, D(b)

kl =

round
(
C

(b)
kl /Qkl

)
. Finally, the pixel values in the de-

compressed image are X̃(b) = round
(

DCT−1(Q ·D(b))
)
,

where the matrix operations are again elementwise.



Theoretical analysis
In this section, we derive the statistical properties of

the normalized correlation (6) and the PCE (8) under the
null hypothesis in (4) (non-matching fingerprints) when the
images from which the fingerprints are estimated have been
JPEG compressed. The main goal is to derive the decision
threshold for the correlation (and for PCE) that would
guarantee a prescribed false-alarm rate and to determine
its dependence on the JPEG quality factor.

To make the analysis more feasible, we will assume
that the fingerprints are estimated from one flat-content
image X, such as a picture of blue sky. In this special
case, there is no need to use the denoising filter F (1) to
remove the content because the signal mean is a good es-
timate of the pixel expectations and it can be subtracted
from the image, obtaining thus a zero-mean noise residual
R = X−X. We will model the residual as an array of i.i.d.
realizations of zero-mean Gaussians Rij ∼ N (0,σ2

R). As-
suming we have two such “estimates” of the PRNU from
two different images X and Y taken by two different cam-
eras (the null hypothesis in camera identification (4)), we
are interested in computing the statistical properties of the
normalized correlation ρ(R,S,0,0) (6) as well as ρ(R̃, S̃;q),
where R̃ and S̃ are the residuals JPEG compressed with
quality factor q and decompressed to the spatial domain
without rounding.

Normalized correlation
In order to analyze the normalized correlation between

two images, we first study the normalized correlation be-
tween two 8×8 blocks. Then, we consider the correlation
between the two full images by employing two simplifica-
tions: 1) the denominator of the normalized correlation
between two 8×8 blocks stays almost the same across the
blocks and thus can be factored out; 2) the numerator of
the normalized correlation for each 8×8 block is indepen-
dent of its counterpart for any other block, which allows
us to apply the Central Limit Theorem (CLT) to their
sum over all blocks and model it with a Gaussian. For-
mally, assuming both R and S are zero mean and denoting
their values from the bth 8× 8 block with R

(b)
kl and S

(b)
kl ,

0≤ k, l ≤ 7,

ρ(R,S;τ1, τ2) =∑
b

∑7,7
k,l=0R

(b)
kl S

(b)
k+τ1,l+τ2√∑

b

∑7,7
k,l=0(R(b)

kl )2
√∑

b

∑7,7
k,l=0(S(b)

k+τ1,l+τ2
)2

≈ 1
64NbσRσS

∑
b

7,7∑
k,l=0

R
(b)
kl S

(b)
k+τ1,l+τ2

, (11)

where Nb is the number of 8×8 blocks in the image.
Formally, we consider the normalized correlation be-

tween a single 8× 8 block of R̃ and an arbitrarily shifted
version of an 8×8 block of S̃. Because the statistical prop-
erties of the normalized correlation are periodic due to the
8× 8 size of the block DCT, we only need to consider 64
possible shifts of S̃: (τ1, τ2), 1 ≤ τ1, τ2 ≤ 8. Furthermore,

the shifted residual S̃ will never straddle more than four
adjacent DCT blocks.

Since the 8×8 DCT is an orthonormal transform, we
can compute the normalized correlation equivalently in the
DCT domain. To this end, we define a matrix A(τ1, τ2) ∈
R64×256, which defines the linear relationship between each
coefficient of the four 8×8 blocks of DCT coefficients of D
and the block of 8× 8 DCT coefficients of S̃ obtained af-
ter shifting by (τ1, τ2), i.e, λ1(S̃) = A(τ1, τ2)λ2(D), where
λ1 : R8×8→R64 and λ2 : R16×16→R256 vectorize an 8×8
block and four 8× 8 blocks into column vectors, respec-
tively. In particular, λ1 performs the vectorization by
columns as in Matlab, while λ2 applies the same colum-
nwise scan within each block as well as across the four
adjacent 8×8 blocks:

0 · · · 56 128 · · · 184
...

...
...

...
7 · · · 63 135 · · · 191
64 · · · 120 192 · · · 248
...

...
...

...
71 · · · 127 199 · · · 255


. (12)

Taking this ordering into account, the matrix A(τ1, τ2)
can be expressed as

Aij(τ1, τ2) ,
u1∑

k1=l1

u2∑
k2=l2

fξ1ξ2
k1k2

fν1ν2
(k1+τ1) mod 8,(k2+τ2) mod 8, (13)

where 0≤ i≤ 63, 0≤ j ≤ 255, µ= b j64c, µ1 = µmod 2, µ2 =
bµ2 c denote the block index, ν = j mod 64, ν1 = ν mod 8,
ν2 = bν8 c denote the position within the block of the origi-
nal coefficients (before shifting), and ξ1 = i mod 8, ξ2 = b i8c
stand for the coefficient position after shifting. The sym-
bols l1, l2,u1,u2 stand for the bounds in the pixel domain
of the 8×8 block whose block DCT defines S̃, i.e.,

l1 ,

{
0, if µ1 = 0
8− τ1, otherwise

,

u1 ,

{
7− τ1, if µ1 = 0
7, otherwise

,

l2 ,

{
0, if µ2 = 0
8− τ2, otherwise

,

u2 ,

{
7− τ2, if µ2 = 0
7, otherwise

.

For example, for the calculation of the 65th column of
matrix A(3,4) we consider the 16×16 matrix(

0 0
B 0

)
, (14)

where 0 is an 8× 8 matrix of zeros and B is also 8× 8
with Bij = 0 everywhere except for B11 = 1. Note that the



(τ1, τ2) 0 1 2 3 4 5 6 7
0 2.7226 2.3541 2.3352 2.3422 2.3217 2.3422 2.3352 2.3541
1 2.4337 2.1599 2.1355 2.1532 2.1258 2.1532 2.1355 2.1599
2 2.3672 2.0926 2.0609 2.0865 2.0519 2.0865 2.0609 2.0926
3 2.3602 2.0982 2.0732 2.0876 2.0623 2.0876 2.0732 2.0982
4 2.4063 2.1274 2.1022 2.1231 2.0938 2.1231 2.1022 2.1274
5 2.3602 2.0982 2.0732 2.0876 2.0623 2.0876 2.0732 2.0982
6 2.3672 2.0926 2.0609 2.0865 2.0519 2.0865 2.0609 2.0926
7 2.4337 2.1599 2.1355 2.1532 2.1258 2.1532 2.1355 2.1599

(τ1, τ2) 0 1 2 3 4 5 6 7
0 2.6087 2.3539 2.3699 2.3832 2.3744 2.3454 2.4087 2.2651
1 2.4740 2.1679 2.1822 2.1218 2.1641 2.1575 2.1373 2.1459
2 2.3576 2.0731 2.0793 2.1191 2.0501 2.1134 2.1234 2.1445
3 2.4687 2.0840 2.0806 2.1154 2.0859 2.1332 2.1710 2.1975
4 2.4389 2.1026 2.0281 2.1515 2.1289 2.0908 2.1264 2.2148
5 2.4258 2.1573 2.1180 2.0511 2.0269 2.0761 2.1280 2.0904
6 2.3807 2.1572 2.0365 2.1383 2.0985 2.1328 2.1464 2.0770
7 2.4837 2.2574 2.2561 2.2042 2.1324 2.1838 2.1583 2.2291

Table 1. Theoretical (top) and empirical (bottom) values of
σ2
ρ(τ1, τ2) (19), scaled by a factor of 106 as a function of the

spatial shift (τ1, τ2) for JPEG quality factor 80, σ2
R = σ2

S = 10,
and images with 1000 × 1000 pixels.

8×8-blockwise IDCT of this 16×16 matrix is(
0 0
1
81 0

)
. (15)

For the (3,4) shift, the resulting top-left 8× 8 corner
of A(3,4) is

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1
8

1
8

1
8

1
8 0 0 0 0

1
8

1
8

1
8

1
8 0 0 0 0

1
8

1
8

1
8

1
8 0 0 0 0


. (16)

Note that since we are considering j = 64, then µ= 1,
µ1 = 1, and µ2 = 0, and, consequently, l1 = 5, u1 = 7, l2 = 0,
and u2 = 3, yielding the intervals of the summation indices
in (13) that can also be inferred from the last matrix. The
resulting matrix of DCT coefficients is

0.188 0.170 0 −0.060 0 0.040 0 −0.034
−0.209 −0.190 0 0.067 0 −0.045 0 0.038

0.082 0.074 0 −0.026 0 0.017 0 −0.015
0.030 0.028 0 −0.010 0 0.007 0 −0.006

−0.063 −0.057 0 0.020 0 −0.013 0 0.011
0.020 0.018 0 −0.007 0 0.004 0 −0.004
0.034 0.031 0 −0.011 0 0.007 0 −0.006

−0.042 −0.038 0 0.013 0 −0.009 0 0.008

 ,

(17)

which, by scanning according to λ1, yields the 65th column
of A(3,4). Note that the numbers in the matrix have been
rounded to three decimal places to fit into the single column
while still being readable.

Concerning the statistical characterization of R̃ and
S̃, we need to take into into account that Pr{R̃kl = t} =
αR(m,k, l) · δ(t−m ·Qkl), where m ∈ Z, and αR(m,k, l) =´ (m+1/2)Qkl
(m−1/2)Qkl fR(τ)dτ , and similarly for S̃, where fR stands
for the Gaussian probability density function of Rkl (please
note that the Rkl’s are i.i.d., and consequently their den-
sities fRkl do not depend on k or l). Finally, it is worth
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Figure 1. Comparison of empirical and theoretical values σ2
ρ(0,0) as a

function of the JPEG quality factor for and images of 1000× 1000 pixels.
The empirical results were obtained using 104 Monte Carlo realizations. Top:
σ2
R = σ2

S = 10, Bottom: σ2
R = σ2

S = 100.

noting that for the arguments of the two square roots in the
denominator of (6) their means and variances linearly in-
crease with the block size, which means that the standard
deviation of the denominator of the normalized correla-
tion can be neglected in comparison with its mean. Conse-
quently, this term can be accurately modeled as determin-
istic, supporting thus our first simplification introduced at
the beginning of this section and allowing us to factor it
out when computing the normalized correlation for the en-
tire image. The normalized correlation for one 8×8 block
can thus be modeled by a zero-mean random variable with
variance

σ2
ρ(τ1, τ2) =∑63

i=0
∑255
j=0A

2
ij(τ1, τ2)σ2

R̃ξ1ξ2
σ2
S̃ν1ν2[∑63

i=0σ
2
R̃ξ1ξ2

]
·
[∑63

i=0
∑255
j=0A

2
ij(τ1, τ2)σ2

S̃ν1ν2

] ,
(18)

where σ2
R̃kl

=
∑∞
m=−∞αR(m,k, l) ·m2 ·Q2

kl, and similarly



σ2
S̃kl

=
∑∞
m=−∞αS(m,k, l) ·m2 ·Q2

kl. Note that in the case
when R is obtained from an image compressed with a dif-
ferent quality factor than S, the previous two expressions
for σ2

R̃kl
and σ2

S̃kl
would contain their corresponding quan-

tization matrices Q(R)
kl and Q(S)

kl .
Although the numerators of normalized correlations

corresponding to different blocks are not independent, for
the sake of simplicity, and based on our experimental re-
sults shown below, we neglect the dependence between
the different blocks. This means that, when applying the
CLT, the distribution of the normalized correlation for the
full image can be accurately approximated by a zero-mean
Gaussian with variance

σ2
ρ(τ1, τ2) = 1/Nb×σ2

ρ(τ1, τ2) (19)

where Nb stands for the number of 8×8 DCT blocks in the
image.

We next verify the theoretical analysis, and thus vali-
date the simplifying assumptions made, experimentally on
synthetic signals. Figure 1 confirms a close match be-
tween σ2

ρ(0,0) (19) and its value obtained from 10,000
Monte Carlo simulations as a function of the JPEG qual-
ity factor when the variance of the two compared PR-
NUs is σ2

R = σ2
S = 10 and σ2

R = σ2
S = 100, for image size

n1 × n2 = 1000× 1000. Furthermore, Table 1 compares
the variance of the normalized correlation σ2

ρ(τ1,τ2) as a
function of the considered shift for the theoretical expres-
sion in (19) with the variance estimated using 5,000 Monte
Carlo realizations. The discrepancy is at most 5%.

PCE
Concerning the distribution of the PCE, inspecting (8)

and taking into account the discussion in the previous sec-
tion, it should be clear that the numerator in the PCE can
be modelled by a chi-square distribution with one degree of
freedom with mean σ2

ρ(0,0) and variance 2σ4
ρ(0,0). On the

other hand, in order to derive the distribution of the PCE
denominator, we will exploit the fact that ρ2(R̃, S̃;k, l) are
uncorrelated as long as |k| ≥ 7 or |l| ≥ 7, meaning that there
is a finite number of non-zero coefficients per row and col-
umn of the corresponding covariance matrix. Note, indeed,
that some of those correlated coefficients will be excluded
from the sum in the denominator of the PCE definition by
the fact that we consider the neighborhood Nmax around
the origin. Consequently, the mean of the denominator will
asymptotically not depend on the image size, while its vari-
ance can be upper-bounded (neglecting the aforementioned
neighborhood) by

225
(n1n2)2

n1−1∑
k=0

n2−1∑
l=0

E[ρ4(R̃, S̃;k, l)], (20)

which decreases with the number of pixels n1n2. This
means that for large images the standard deviation of the
PCE denominator can be neglected in comparison with
its mean, and, consequently, we can accurately approxi-
mate the denominator by a constant. The distribution of

the PCE is thus mainly determined by the numerator. In
summary, we approximate the distribution of the PCE by
a chi-square distribution with one degree of freedom.
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Figure 2. Empirical distribution of the tail of the PCE, Pr{PCE> x}, for
JPEG quality factor q = 80, σ2

R = σ2
S = 10, and images with 1000×1000

pixels, obtained using 105 Monte Carlo realizations.
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Figure 3. Empirical distribution of the tail of the PCE, Pr{PCE > x},
for JPEG quality factors q = 40,60,80,100, σ2

R = σ2
S = 100, and images

with 416×600 pixels, obtained using 105 Monte Carlo realizations.

The good agreement of the proposed theoretical analy-
sis and the Monte Carlo results concerning the distribution
of the PCE can be checked by inspecting Figure 2 showing
the empirical distribution of the tail of the PCE. In this
plot, where a logarithmic scale is used for the y-axis, the
log-probability of the right tail, logPr{PCE>x} decreases
approximately linearly with x, which is in agreement with
the tail of a chi-square distributed random variable with
one degree of freedom. Figure 3 depicts the empirical log-
probability at four different compression levels and smaller
image dimensions (1/4 Mpixel) that can be compared with
Figure 8 in the experimental section. Finally, Figure 4
shows the empirical variance of PCE as a function of the
JPEG quality factor. As expected, the variance decreases



with the quality factor, while the mean (not shown) stays
close to zero independently of the quality factor.
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Figure 4. Empirical variance of the PCE as a function of the JPEG quality
factor q, for σ2

R = σ2
S = 10, images of 1000× 1000 pixels, and obtained

using 5 ·103 Monte Carlo realizations.

Experiments
The purpose of this section is to study the effect of

compression on the detection statistic (both normalized
correlation and the PCE) experimentally and with realis-
tic data and contrast the results with the theory from the
previous section. The results of three experiments are in-
cluded in this section: still images, video in Motion JPEG
(M-JPEG), and video in the MPEG-4 format. The M-
JPEG format was selected intentionally as a step between
still images and MPEG-4 video because it applies frame-
by-frame JPEG compression. By choosing to work with
realistic data, we introduce many deviations from the as-
sumptions our theoretical analysis is based on. The im-
ages and video frames are not i.i.d. Gaussian signals, we
are compressimg real content rather than flatfields, and
the fingerprints are estimated from multiple noise residuals
obtained from JPEG compressed images rather than com-
pressing the fingerprint estimates themselves as assumed in
the previous section. Furthermore, we work with color im-
ages and estimate the fingerprint from each color channel
and then combine the estimates into one estimate. Un-
fortunately, theoretically analyzing a process of this com-
plexity is not feasible. Thus, there will naturally be dis-
crepancies between the theory and experiments, which is
why we focus mainly on qualitative evaluation and com-
parison of changes in the detection statistic due to JPEG
compression.

Still images
Rather than choosing an artificial case with the cam-

era fingerint estimated from one flat-content grayscale im-
age we demonstrate the effect of compression on a more
realistic and practical case with 12 digital cameras whose
fingerprints were estimated from 20 natural 24-bit color
images. Only for one camera out of 12 (Canon G2), the

Camera model File format Image resolution
Nikon D200 #1 PNG 2592× 3872
Nikon D200 #2 PNG 2592× 3872
Nikon D70 #1 PNG 2000 × 3008
Nikon D70 #2 PNG 2000 × 3008
Nikon D70s #1 PNG 2000 × 3008
Nikon D70s #2 PNG 2000 × 3008
Canon G2 TIFF 1704 × 2272
Kodak DC290 TIFF 1200 × 1792
Panasonic DMC ZS7 JPEG 3000 × 4000
Panasonic DMC FZ50 JPEG 2736 × 3648
Canon PowerShot S40 TIFF 1704 × 2272
Leica 100 TIFF 3468 × 5212

Table 2. List of cameras included in the experiment with still
images.

fingerprint was estimated from blue sky images.
To be able to control the JPEG compression, all im-

ages were acquired in either the RAW format or a high
quality JPEG. The list of all 12 cameras is in Table 2.
Images from Nikon cameras are from the Dresden Image
Database and were converted from the RAW format to
PNG in LightRoom 5.6 (on Export to 24-bit TIFF, no post-
processing was selected except for “sharpen for screen”).
We went with the highest quality JPEG compression for
the Panasonic cameras since, like most consumer cameras,
they do not support RAW format. Images from Canon
G2 were flat-field type (blue sky). The same number of
20 images from each camera was used for the fingerprint
estimation.

The estimation of camera fingerprints starts with
wavelet denoising of noise with variance equal to 2 and sub-
tracting the denoised image content. The estimate 3 of the
PRNU is post-processed in three steps: zero-mean filter in
each (RGB) color channel (i.e., subtract column means and
row means from all elements), following by RGB-to-GRAY-
like transform, and Wiener filter in Fourier domain. All 12
camera fingerprints make 66 pairs for the null hypothesis
tests. In order to obtain matching dimensions and to create
more pairs, we slice each fingerprint into non-overlapping
1 Mpixel chunks of size 840×1200 for Experiment #1 and
to 1/4 Mpixel chunks of size 420× 600 in the second set
of tests for Experiment #2. The test statistic ρ(K̂i,K̂j)
and the PCE 8 were evaluated for each pair of fingerprint
chunks K̂i,K̂j from unmatched cameras. This process was
repeated after JPEG compression of the original images
with the quality factor in the set 30, 35, ..., 95, 100.

Experiment #1 (1 Mpixel fingerprint chunks)
After slicing 12 camera (grayscale) finger-

prints into segments of 840 × 1200 pixels, we gen-
erated N =

∑
i6=j ninj = 2338 test pairs, where

n = [9,9,4,4,4,4,2,1,9,9,2,16] is the number of seg-
ments from the 12 fingerprints. Because the number of
pixels in each segment is approximately 1 million, the
results of this experiment can be compared with the
simulations on 1 million pixels (Figure 1). In particular,
we will relate σ2

K, the sample variance of ρ(K̂i,K̂j) over



all 2,338 pairs i, j, as a function of the quality factor q with
the variance σ2

ρ(0,0) obtained from theory. To this end,
we need to estimate the variances σ2

R and σ2
S . However,

these parameters strongly vary not only between cameras
and images but also locally within the images themselves.
We estimated the variance σ2

R by first computing the
pixel variances in each 8× 8 (non-overlapping) block and
averaged them over all blocks in the image. The variance
σ2
R estimated this way varied between 60 and 220 across

images and reached values as low as 1.8 for flat-field im-
ages. This means that the correlated signals are strongly
non-stationary, which introduces a discrepancy with the
theoretical assumptions made in the previous section.
Despite these differences, Figure 5 reveals a rather close
match between σ2

K and the theoretical variance, which
we obtained with σ2

R=σ
2
S = 100 as the median value over

images. We attribute the slightly larger values of σ2
K to

hidden dependencies in the original images – notice that
with no compression (denoted by ’∞’) σ2

K(q) is still larger
than σ2

ρ(0,0) at quality factor 100.
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Figure 5. Experimental σ2
K and theoretical σ2

ρ(0,0) as a function of
JPEG quality factor q for images with 840× 1200 pixels. The result with
uncompressed images is marked with ’∞’.

Continuing this experiment, we collected the values of
the PCE for each pair K̂i,K̂j and evaluated the sample
variance Var[PCEK] of PCE(K̂i,K̂j) across the pairs i, j
as a function of the quality factor q. Figure 6 shows that
this variance is also larger than what is obtained from the
theory.

One consequence of the increased variance of the de-
tection statistic under the null hypothesis is that the false-
alarm probability increases with JPEG compression if the
threshold is fixed. Knowing how the PCE depends on the
quality factor allows us to adjust the detection threshold
TPCE to guarantee a given false alarm probability. For this
purpose, we define a scaling factor γ,

γ(q) =
Std[PCEK(q)]
Std[PCEK(∞)] , (21)

where Std[PCEK(∞)] is the standard deviation of the PCE

obtained from pairs of uncompressed images. If all images
in the test were compressed with the same quality factor q,
then the threshold γ(q)TPCE leads to the same false-alarm
probability as TPCE for uncompressed images. The scaling
factor γ computed in this experiment is shown as one of
the curves in Figure 7, in which we reversed the x-axis for
better readability.
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Figure 6. Experimental variance of the PCE as a function of JPEG quality
factor q for images with 840×1200 pixels.

Experiment #2 (1/4 Mpixel fingerprint
chunks)

The purpose of the next experiment is to verify the
right tail model for the distribution of the PCE (the chi-
square distribution) as this tail determines the false-alarm
probability. To this end, we had to increase the statis-
tical sample. Starting with the same 12 cameras and
their fingerprints, we sliced them into smaller sizes of
420× 600=252,000 pixels and obtained a total of 46,016
fingerprint pairs, which is more than 20 times more than
in Experiment #1. Figure 8 shows the log-tail plot for the
PCE, which appears compatible with the chi-square model.
Note that the variance σ2

K in Figure 9 is larger than the
one obtained from 1 Mpixel images.

Table 3 shows the variance of the normalized cross-
correlation ρ(K̂i,K̂j , τ1, τ2) as a function of the spatial shift
(τ1, τ2). Note that in this case, the match with the theoret-
ical values (Table 1) is quite poor. In particular, the cross-
correlation values for τ1 = 4 and τ2 = 4 are much larger than
the rest of the values for similar shifts. This indicates the
presence of periodic signals in the estimated fingerprints,
perhaps due to some non-unique artifacts (NUAs), which
are patterns that are not unique to a particular camera
but may repeat across the same sensor types or the same
camera models, such as those caused by color demosaicing.

To suppress the effect of these artifacts on the normal-
ized cross-correlation, we repeated Experiment #2 with the
images downsized by factor 1.7. The resizing makes the pe-
riodic NUAs out of synch with the 8×8 grid and thus the
NUAs do not affect the detection statistic as much (Ta-
ble 4). The variance at τ2 = 0 (no vertical shift) is larger
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Figure 7. Scaling factor γ as a function of JPEG quality factor q for
1Mp images, 1/4 Mp images and their scaled versions, and from Monte
Carlo simulation on simplified model in the section on theory (empirical for
1000× 1000). This factor is used for adjusting the threshold on PCE to
meet a fixed false-alarm probability.

than at τ2 > 0 in agreement with theoretical finding. The
position of spikes, such as those at (τ1, τ2) = (5,4), depends
on the resizing factor.

As the last result of Experiment #2, we report the
scaling factor (21) for 1/4 Mp images and their resized ver-
sions, together with an empirically obtained scaling factor
based on the variance from Figure 4.

(τ1, τ2) 0 1 2 3 4 5 6 7
0 6.3601 4.1065 5.7369 4.1299 6.5367 4.2075 6.0225 4.1783
1 4.7043 2.8641 4.1822 2.8852 4.8600 2.9451 4.4120 2.9217
2 6.2708 4.0243 5.7149 4.0443 6.4352 4.1232 5.9767 4.0971
3 4.7025 2.8659 4.1810 2.8858 4.8579 2.9473 4.4105 2.9225
4 6.3585 4.1067 5.7373 4.1299 6.5360 4.2071 6.0228 4.1799
5 4.7042 2.8637 4.1822 2.8850 4.8594 2.9449 4.4117 2.9214
6 6.2708 4.0247 5.7139 4.0444 6.4344 4.1225 5.9776 4.0973
7 4.7021 2.8654 4.1805 2.8858 4.8580 2.9471 4.4097 2.9227

Table 3. Experimental values of σ2
ρ(τ1, τ2) scaled by a factor

of 106 as a function of (τ1, τ2) for JPEG quality factor 80 and
images with 420 × 600 pixels.

(τ1, τ2) 0 1 2 3 4 5 6 7
0 4.3590 4.1194 3.9991 4.1988 4.2314 4.1933 3.9460 4.2097
1 4.7758 4.4610 4.4198 4.5787 4.7600 4.5902 4.3962 4.5575
2 4.3639 4.2198 4.0123 4.2916 4.2427 4.2735 3.9368 4.2910
3 4.2610 4.0463 3.9124 4.1424 4.1959 4.1357 3.8593 4.1367
4 4.3569 4.1201 3.9961 4.1923 4.2267 4.1945 3.9459 4.2126
5 4.7862 4.4670 4.4301 4.5824 4.7699 4.5982 4.4013 4.5637
6 4.3739 4.2242 4.0213 4.2978 4.2510 4.2820 3.9457 4.2965
7 4.2624 4.0474 3.9130 4.1437 4.1958 4.1415 3.8628 4.1385

Table 4. Experimental values of σ2
ρ(τ1, τ2) scaled by a factor

of 106 as a function of (τ1, τ2) for JPEG quality factor 80 and
images with 420 × 600 pixels downsampled by factor 1.7.

PRNU estimated from video
From our video library we selected 18 cameras whose

videos had the highest bit rate (typically around 11,000
kbps) at the original SD resolution (640× 480). For each
camera, we chose 4 or 5 videos, 80 video files total, and
worked with total of 3,019 unmatched video pairs of the
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Figure 8. Experimental distribution of the tail of the PCE, Pr{PCE>x},
for JPEG quality factor q = 40,60,80,100, obtained from 46,016 pairs of
420×600 PRNU estimates.
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Figure 9. Experimental σ2
K as a function of JPEG quality factor q for

images of 420×600 pixels. The results were obtained from 46016 pairs of
PRNU estimates.

original resolution. We extracted the exact middle 1000
frames from each video and used VideoWriter in Matlab
to transcode these 1000 video frames into MPEG-4 and
the Motion JPEG format with quality settings 30, 45, 60,
75, and 90. The camera fingerprints were computed from
videos in the same way as was done from images (each video
frame making one image) with the exception of setting
the wavelet denoising parameter sigma to 1.5. The post-
processing was a little different. The first step included
applying the zero-mean filter in each (RGB) color channel,
followed by an RGB-to-GRAY-like transform, Wiener fil-
tering in the Fourier domain, and applying the notch filter
in the Fourier domain as found in reference [3] to remove
periodic signals. Finally, we cropped out a 32-pixel bound-
ary to removing occasional boundary artifacts, which gave
us final fingerprints of size 416×576.

As seen in Figure 10, compression has the expected
effect on the variance σ2

K. It is important to realize that
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Figure 10. Experimental σ2
K as a function of JPEG quality factor q for

SD video at resolution 416× 576 pixels. Compression was achieved using
VideoWriter in Matlab. The results were obtained from 3,019 pairs of PRNU
estimates.

the MPEG-4 with quality factor q provides much more se-
vere data compression that JPEG compression at the same
quality factor. Nevertheless, comparing experimental σ2

K
in Figure 10 with the same quantity in Figure 9 for slightly
larger images we notice that the normalized correlation σ2

K
computed from video files is a few times larger, including
the original video (denoted by the ∞ symbol). We at-
tribute this difference mostly to the agressive filtering with
the notch filter that decreases the effective signal dimen-
sion in the frequency domain by setting a large number
of cefficients to zero. (The difference between the size of
image segments and dimensions of videos only contributes
with about 5%.) There is an unexpected positive mean of
the correlation statistic after MPEG-4 compression (Fig-
ure 11). The setup of this test proves that the positive
bias in the detection statistic ρ after MPEG-4 compression
is not caused by the video content or the PRNU estimation
process. The bias was introduced during the compression,
either in the video codec or in the VideoWriter application.

Conclusions
The main goal of this paper is to investigate the effect

of JPEG compression on the detection statistic used in
camera identification using sensor fingerprints. According
to the best knowledge of the authors, this topic is quite
important for practical deployment of sensor-fingerprint
based camera identification, yet it has not been addressed
in the literature.

First, we study this effect theoretically under simpli-
fying assumptions, and then we execute several tests with
real images and video clips in the MPEG-4 and M-JPEG
formats. The theoretical analysis, verified by Monte Carlo
simulations, is in agreement with the experiments – JPEG
compression increases the variance of the normalized cor-
relation as well as the variance of the PCE. Consequently,
the decision threshold needs to be adjusted to guarantee a
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Figure 11. Experimental mean E[ρ(K̂i,K̂j)] as a function of JPEG quality
factor q for SD video at resolution 416× 576 pixels. Compression was
achieved using VideoWriter in Matlab. The results were obtained from 3,019
pairs of PRNU estimates.

prescribed false-alarm probability. We computed this ad-
justing factor from experiments with 1 Mpixel still images
compressed with a range of JPEG quality factors. For ex-
ample, with JPEG quality 60, the threshold for PCE needs
to be approximately doubled.

Apart from the experiment with JPEG compression
of images, the experiment with video compression revealed
that not only variance of the normalized correlation de-
pends on the compression quality but in case of MPEG-4
a positive bias increases the normalized correlation as well.
We leave a deeper study of this phenomenon for future re-
search. We also plan to put the findings of this paper under
scrutiny in a large scale test on video files.

The Matlab code used to generate the data in plots in
this paper is available from http://dde.binghamton.edu/
download.
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