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Abstract—Steganography detectors built as deep
convolutional neural networks have firmly established
themselves as superior to the previous detection
paradigm — classifiers based on rich media models.
Existing network architectures, however, still contain
elements designed by hand, such as fixed or constrained
convolutional kernels, heuristic initialization of kernels,
the thresholded linear unit that mimics truncation in
rich models, quantization of feature maps, and aware-
ness of JPEG phase. In this paper, we describe a
deep residual architecture designed to minimize the
use of heuristics and externally enforced elements that
is universal in the sense that it provides state-of-the-
art detection accuracy for both spatial-domain and
JPEG steganography. The key part of the proposed
architecture is a significantly expanded front part of
the detector that “computes noise residuals” in which
pooling has been disabled to prevent suppression of
the stego signal. Extensive experiments show the su-
perior performance of this network with a significant
improvement especially in the JPEG domain. Further
performance boost is observed by supplying the selec-
tion channel as a second channel.

Index Terms—Steganography, steganalysis, convolu-
tional neural network, deep residual network, selection
channel, SRNet

I. INTRODUCTION

Steganography in its modern form is a private, covert
communication method in which the sender hides the
message inside an innocuous looking cover object using
an algorithm driven by a secret shared with the recipient.
The communication channel is observed by an adversary or
warden who tries to establish whether the communicating
parties use steganography. The most popular source of
cover objects are digital multimedia files and images in
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particular. As of 2017, 46% of all steganographic tools
available on the Internet can hide messages in digital
images stored in raster formats, such as BMP, PNG, and
TIFF, and the lossy JPEG format.!

With the exception of steganographic schemes based
on Least Significant Bit (LSB) replacement [14], [56],
[67] and steganography in singular cover sources that
permit powerful compatibility attacks [6], [22], [37], [42],
the most accurate detectors have been built using the
tools of machine learning. This trend has been started by
Memon et al. [1], [2] and Farid [18] in early 2000’s and was
later greatly improved by representing images with higher-
order statistics of noise residuals or DCT coefficients [43],
[49], [68]. It culminated in what is recognized today as
steganalysis with rich models [9], [15], [17], [19], [30], [38],
[50], [53] and scalable machine learning [13], [40], [44].

Recently, deep learning [23] has been proposed for ste-
ganalysis in an attempt to improve detection accuracy by
jointly optimizing the image representation (features) as
well as the classifier. Beginning with detectors that used
stacked auto-encoders [52], in an early influential work by
Qian et al. [45] the authors described a neural network
steganalyzer with a Gaussian activation function equipped
with a fixed preprocessing high-pass KV filter (Eq. (9)
in [39]) whose role was to suppress the image content and
thus improve the signal-to-noise ratio between the stego
signal and the host image. The authors observed that
without the fixed high-pass filter their network did not
converge. The XuNet proposed in [61], [62] was the first
architecture with a competitive performance. It employed
the absolute value layer and TanH activation [23, Ch.
6.3.2, p. 189] in the front part of the network, batch
normalization [33], and 1 x 1 convolutions to compactify
the feature maps. It, too, contained a fixed high-pass filter
as part of image preprocessing during training and testing.
The next advancement, the YeNet [65], can be considered
as a breakthrough result as the proposed detector signifi-
cantly improved upon established steganalysis detectors in
the spatial domain. YeNet contained several novel design
elements: a new activation function called the Thresholded
Linear Unit (TLU), thirty 5 x 5 kernels in the first layer
initialized with SRM (Spatial Rich Model [19]) filters, and
an effective way to incorporate the selection channel into
the network based on [15], [16]. The work also pointed
out the importance of using larger training datasets for
deeper networks and the merit of alternative adaptive
optimizers, in particular the AdaDelta gradient descend

IN. Johnson, personal communication, 2017.



variant [66]. A deep residual network for steganalysis has
recently been proposed in [58]. This work is, unfortunately,
faulty, because the detector was essentially trained to
recognize, when presented with batches of unlabeled cover-
stego pairs, which one of them is cover and which is
stego, which is a significantly easier task, unrealistic in any
practical application. The authors mentioned on their web
site that they were working on a modified architecture.?

Detectors constructed using deep learning have also
advanced the state of the art in the JPEG domain [10],
[60], [64], [67]. Chen et al. [10] modified the XuNet for
steganalysis of JPEG images by splitting the feature maps
into 64 parallel channels to make the architecture aware
of JPEG phase — the underlying grid of 8 x 8 pixels.
The design mimicked the construction of the so-called
JPEG-phase-aware noise residuals discovered by Holub et
al. [29], [30] and later improved by using Gabor filters for
noise residual extraction [50], [59] and making them aware
of the selection channel [15]. A 20-layer deep network
with shortcut connections [26], [27] for steganalysis of J-
UNIWARD [31] has been proposed by Xu [60]. This ar-
chitecture, too, relied on fixed preprocessing DCT kernels
in the first convolutional layer and thresholding its feature
maps.

When designing the architecture proposed in this paper,
our goal was a clean end-to-end design that could be
used for a wider range of applications and work well
for steganalysis in both spatial and JPEG domains. We
let ourselves be guided by the latest advancements in
deep learning and rather general principles and insights
to minimize the use of externally enforced constraints or
heuristics. Fixed or constrained preprocessing kernels or
kernels initialized to SRM filters or DCT bases can in
fact be detrimental for the overall network performance
depending on the characteristics of the stego signal. High-
pass filters, such as the popular KV filter, suppress a
major portion of the stego signal introduced by JPEG
steganography because the embedding modifications are
applied to quantized DCT coefficients. This has already
been observed and analyzed in [10] where the authors in-
troduced additional fixed filters into the first convolutional
layer to improve detection of JPEG steganography. Ideally,
however, the best filters should also be learned rather than
enforced as it is unlikely that hand-designed filters or non-
random kernel initializations will be optimal for the chosen
architecture.

The overall design consists of four different types of
layers, two of which involve the so-called residual shortcuts
that have been shown in the literature [26], [27] to improve
convergence and help learn the parameters in upper layers
of deep networks, which are typically the hardest to
learn. Functionally, the network consists of three serially
connected segments — the front segment whose role is to
learn effective “noise residuals,” the middle segment that
compactifies the feature maps, and the last segment is a
simple linear classifier. The front segment consists of seven

2https://github.com/Steganalysis- CNN /residual-steganalysis

layers in which pooling [23, Ch. 9.3, pp. 330-334] has been
disabled to prevent suppression of the stego signal due
to averaging neighboring samples in feature maps during
average pooling.

We would like to emphasize that, in its original form, we
do not supply the network with the knowledge of the selec-
tion channel as we firmly believe that, for the best results,
the network should become aware of the selection channel
via end-to-end training. Having said this, we acknowledge
that introducing the selection channel via a parallel branch
in the first layer did improve the performance, which
indicates a space for future improvement in the quest for
a completely data-driven steganography detector.

At this point, the authors would like to point out a
terminology clash between steganalysis and deep learning
as the term “residual” has been firmly established in both
fields but is used for two completely different entities. To
prevent potential confusion, the phrase “noise residual”
will be strictly used for a pixel prediction error in ste-
ganalysis while “residual layer / module / connection” will
always relate to the popular residual network architecture
in deep learning [26], [27].

Section II contains the description of the proposed net-
work architecture and a discussion of our design choices.
The training, which is unified in both spatial and JPEG
domain, is detailed in Section III, where we also describe
the setup of all our experiments, the performance evalua-
tion metric as well as the list of prior art with which the
proposed detector is compared. The results of experiments
in spatial and JPEG domain appear in Section IV. The
performance is evaluated in terms of the minimal detection
error under equal priors. We also report the detection
performance on selected cases using the receiver operating
characteristic curves with the false-alarm rate for true
positive rates of 0.5 and 0.3. In Section V, we show that
further boost of detection accuracy can be achieved in
both domains by introducing the selection channel into
the network. The paper is closed in Section VI with
a discussion of potential further improvements and our
anticipated future effort.

II. SRNET FOR IMAGE STEGANALYSIS

The proposed network architecture is called SRNet —
Steganalysis Residual Network. The word “residual” refers
to both the central term used in steganalysis and residual
layers with shortcut connections from deep learning [26].
The shortcut connections help propagate gradients to
upper layers, which are the hardest to train because of
the vanishing gradient phenomenon [21] that often neg-
atively affects the convergence and performance of deep
architectures [26], [27]. They also encourage feature reuse
in the training process. We first describe the architecture
of SRNet and then explain and justify each component
separately, motivating thus the design.

A. Architecture

Although it is not generally possible to claim that a cer-
tain part of a network detector executes a specific task, we
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Figure 1.

Architecture of the proposed SRNet for steganalysis. The first two shaded boxes correspond to the segment extracting noise

residuals, the dark shaded segment and Layer 12 compactify the feature maps, while the last fully connected layer is a linear classifier. The
number in the brackets is the number of 3 x 3 kernels in convolutional layers in each layer. BN stands for batch normalization.

found it useful to view the proposed detector schematically
depicted in Figure 1 as a concatenation of three segments:
the front segment responsible for extracting the noise
residuals, outlined in the figure by the first two shaded
segments (Layers 1-7), the middle segment whose goal is
to reduce the dimensionality of the feature maps, the third
shaded segment and Layer 12, and the last segment, which
is a standard fully connected layer followed by a softmax
node [23], the linear classifier.

The input is assumed to be a grayscale 256 x 256 image.3
All convolutional layers employ 3 x 3 kernels and all non-
linear activation functions are ReLU. Note that Layers 1-7
use unpooled feature maps on their input. Pooling in the
form of 3 x 3 averaging with stride 2 is applied on the
output of Layers 8-11. In Layer 12, 512 feature maps of
dimension 16 x 16 are reduced to a 512-dimensional feature
vector by computing statistical moments (averages) of
each 16 x 16 feature map. This 512-dimensional output
enters the classifier part of the network. The first two
layers do not contain any residual shortcuts or pooling.
Layers 3-7 have residual shortcuts and no pooling. Layers
8-11 contain both pooling and residual shortcuts.

3Reference [20] explains how to steganalyze images of arbitrary
size with network detectors.

SRNet contains two types of layers with shortcuts be-
cause unpooled layers (Type 2) require different shortcut
connections than pooled layers (Type 3). The first two
layers of Type 1 with 3 x 3 filters worked better for us
than one layer with 5 x 5 filters. Their purpose is to begin
with a larger number of kernels (64) and then decrease the
number of feature maps to 16 before the unpooled layers
to save on memory. The Type 4 layer is different from the
last layer of Type 3 because of the global pooling applied
before the fully connected classifier part.

B. Motivating the architecture

The key part of the SRNet is the noise residual extrac-
tion segment consisting of the first seven layers. Because
average pooling is a low-pass filter, it reinforces content
and suppresses noise-like stego signals by averaging adja-
cent embedding changes. While this is desirable in typical
computer vision applications for classifying content, it is
detrimental for steganalysis where the signal of interest
is the stego noise while the “noise” is the image content.
Guided by this insight, SRNet does not use pooling until
Layer 8 to avoid decreasing the energy of the stego signal
and allow it to optimize the noise residual extraction
process for various types of selection channels and stegano-
graphic embedding changes.



All filters in SRNet are randomly initialized and learned
via an end-to-end training process. This allows the net-
work to adapt to a greater variety of stego signals be-
cause the polarity of and dependencies among embedding
changes vary significantly across different steganographic
methods and especially domains. Embedding modifica-
tions introduced by spatial-domain embedding methods
that minimize an additive distortion, such as WOW [28],
HILL [41], SS-UNIWARD [31], and MiPOD [47] are largely
uncorrelated, while changes to quantized DCT coefficients
in JPEG image steganography lead to a stego signal with
significant energy in low and medium spatial frequencies.

The proposed architecture was formed based on results
of many experiments in which we tested different alloca-
tions of resources to the three above mentioned segments
so that the network can be trained with a reasonable
minibatch size on a single GPU with 12 GB of memory,
examples of which are the popular Titan X and Xp, Tesla
K40 and K80, and GTX 1080 Ti (11 GB). Most of the
exploration focused on determining the number of layers
in each segment, the number of filters in each layer, and
the optimizer.

The remainder of this section is divided into subsections,
each devoted to a specific design element of SRNet. The
experimental results quoted here were all obtained with
the setup explained in Section III on the standardized
dataset BOSSbase + BOWS2 (Section III-A) with the
detector accuracy reported using the minimal total detec-
tion error Pg under equal priors based on the training,
validation, and testing (Section III-D).

1) Activations: Besides the ReLU, we have also experi-
mented with TanH activation, the leaky ReLU, ELU [11],
and SELU [36], but they did not bring any performance
gain. To avoid additional complexity and guided by sim-
plicity, we selected ReLLU for all activation functions in our
network.

Note that layers of Type 2 and 3 do not use ReLU
after the shortcut connections. While the original residual
networks [26], [27] do include ReLU after the addition of
the shortcut connections, with these activations removed,
we observed a small gain of up to 1% in detection accuracy.

2) Residual shortcuts: To assess the importance of
shortcut connections in SRNet, we removed them from
layers of Type 2 and 3 and observed the change in de-
tection accuracy. For example, for HILL at 0.1 and 0.2
bpp the loss of classification accuracy was about 0.5% and
for J-UNIWARD at 0.4 bpnzac, quality factor 95, the loss
was 1.5%. While the performance in these cases was still
competitive, the loss of detection power increased with
decreased class separability, e.g., for small payloads and
larger JPEG quality.

3) Dense connections and inception: Dense connections
in deep learning were introduced with a similar goal as
residual layers — to help with gradient propagation and
convergence, feature reuse, and to reduce the number
of parameters to learn [32]. We investigated the effect
of dense connections introduced in the second segment
of the SRNet — unpooled Layers 3-7. On experiments

with the embedding algorithms HILL and S-UNIWARD
at 0.4 bpp, the SRNet with dense connections did not
provide statistically significant better results as SRNet
with residual connections (the statistical significance was
assessed based on the statistical spread of detection ac-
curacy w.r.t. the snapshot selected for the final detector).
Dense connections, however, may have more impact on
deeper architectures than the SRNet.

The main idea behind “inception” is that each layer
concatenates the outputs of filters of different sizes, which
is reminiscent of fusing multiple-resolution representations
in image processing [51]. Type 3 layers in SRNet (see
Figure 1) sum the outputs of what is an effective 5x 5 filter
in the main branch (in terms of the receptive field) and a
1 x 1 filter (the shortcut branch). We added an additional
branch to this layer type with 3 x 3 filters followed by
batch normalization. This required other changes in the
architecture to fit the modified SRNet in GPU memory
— we decreased the number of feature maps in Type 3
layers to one half. SRNet modified in this manner gave
a slightly worse (0.5-1%) detection accuracy on both
HILL and S-UNIWARD tested at 0.4 bpp. Due to limited
GPU memory, a proper study of inception modules within
the SRNet would require a comprehensive study that is
beyond the scope of this paper.

4) Unpooled layers: We now comment on the number of
unpooled layers and their effect on detection. Decreasing
their number from seven to six or five while keeping the
rest of the architecture unchanged lead to a small and
gradual loss of accuracy. For example, for J-UNIWARD
at 0.4 bpnzac (bits per non-zero AC DCT coefficient) and
JPEG quality 75, the detection error Pg increased from
0.0670 to 0.0701 and 0.0748 when the number of unpooled
layers was changed from 7 to 5 and 4, respectively. This
loss increases with decreasing payload. Also, we observed
that this loss is typically smaller in the spatial domain and
larger in the JPEG domain. Across the tested algorithms
in both domains, the detection accuracy tends to level out
at 5-6 unpooled layers. We opted for seven in our proposed
design to avoid potential loss of detection for more diverse
cover and stego sources.

To assess the significance of disabling pooling in Lay-
ers 1-7, we carried out additional experiments in which
pooling has been progressively enabled in Layers 7, 6, 5,
and 4. Note that enabling pooling in more than four layers
would require removing layers from group 3 because the
size of the feature maps before the output layer decreases
from 16 x 16 to 8 x 8, and eventually 1 x 1 when pooling
is enabled in four layers.

The experiments were executed for HILL at 0.4 bpp
and J-UNIWARD at 0.4 bpnzac to cover both embedding
domains. With enabling average pooling in Layers 7-
4, starting with Layer 7, the detection error for HILL
rapidly increased from 0.1414 (with the original SRNet)
to 0.1528, 0.1823, 0.2202, and 0.3697. For J-UNIWARD,
the detection error grew from 0.0670 to 0.0755, 0.0886,
0.1263, and 0.1710.



5) Number of filters: The effect of the number of filters
in the first layer has a larger impact in the JPEG domain
than in the spatial domain. While the detection error,
Pg, for HILL at 0.4 bpp increased negligibly when using
only 32 and 16 filters instead of 64 in the first layer
(0.1414, 0.1432, and 0.1438 for 64, 32, and 16 filters), for J-
UNIWARD at 0.1 bpnzac at JPEG quality 75, decreasing
the number of filters from 64 to 32 lead to an increase of
Pg, of about 1%. Increasing the number of filters beyond
64 did not seem to lead to any improvement in detection.

6) Optimizer: Finally, we experimented with several
optimizers, including the AdaDelta [66], Adam [35],
Adamax [35], and a simple stochastic gradient descend [23,
Ch. 8.3.1, pp. 286-288]. In the end, we settled on Adamax
since it provided the most reliable and fastest convergence.

III. SETUP OF EXPERIMENTS

This section describes the common core of all exper-
iments that appear in Section IV and V, including the
datasets and SRNet training, the list of prior art to which
SRNet is to be compared, and the evaluation metric.

A. Datasets

SRNet was primarily evaluated and contrasted with
prior art on the union of BOSSbase 1.01 [3] and
BOWS2 [4], each containing 10,000 grayscale images re-
sized from their original size 512 x 512 to 256 x 256
using imresize with default setting in Matlab. For JPEG
experiments, this source was additionally compressed with
quality factors 75 and 95.

Randomly chosen 4,000 images from BOSSbase and the
entire BOWS2 dataset were used for training with 1,000
BOSSbase images set aside for validation. The remaining
5,000 BOSSbase images were used for testing. This setup
permitted a direct comparison with the current state-of-
the-art spatial-domain detector, the YeNet [65]. In sum-
mary, 2 X 14,000 cover and stego images were used for
training, 2 x 1, 000 for validation, and 2 x 5,000 for testing.
This applies to both the spatial and JPEG domain and
all network detectors. JPEG images were decompressed
without rounding to integers.

To test the network on a significantly larger and more
realistic dataset, we performed additional experiments on
ImageNet, namely its CLS-LOC version [46] containing
1,281,167 JPEG images meant to be used for training
sorted into 1,000 categories (the dataset used in [60]).
We selected 250 images from each category at random,
subjecting each image that was larger than 256 x 256
pixels and whose JPEG quality was above 75 to the
following chain of processing in Matlab: decompression to
the spatial domain (imread), cropping the upper left tile of
size 256 x 256, conversion to grayscale using rgb2gray, and
recompression with JPEG quality factor 75. This mimics
the preprocessing that was executed in [60], [67]. In par-
ticular, the requirement to work only with JPEG images
with quality larger than 75 was imposed to avoid working
with images exhibiting traces of double compression (lower

quality followed by larger quality) as this would intro-
duce peaks and valleys in histograms of quantized DCT
coefficients, which could be exploited for targeted attacks.
The total size of this dataset was thus 2x250,000 cover-
stego images out of which 2x10,000 pairs were selected for
validation and 2x40,000 for testing.

B. SRNet training

The SRNet has been trained in both domains with
the same hyperparameters and in the same fashion. The
stochastic gradient descend optimizer Adamax* [35] was
used with minibatches of 16 cover-stego pairs. The training
database was shuffled after each epoch. Images in each
batch were subjected to data augmentation with random
mirroring and rotation of images by 90 degrees. The batch
normalization parameters were learned via an exponential
moving average with decay rate 0.9. The filter weights
were initialized with the He initializer® and 2 x 10™% L2
regularization. The filter biases were set to 0.2 and no
regularization. For the fully connected classifier layer, we
initialized the weights with a zero mean Gaussian with
standard deviation 0.01 and no bias.

On our dataset, the training was run for 400k iterations
(457 epochs) with an initial learning rate of r; = 0.001
after which the learning rate was decreased to ro = 0.0001
for an additional 100k iterations (114 epochs). The snap-
shot achieving the best validation accuracy in the last
100k iterations was taken as the result of training. This
training strategy was applied for all embedding algorithms
for payload 0.4 bpp/bpnzac (bits per pixel / bits per
non-zero AC DCT coefficient) with the exception of J-
UNIWARD at JPEG quality 95 (see the next paragraph).
The detectors for all remaining payloads were built via
curriculum training [5] with 50-100k iterations (57-114
epochs) with learning rate m and an additional 50k itera-
tions (57 epochs) with the smaller learning rate ro. Again,
the best validation snapshot in the last 50k iterations was
taken as the detector. While this was applied in both
spatial and JPEG domain, we observed that in the spatial
domain the same results could be obtained by curriculum
training only with the smaller learning rate.

For J-UNIWARD and JPEG quality factor 95 at 0.4
bpnzac, we experienced convergence problems when train-
ing from a randomly initialized network. This was resolved
by seeding the network with the detector trained for J-
UNIWARD for quality factor 75 at 0.4 bpnzac, after
which we trained for 400k iterations with learning rate
rq followed by 100k iterations with rs.

We tested two types of curriculum training — by seeding
with the network trained for payload 0.4 bpp/bpnzac
and by training in a progressive manner that is perhaps
best described symbolically as 0.1-0.2<-0.3+-0.4—0.5. In
other words, first the detectors for payload 0.3 and 0.5
were trained by seeding with the network trained for 0.4.

4Code available from https://github.com/openai/iaf/blob/
master/tf_utils/adamax.py
Shttps://arxiv.org/pdf/1502.01852v1.pdf



Then, the detector for payload 0.2 was seeded with the
network trained for 0.3, etc. While both types of curricu-
lum training gave similar results in the spatial domain,
the progressive training gave slightly better results in the
JPEG domain.

C. Tested prior art

For comparison with the current state of the art on the
union of BOSSbhase and BOWS2, in the spatial domain
SRNet was compared with YeNet [65] and on JPEG
algorithms with the PNet / VNet [10] and the network
recently proposed by Xu [60], which we call in this paper
J-XuNet to distinguish it from the network introduced
n [62]. We note that when we attempted to train the
YeNet on decompressed JPEGs with quality factor 75
embedded with J-UNIWARD at 0.4 bpnzac the network
did not appear to converge.

To show the gain in detection accuracy w.r.t. the old
detection paradigm based on the ensemble classifier and
rich models, we steganalyzed all spatial-domain embed-
ding algorithms with the maxSRMd2 [17] features non-
linearly normalized using random conditioning (RC) [8].
JPEG steganography was steganalyzed with the Selection-
Channel-Aware Gabor Filter Residuals [15] (SCA-GFR).
The SCA-GFR features were not normalized or trans-
formed [7], [8] because this type of features does not benefit
from such preprocessing.

All prior art CNN detectors were trained as described
in the corresponding papers. We observed that for the J-
XuNet on 256 x 256 images, it was beneficial to decrease
the learning rate by 10% every 8 epochs instead of 16
to avoid a loss of performance for small payloads. For J-
UNIWARD quality factor 95, we had to train the J-XuNet
for payloads 0.1 and 0.2 bpnzac via curriculum training
from 0.3 bpnzac.

Due to the size of ImageNet, we limited our experiments
on this dataset to J-UNIWARD at quality factor 75 and
only compared to J-XuNet and the recently proposed
hybrid deep network incorporating J-XuNet as a “subnet”
as described in Sec. IILE of [67] (Fig. 13a), which we
abbreviate in this paper as H-Net.

All detectors were trained on exactly the same data sets
as the SRNet, implemented in TensorFlow, and run on a
single GPU. It takes approximately two and half days to
train the SRNet on a Titan Xp GPU. Note that we did
not form ensembles of CNN detectors in this paper. Quite
likely, further small improvement in detection accuracy
could be obtained across all investigated network detectors
by forming an ensemble either over different snapshots
obtained from a single training or over independently
trained networks.

D. FEwvaluation metric

The detection performance was measured with the total
classification error probability on the testing set under
equal priors Pg = minp,, %(PFA + Pup), where Ppa and

Table 1
DETECTION ERROR Pg FOR MAXSRMD2 WITH RANDOM
CONDITIONING AND ENSEMBLE, SRNET, AND
SELECTION-CHANNEL-AWARE YENET FOR FIVE PAYLOADS IN BPP AND
THREE SPATIAL DOMAIN EMBEDDING ALGORITHMS.

Detector 0.1 0.2 0.3 0.4 0.5
maxSRM+RC  .3817 2904 .2223 1783 1429
S-UNI SCA-YeNet 3220 2224 1502 1281 1000
- SRNet 3104 2090 .1432 1023 0705
maxSRM+RC  .3768 3168 2707 2338 1855
HILL SCA-YeNet 3380 2538 1949 1708 1305
SRNet 3134 2353 1830 1414 1151
maxSRM+RC 2998 2144 1684 1350 1122
WOW SCA-YeNet 2442 1691 1229 .0959 .0906
SRNet 2587 1676 1197 0893 0672

Pyp are the false-alarm and missed-detection probabili-
ties. For selected cases, we show the ROC curves and an
alternative measure of performance, the false-alarm rates
for stego-image detection probability Ppb =1 — Pyp = 0.5
and 0.3.

The results reported in the next section are for one
random 50/50 split of BOSSbase because it would not be
computationally feasible to train all networks on multiple
different splits to obtain a more statistically robust result.
To assess the statistical spread across different BOSSbase
splits and thus interpret the statistical significance of the
improvement of SRNet w.r.t. the state of the art, we
trained the SRNet on five different 50/50 BOSSbase splits
(BOWS2 was always a part of the training set) for HILL at
0.3 bpp and J-UNIWARD at 0.4 bpnzac and JPEG quality
75. The standard deviation of Pg across these five splits
was 0.0035 and 0.0016, respectively. The statistical spread
appears coincidentally comparable to what has typically
been reported for detectors implemented with rich models
and the ensemble classifier (see, e.g., [15], [17]).

IV. EXPERIMENTS

This section contains the results of all experiments and
their interpretation divided into two subsections based on
the type of the embedding domain.

A. Spatial domain

For spatial domain steganalysis, we report the results for
five payloads: 0.1-0.5 bpp (bits per pixel) for WOW [28],
HILL [41], and S-UNIWARD [31]. The detection error
Pg is shown in Table I. Depending on the algorithm and
payload SRNet improves upon SCA-YeNet by up to 3%
in Pg. The biggest improvement is typically observed for
larger payloads. The only exception is for WOW for the
smallest tested payload 0.1 bpp when SRNet performs by
1.5% worse than the SCA-YeNet. This loss of performance
is due to the fact that SRNet does not make explicit
use of the selection channel while YeNet benefits quite
significantly by employing the selection channel for WOW
(c.f. columns 3 and 5 in Table VIII in [65]). In Section V,
we show that this loss can be compensated by introducing
the selection channel to SRNet in a similar manner as in
YeNet. Finally, both network detectors clearly outperform
the old steganalysis paradigm.
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Figure 2. ROC curves of SRNet for SS-UNIWARD and HILL at 0.2
and 0.4 bpp together with two detection performance measures: Ppa
for Pp = 0.5 and 0.3 also computed for the low-complexity linear
classifier with the maxSRMd2 feature set transformed using random
conditioning.

ROC curves for rich-model based detectors are well
known to be mean-shifted Gauss-Gauss (see, e.g., [12])
and as such do not perform well for low false alarms.
In contrast, the detection statistic outputted by network
detectors exhibits non-Gaussian characteristics and, as we
found out, achieves significantly better performance for
low rates of false alarm, a goal identified as one of the
most relevant problems for practitioners in [34]. Figure 2
shows four ROC curves of SRNet for S-UNIWARD and
HILL for two payloads and the false alarm rates Pga for
two test powers: Pp € {0.3,0.5}. For the larger payload
0.4 bpp, Po = 0.5 can be achieved with Ppa = 6 x 1074
for S-UNIWARD and 4.2 x 10~2 for HILL. In contrast,
the low-complexity linear classifier [12] with maxSRMd2
features [17] (the last two columns in the table underneath
Figure 2) exhibits 4-30 times larger (!) false alarms for the
two test powers.6

B. Transfer learning

To assess the ability of the SRNet to detect mismatched
stego sources, which is a situation likely to be encountered
in practice, we include the result of an investigation in
which the SRNet was trained on one embedding algorithm
and tested on a different one at the same payload. Table II

6The low-complexity linear classifier was used instead of the en-
semble to be able to obtain the performance measures reported in
Figure 2.

Table II
DETECTION ERROR Pg FOR SRNET TRAINED ON ONE ALGORITHM
AND TESTED ON OTHER ALGORITHMS. PAYLOAD FIXED AT 0.4 BPP.

TRN\TST on WOW HILL S-UNI MiPOD
WOW .0893 .3228 1552 .2879
HILL 1742 1414 2742 .2180
S-UNI .1102 .2483 1023 2116
MiPOD .1476 .1888 .1596 1497

shows that the SRNet trained on the least detectable
algorithm (MiPOD) transfers the best while, when trained
on the most detectable algorithm (WOW), it transfers the
least. This is consistent with the results reported in [10]
for the JPEG-phase-aware network in JPEG domain.

C. JPEG domain

For the JPEG domain, J-UNIWARD [31] and UED-
JC [25] for payloads 0.1-0.5 bpnzac (bits per non-zero AC
DCT coefficient) were tested for quality factors 75 and 95.
The results of the experiments are shown graphically in
Figures 4 and 5 and Table III.

For UED-JC, SRNet detection error is up to 8% lower
than J-XuNet and the improvement is up to 17% w.r.t.
state of the art for J-UNIWARD for quality factor 95. A
very significant improvement of up to 18.5% (!) is observed
w.r.t. the old detection paradigm, the SCA-GFR with
ensemble classifier. Four ROC curves of the SRNet are
shown in Figure 6 for J-UNIWARD, payloads 0.2 and
0.4 bpnzac, and two quality factors. Again, the network
detector enjoys a very small false alarm rate for probability
of detection 0.5 and 0.3 that is significantly smaller than
for the old detection paradigm, the low-complexity linear
classifier [13] with the SCA-GFR feature set. Note that for
J-UNIWARD at 75 JPEG quality and payload 0.4 bpnzac,
detection rate Pp = 0.3 was achieved with no false alarms
on the 10,000 images from the testing set.

Figure 3 shows an example of the progression of the
training and validation error when training SRNet on J-
UNIWARD at 75 JPEG quality and payload 0.4 bpnzac.
Note the drop in detection error due to decreasing the
learning rate at iteration 400k.

1) ImageNet: A subset of the CLS-LOC version of the
ImageNet [46] with 250,000 grayscale 256 x 256 JPEG im-
ages was included in our tests to show the performance of
SRNet on a more realistic dataset containing images from
a large number of different sources including multiple-
compressed images. For comparison with prior art, we
included J-XuNet and the hybrid network with the “J-
XuNet model” by Zeng et al. [67] (Fig. 13a) that has been
published during the writing of this paper.

The detection error Pg as a function of embedded
payload size for J-JUNIWARD at JPEG quality 75 is shown
in Figure 7. The gain of SRNet w.r.t. both J-XuNet and
H-Net is between 5-7%. Also, in contrast to the claims
made in [67], H-Net with J-XuNet as the subnet provides
approximately the same performance as J-XuNet itself.



Table ITI
DETECTION ERROR Pg FOR SRNET AND PRIOR ART FOR FIVE PAYLOADS IN BPNZAC FOR J-UNIWARD AND UED-JC FOR QUALITY FACTORS

75 (LEFT) AND 95 (RIGHT).

Embedding | QF 75 \ QF 95
Method [ Detector 0.1 0.2 0.3 0.4 0.5 [ 0.1 0.2 0.3 0.4 0.5
SCA-GFR 4197 3257 .2400 1728 .1190 4798 .4430 .3951 .3448 .2916
VNet 4029 .2928 .1938 1258 .0815 4756 4373 .3898 .3304 .2668
J-UNIWARD PNet 3917 .2904 .1966 1283 .0799 4741 4253 3751 .3182 .2435
J-XuNet 14310 .2849 1895 1207 .0776 4812 4512 4146 .3232 .2243
SRNet .3201 .1889 .1153 .0670 .0385 | .4277 .3440 .2516 .1762 .1148
SCA-GFR  .3176 .2154 1381 .0871 .0579 4376 .3700 2995 .2390 .1859
VNet .2565 1352 .0770 .0433 .0223 4131 3316 .2498 1867 1254
UED-JC PNet .2470 .1290 .0740 .0420 .0218 .3957 .3095 .2245 1617 .1015
J-XuNet 2144 .0972 .0508 .0287 .0163 .3848 .2979 1991 1292 .0883
SRNet 1311 .0568 .0285 .0188 .0093 | .3044 .2028 .1261 .0877 .0500
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05 — . o
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al. [53], the four-dimensional SRM co-occurrence matrices
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olr of noise residuals. This idea was further refined in [15], [16]
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Figure 3. Training and validation error Pg for J-UNIWARD QF 75
at 0.4 bpnzac.

This was also observed on our other dataset, BOSSbase +
BOWS2, but is not shown in this paper.

It is also interesting to contrast the detection errors on
ImageNet with those on the more “sand boxed” environ-
ment — the union of BOSSbase and BOWS2. Because of
the far greater diversity of ImageNet, the detection error
on this source is larger by 6.6-9% compared to the more
homogeneous image source.

V. SRNET WITH SELECTION CHANNEL

When detecting a known content-adaptive stegano-
graphic algorithm, the Warden may use the fact that
the embedding change probabilities (the so-called selection
channel) with which the pixels or DCT coefficients were
changed in a stego image are known [15]-[17], [53], [54].
Even though the selection channel computed from the
stego image will inevitably be different than the selection
channel used for embedding by the sender computed from
the cover image, these differences are typically fairly small
because the selection channel (the embedding costs) are
typically insensitive to embedding changes [48]. Further-
more, it has been shown [48] that, at least for classifiers
trained with rich media models, it is still beneficial to use

be obtained by replacing the change rate as the quantity
being accumulated with an upper bound on the L; noise
residual distortion due to embedding.

With the introduction of deep learning to steganalysis,
researchers investigated various ways how to inform the
neural network about the embedding change probabili-
ties [63], [65]. While SRNet was intentionally designed to
be free of such heuristic elements to allow a clean end-
to-end training and while we believe that a sufficiently
complex and suitably designed and trained architecture
will not need an external insertion of the selection channel,
the SRNet may still benefit from being informed about
the probabilistic impact of embedding. Indeed, the exper-
iments in Section IV-A indicate a small loss of detection
accuracy w.r.t. SCA-YeNet for small payloads for WOW.

The selection channel has been incorporated in SRNet
in the same fashion as in YeNet [65], which was inspired
by [16]. We first describe the modification of the architec-
ture for the spatial domain. Given the [-th, [ =1,...,64,
convolution kernel W) € R3*3 from the first layer, the
convolution W xx is a form of noise residual. The impact
of embedding on this noise residual can be quantified by
evaluating an upper bound on the L; distortion, which, for
steganography that modifies cover pixels independently by
+1, can be computed as [W®)|x3, where 8 is the matrix of
change rates, the selection channel.” This bound is added
to the feature maps outputted by the first layer to reinforce

751-]- is the probability of modifying cover element z;;. Thus, for
embedding schemes that modify cover values by 1 or —1, f3;; is the
sum of the two probabilities of changing by 1 and —1.



0.5 |- —— SCA-GFR
——  VNet
041 ——  PNet
—— J-XuNet
a8y
0.2 |-
0.1
0 ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5

Payload (bpnzac)
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Figure 5. Detection error Py for VNet, PNet, J-XuNet, and SRNet for UED-JC QF 75 (left) and 95 (right).

the output of neurons that are most affected by embedding.
The rest of the SCA-SRNet architecture is identical to
SRNet (see Figure 1) with the first layer shown in Figure 8.
Note that the batch normalization was removed from the
first layer to make sure both signals that are added are of
similar scale. The kernels applied to the image in the first
layer and those applied to the change rates are forced to
be the same, e.g., the absolute values of the kernels are
merely copied from the main network.

Formally, for the spatial domain, with the M x N
matrices of pixel values x = (z;;) and embedding change
probabilities 8 = (f;;), the ith feature map, [ =1,...,64,
that enters the second convolutional layer in the forward
pass is

ReLUWW xx) + (WO |« 8, (1)
where W) e R3%3 is the Ith convolutional kernel from
the first layer of SRNet and '+’ denotes the convolution.
During learning, the weight vectors in the main branch
of the network are copied to the selection-channel branch
where the absolute value operation is applied and the
network is trained as before.

For JPEG domain algorithms, the selection channel is
incorporated in a similar fashion. The embedding change
probabilities, however, relate to the quantized DCT co-
efficients rather than pixels. Thus, as the first step, we
compute the impact of embedding on pixels as an upper
bound ¢ on the L; embedding distortion as in Eqs. (18—
19) in [15]. This bound in the (a,b)-th JPEG 8 x 8 block,
0<a<M/8-1,0<a<N/8—1is computed as:

7
a,b k,l a,b o
tgj = Z ‘fz(j )|le5;£1 )70§z,]§7,

k,i=0

(2)

where B,(j’b), 0 < k,l <17, is the change rate corresponding
to DCT mode k,1 in (a,b)-th DCT 8 x 8 block, gx; is the
JPEG luminance quantization step, and

k(2:+1 (27 +1
i(f’l) = wzwl cos & (1Z6+ ) cos = ( f6+ ), (3)

wy = 1/\/§ and w, = 1 for £ > 0, are the coefficients
of the DCT. The computation of the matrix t is a mere
preprocessing of the change rates and can be done outside
of the network. The bound t enters the selection-channel
branch in the first layer as shown in Figure 8. Finally, the
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Figure 6. ROC curves of SRNet for J-UNIWARD at 0.2 and 0.4 bpp
for quality factors 75 and 95 together with two detection performance
measures: Ppy for Pp = 0.5 and 0.3 for the low-complexity linear
classifier with the SCA-GFR feature set.
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Figure 7. Detection error Pg for J-XuNet, H-Net, and SRNet for
J-UNIWARD QF 75 on ImageNet.

lth feature map, [ = 1,...,64, outputted by the first layer

is thus
ReLUWW % x) + /WD x ¢, (4)

where x is the decompressed JPEG image without round-
ing to integers. The square root non-linearity is there to

Table IV
EFFECT OF INTRODUCING THE SELECTION CHANNEL INTO SRNET
(SPATIAL DOMAIN).

Detector 0.1 0.2 0.3 0.4 0.5
SCA-YeNet .3220 2224 1502 1281 .1000
S-UNI SRNet .3104 .2090 1432 .1023 .0705
SCA-SRNet .2969 .1918 .1309 .0935 .0667
SCA-YeNet .3380 .2538 .1949 .1708 .1305
HILL SRNet .3134 .2353 .1830 1414 1151
SCA-SRNet .3014 .2159 .1644 .1290 .1026
SCA-YeNet .2442 1691 1229 .0959 .0906
WOW SRNet .2587 .1676 1197 .0893 .0672
SCA-SRNet .2197 .1401 .098 .0769 .0578

obtain the same quantity as J%QA from [15] (see Eq. (20)
in [15] and the discussion following this equation).

The SCA-SRNet was trained in the exact same fashion
as the original network. The results for spatial-domain
steganography are shown in Table IV. The gain is the
largest for WOW as has always been observed in all prior
art on SCA steganalysis because WOW is “overly content
adaptive”. The gain w.r.t. the original SRNet is around 1%
for payloads 0.4 and 0.5 bpp and then steadily increases
to 4% for the smallest tested payload 0.1 bpp. For HILL
and S-UNIWARD, the gain ranges between 1-2%.

The JPEG results appear in Table V. The absolute gain
is small for UED-JC for quality factor 75 also because
the detection error is already rather small even with the
original SRNet. For more difficult cases, such as higher
quality factors or smaller payloads, however, the SCA
SRNet gains up to 5%, which is rather significant.
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Table V
EFFECT OF INTRODUCING THE SELECTION CHANNEL INTO SRNET (JPEG DOMAIN).

Embedding | QF 75 | QF 95

Method ‘ Detector 0.1 0.2 0.3 0.4 0.5 ‘ 0.1 0.2 0.3 0.4 0.5

J-UNI SRNet .3201 .1889 1153 .0670 .0385 4277 .3440 .2516 1762 1148
SCA-SRNet .2690 .1626 .0921 .0578 .0321 | .3712 .3243 .2346 .1640 .1096

UED-JC SRNet 1311 .0568 .0285 .0188 .0093 .3044 .2028 1261 0877 .0500
SCA-SRNet .1245 .0524 .0265 .0153 .0084 | .2774 .1672 .1068 .0663 .0395

VI. CONCLUSIONS

A novel convolutional neural network architecture called
SRNet is proposed for steganalysis of digital images.
SRNet is the first steganalysis network that is free of
many externally introduced design elements previously
proposed specifically for steganalysis and forensics, such
as constrained kernels, initialization with heuristic kernels,
thresholding, quantization, and awareness of JPEG phase.
Consequently, SRNet can be trained in an end-to-end
fashion from randomly initialized convolutional kernels
and in the same fashion independently of the embedding
domain. The front part of SRNet contains seven residual
layers in which pooling has been disabled to allow the
network to learn relevant “noise residuals” for different
types of embedding changes in both spatial and JPEG
domain. The design of SRNet is validated experimentally
on standard datasets and six steganographic algorithms.
State-of-the-art detection is observed in both domains
with rather significant improvements in the JPEG do-
main. Receiver operating characteristics for selected com-
binations of embedding algorithms and payloads reveal
especially favorable detection performance for very low
false-alarm rates, which is expected to be significant for
practitioners.

While SRNet was intentionally designed to minimize the
use of heuristic design elements specific to steganalysis, it
still benefits from being informed about the probabilistic
impact of embedding in the form of the selection channel,
which points out a space for future improvements. SRNet
is the first steganalysis network that makes use of the
selection channel for JPEG domain steganalysis, a task
that was achieved by adding a bound on L; embedding
distortion to the feature maps outputted by the first layer
to reinforce the output of neurons that are most affected
by embedding.

This paper opens up a direction in steganalysis that
we plan to further pursue in the future. Since steganal-
ysis detectors by definition detect inconsistencies in the
noise patterns of images, they often find applications in
forensics, such as for establishing the processing history of
images or detecting inconsistencies within a single image
to identify locally manipulated regions.

Large advancements in steganalysis need to be followed
by revisiting the inner workings of steganographic methods
because they are often designed from feedback provided
by detectors. A lucrative possibility that has already
received attention from researchers [55] is to let two com-
peting networks design the embedding algorithm within

the generative-adversarial network (GAN) [24] setup that
essentially mimics the game played by the steganographer
and the steganalyst. Novel steganalysis architectures, such
as the SRNet, will undoubtedly find their place to further
advance this direction.

All code used to produce the results in this paper,
including the network configuration files and other sup-
porting code is available from http://dde.binghamton.
edu/download/.
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