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Abstract—The FLD ensemble classifier is a widely used ma-
chine learning tool for steganalysis of digital media due to its
efficiency when working with high dimensional feature sets. This
paper explains how this classifier can be formulated within the
framework of optimal detection by using an accurate statistical
model of base learners’ projections and the hypothesis testing
theory. A substantial advantage of this formulation is the ability
to theoretically establish the test properties, including the proba-
bility of false alarm and the test power, and the flexibility to use
other criteria of optimality than the conventional total probability
of error. Numerical results on real images show the sharpness
of the theoretically established results and the relevance of the
proposed methodology.

Index Terms—Hypothesis testing theory, information hiding,
optimal detection, multi-class classification, ensemble classifier.

I. INTRODUCTION

The objective of steganography is to hide a secret message
within an innocuous looking cover object, such as a digital
image, obtaining thus a stego object that can be sent overtly
through an insecure channel. The effort focused on detecting
the presence of the hidden message is called steganalysis.
Both fields have experienced a rapid development during the
previous two decades, see, e.g., [1]. Steganalysis detectors can
be built by adopting a statistical model of cover objects [3]–
[6] and determining the optimal detection statistic (as referred
to in [2]) with respect to a given performance criterion. Alter-
natively, the detector can be constructed by means of machine
learning when representing the cover objects using a suitably
chosen feature vector. The FLD1 ensemble classifier [9] has
recently become quite popular among researchers on steganog-
raphy due to its ability to provide accurate detection and
very fast training times for large training data sets and high
dimensional feature spaces, which are typically required to
detect modern steganographic methods.

For a given cover source, machine learning based steganal-
ysis methods are typically much more powerful than opti-
mal detectors designed from simple models. The theoretical
statistical properties of such steganalyzers, however, remain
unknown. For example, the false alarm and correct detection
probabilities are evaluated empirically on a large set of digital
images. While the optimal model-based detectors perform

1FLD stands for Fisher Linear Discriminant.

worse in practice, they offer undisputable advantages, such
as the ability to guarantee a prescribed false alarm probability
and an explicit expression for the detection power.

In the present paper, we leverage the advantages of both
approaches by casting the ensemble classifier as an optimal
detector derived from an accurate statistical model of the base
learner’s projections. The theory of hypothesis testing allows
us to establish the statistical properties of the detector for a
chosen performance criterion, such as computing the highest
power one can expect from the ensemble for a prescribed false
alarm probability. The proposed methodology is in principle
applicable to any ensemble classifier based on linear base
learners built on randomly sampled subspaces of the feature
space. Numerical simulations as well as experiments on real
imagery show the sharpness of the theoretical results and the
relevance of the proposed methodology for practical applica-
tions.

The paper is organized as follows. Section II provides a
brief description of the FLD ensemble classifier. Section III
presents the proposed statistical model used in this paper,
states the steganalysis problem within the framework of hy-
pothesis testing, and presents the optimal Likelihood Ratio
Test (LRT). The statistical properties of the proposed optimal
LRT are also analytically established. Numerical results on a
large image database for steganographic methods embedding
in both spatial and JPEG domains are presented in Section IV.
Finally, Section V summarizes the present work and concludes
the paper.

II. FLD ENSEMBLE CLASSIFIERS (BACKGROUND)

We use the following notational conventions in this paper.
Matrices will be represented with capital bold letters X,
vectors are denoted with lower case bold letters x, scalars with
lower case letters x, and sets and probability distributions with
calligraphic capital letters X .

Modern steganographic methods typically require a high
dimensional feature representation of images for accurate de-
tection. The FLD ensemble classifier was originally proposed
as an alternative to support vector machines as a scalable
machine learning tool that can be efficiently used to build
accurate detectors in high dimensional feature spaces and large
training data sets. However, the theoretical performance of the



ensemble remains unstudied. The present paper focuses on the
ensemble classifier as originally proposed in [7] for the BOSS
competition [8] and later developed in [9].

Since the FLD is a well-known tool, it is only briefly
described in this section. The reader is referred to [10] for
a more detailed presentation. Let f ∈ Rd be a (column) vector
of d features extracted from one image. Let the training sets of
cover and stego image features be matrices of size d×N trn de-
noted Ctrn = (ctrn

1 , . . . , ctrn
Ntrn) and Strn = (strn

1 , . . . , strn
Ntrn).

The FLD assumes that among these two classes, the features
are i.i.d. with means µc and µs, of size d× 1, and covariance
matrices Σc and Σs of size d× d. Among all linear decision
rules defined by:

C :

{
H0 if wTf − b < 0

H1 if wTf − b > 0,
(1)

where f is a feature vector to be classified and b is a threshold,
the FLD finds the weighting vector w ∈ Rd that maximizes
the following Fisher separability criterion:

wT(µc − µs)(µc − µs)
Tw

wT(Σc + Σs)w
.

Few calculations show that maximizing the Fisher criterion
from the training data, Ctrn and Strn, leads to the following
weighting vector w:

w =
(
Σ̂c + Σ̂s

)−1

(µ̂c − µ̂s) (2)

with µ̂c =
1

Ntrn

Ntrn∑
n=1

ctrn
n , µ̂s =

1

Ntrn

Ntrn∑
n=1

strn
n ,

Σ̂c =
1

Ntrn − 1

Ntrn∑
n=1

(ctrn
n − µ̂c)(c

trnn − µ̂c)
T ,

and Σ̂s =
1

Ntrn − 1

Ntrn∑
n=1

(strnn − µ̂s)(s
trnn − µ̂s)

T.

In principle, the FLD ensemble is a random forest of L base
learners implemented as FLDs trained on uniformly randomly
selected dsub-dimensional subsets F1, . . . ,FL of the feature
space. The efficiency of the FLD ensemble classifier comes
from fusing the decisions of L such base learners and choosing
dsub << d, where d is the full feature dimensionality. Let P
be a “sparse” matrix of size L × d whose l-th row contains
zeros for all features not included in Fl while it contains
the weighting vector of the corresponding l-th base learner
in all remaining elements. Denoting with b ∈ RL the vector
of thresholds of all L base learners (1), the vector of L
projections (1) of all base learners can be written as:

v = Pf − b , (3)

where, again, f ∈ Rd is a feature vector to be classified.
In the present paper, the vector v of base learners’ projec-

tions is used within the framework of the hypothesis testing
theory to design optimal detectors. Recall that because each
base learner is trained as a binary classifier, the training

requires features from both the cover and the corresponding
stego images.

In contrast to [9], we determine the optimal values of
dsub and L to match a specified criterion of optimality. In
the original formulation of the ensemble, the FLD thresholds
were set to minimize the total probability of error under
equal Bayesian priors, PE = 1/2 (PMD + PFA), where PMD

and PFA respectively denote the missed detection and false
alarm probability (see the formal definition in Section III-A).
The methodology proposed in the present paper relies on
the Neyman–Pearson criterion of optimality. Hence, during
training each detection threshold b is determined to guarantee a
prescribed false alarm probability and the parameters dsub and
L are chosen as the ones that maximize the power function,
see Eq. (12) and (13) in Section III-B. Note that, as in
the original version of the FLD ensemble [9], the training
set is divided into two subsets, one used for training the
FLD base learners, while the second one is used to evaluate
the performance of the proposed optimal LR test based on
the trained FLD projections. Except when explicitly stated
otherwise, all results presented in this paper are obtained with
dsub and L determined in this manner.

III. OPTIMAL BINARY DETECTOR USING ENSEMBLE
CLASSIFIERS

Let us assume that the vector of base learners’ projection
v, see Eq. (3), follows the distribution Pθ0 under the null
hypothesis H0 (features are extracted from cover images) and
Pθ1 under the alternative hypothesis H1 (features extracted
from stego-images with data hidden with a known relative
payload R and a known embedding method). This constitutes
the ideal scenario for the steganalyser as s/he knows the
probability distributions under both hypotheses, the embedding
method, and the payload R. Accepting for a moment this
ideal setting, steganalysis amounts to choosing between the
two following simple hypotheses:{

H0 : {v ∼ Pθ0} ,
H1 : {v ∼ Pθ1} .

(4)

A statistical test is a mapping δ : RL 7→ {H0;H1}, such
that the hypothesis Hi is accepted if δ(v) = Hi (see [12], [13]
for details). The present paper focuses on the Neyman–Pearson
bi-criteria approach that minimizes the missed-detection prob-
ability for a given false-alarm probability. Hence, let:

Kα0
= {δ : PH0

(δ(v) = H1) ≤ α0} , (5)

be the class of tests with a false-alarm probability upper-
bounded by α0. Here PHi

(A) stands for the probability of
event A under hypothesis Hi, i = {0, 1}.

Among all tests in Kα0
, we need to find a test δ that

maximizes the power function defined by the correct detection
probability:

βδ = PH1
(δ(v) = H1) , (6)

which is equivalent to minimizing the missed-detection prob-
ability α1(δ) = 1− βδ .



When the hypotheses are simple, it follows from the
Neyman–Pearson Lemma [13, Theorem 3.2.1] that the Most
Powerful (MP) test in the class Kα0 (5) is the Likelihood Ratio
(LR) test:

δlr(v) =


H0 if Λlr(v) =

pθ1(v)

pθ0(v)
< τ lr,

H1 if Λlr(v) =
pθ1(v)

pθ0(v)
≥ τ lr,

(7)

where pθ0 and pθ1 denote the joint probability density function
(pdf) associated with distributions Pθ0 and Pθ1 , respectively,
and τ lr is the solution of the equation PH0

(
Λlr(v) ≥ τ lr

)
=

α0 to ensure that the LR test is in the class Kα0
, see Eq. (5).

The choice of the Neyman–Pearson criterion of optimality is
justified by practical considerations. When analyzing a large
number of digital images, the most difficult challenge it to
guarantee a low false-alarm probability.

A. Statistical Model of Ensemble Classifiers

In this paper, it is proposed to model the vector v of base
learners’ projections by a multivariate normal distribution.
Fundamentally, it is hardly possible to formally prove that this
model holds true whatever the features might be. However,
the use of the multivariate normal distribution is supported
by invoking Lindeberg’s central limit theorem (CLT) [13,
Theorem 11.2.5] since the number of features used by each
base learner is usually quite large. Using this statistical model,
one has v ∼ N (µ0,Σ0) under the null hypothesis H0 and
v ∼ N (µ1,Σ1) under the alternative hypothesis H1. Here µi
and Σi represent the expectation and the covariance of base
learners’ projections under hypothesis Hi , i = {0, 1}.

In order to simplify the presentation of the proposed test,
we will transform the base learners’ projections as follows:

ṽ = Σ
−1/2
0 (v − µ0) , (8)

where the matrix Σ
−1/2
0 denotes the symmetric matrix satis-

fying Σ
−1/2
0 Σ

−1/2
0 = Σ−1

0 (note that because the covariance
matrix Σ0 is positive semi-definite Σ

−1/2
0 is uniquely deter-

mined up to the sign). The affine transformation (8) guarantees
that, under the hypothesis H0, the “normalized” base learners’
projections ṽ follow a multivariate normal distribution with
zero mean and identity covariance matrix: ṽ ∼ N (0, IL) with
IL the identity matrix of size L. It is important to note that
the family of multivariate normal distributions N (µ0,Σ0) re-
mains invariant under such a transformation, see [13, Chap. 6]
and [12, Chap. 4] for details about the invariance principle in
statistical decision theory.

In this paper, it is further assumed that the covariance
matrices Σ0 and Σ1 are equal. This assumption has been
verified experimentally on images from BOSSbase 1.01 [8],
several different embedding methods and payloads. Though
not always exact, as shown by the numerical results provided
in Section IV, this assumption is accurate enough in practice
especially for small payloads R, which are the focus of the
present paper because it is the most difficult case for detection.
Space limitations precluded us from providing more evidence

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

pmf
of ṽ

Fig. 1: Comparison between the proposed Gaussian model
and the empirical distribution of 10 randomly selected base
learners’ projections, ṽ (8), after normalization.

supporting this assumption. This assumption, which, roughly
speaking, means that embedding “pushes” the expectation of
stego-image features in a constant direction is referred to as
the so-called ”shift hypothesis” as recognized for the first time
in [14].

Let us denote θ1 = Σ
−1/2
0 (µ1 − µ0). The steganalysis

detection problem can be rewritten as a choice between the
two following simple hypotheses:{

H0 : {ṽ ∼ N (0, IL)} ,
H1 : {ṽ ∼ N (θ1, IL)} .

(9)

Figure 1 testifies to the accuracy of the proposed multi-
variate normal model by showing a comparison between the
theoretical normal distribution and the empirical distribution
of 10 randomly selected normalized base learners’ projections
ṽ (8), calculated on one randomly chosen half of images from
BOSSbase 1.01 used for testing. The alternative hypothesis for
this experiment corresponds to data hidden with WOW [15]
at payload R = 0.05 bpp (bits per pixel), the feature vector
is the 686-dimensional SPAM [16], and the optimal ensemble
parameters found were L = 72 and dsub = 512.

B. Optimal LR Test and Study of its Statistical Performance

As discussed in the introduction of Section III, the optimal
statistical test with a guaranteed false-alarm probability and
maximal power function for solving the hypothesis testing
problem (9) is the LR test defined in Equation (7). In our
case, a straightforward calculation shows that the LR between
the tested hypotheses can be simplified as:

Λlr(ṽ) =
θT

1 ṽ

‖θ1‖
, (10)

where, ‖θ1‖2 = θT
1 θ1. From the properties of the multivariate

normal distribution, it immediately follows from the distribu-
tion of ṽ under hypotheses H0 and H1, see Eq. (9), that the
LR Λlr(ṽ), Eq. (10), follows:

Λlr(ṽ) =
θT

1 ṽ

‖θ1‖
∼

{
N (0, 1) underH0

N (‖θ1‖ , 1) underH1,
(11)



From Eq. (11), it is straightforward to establish the sta-
tistical properties of the proposed LR test (7) formulated in
Proposition 1.

Proposition 1. For any fixed false-alarm probability α0 ∈
(0, 1) it follows from (11) that the following decision thresh-
old:

τ lr = Φ−1(1− α0), (12)

where Φ and Φ−1 denote the standard normal cumulative dis-
tribution function (cdf) and its inverse, respectively, guarantees
that PH0

(
Λlr(ṽ) > τ lr

)
= α0.

From the expression for the threshold τ lr, defined in (12), and
the statistical distribution of the LR Λlr(ṽ), Equation (11), the
power function of the most powerful LR test δlr is given by:

βδlr = PH1

(
Λlr(ṽ) > τ lr

)
= 1− Φ

(
τ lr − ‖θ1‖

)
(13)

= 1− Φ
(
Φ−1(1−α0)− ‖θ1‖

)
.

Two essential elements can be deduced from Proposition 1.
First, thanks to the normalization of the base learners’ projec-
tions, see Equation (8), and of the LR Λlr(ṽ) through the
multiplication by ‖θ1‖−1 (10), the decision threshold only
depends on the prescribed false-alarm probability and thus
guarantees a prescribed false alarm-probability. Second, the
power function of the optimal LR test only depends on ‖θ1‖,
the norm of the expectation under H1. The expectation θ1

hence entirely describes the performance of the proposed
statistical test.

Figure 2 shows a comparison between the theoretical Gaus-
sian distribution of the LR Λlr(ṽ) and the empirical distribu-
tion obtained with optimal dsub and L for three different algo-
rithms: WOW [15], S-UNIWARD [17], and HUGO-BD [19]
implemented using the Gibbs construction with bounding
distortion [20]. The empirical data has been obtained on the
testing half of BOSSbase.

Remark 1. It is worth noting that the proposed methodology
fundamentally differs from the majority voting rule originally
proposed for the FLD ensemble for two main reasons. First,
the covariance between the base learners is taken into account.
Second, while the majority voting gives the same weight to
the base learners, the proposed framework allows giving more
importance to the base learners that better distinguish the two
classes.
Besides, it should be acknowledged that the computational
complexity of the proposed methodology is slightly higher
than the one of the original majority voting, though the
difference is negligible. In fact, once the FLD projections v
have been computed, the majority voting merely counts the
base learners’ outputs ’0’ or ’1’. The proposed methodology
additionally requires computing the matrix Σ

−1/2
0 , which can

be be done efficiently using numerical methods for singular
value decomposition (SVD) of matrix Σ0. Since the latter
matrix is of size L×L, the computational complexity is O(L3)
with L typically smaller than 200.
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Fig. 2: Comparison between the theoretical normal distribution
and the empirical distribution of the proposed LR under H0

for one half of BOSSbase 1.01 [8] used for testing. The three
presented examples correspond to three different alternative
hypotheses: WOW, S-UNIWARD, and HUGO-BD, tested with
the SRM features.

IV. NUMERICAL SIMULATIONS AND RESULTS

As in the experiments in the previous section, all numerical
results presented in this paper are obtained on BOSSbase 1.01.
The detection error was always computed by averaging over
10 different random database splits into equally sized subsets.
Three spatial domain steganographic algorithms were used: a
version of HUGO [19] implemented by minimizing the bound-
ing distortion (HUGO-BD) using the Gibbs construction [20],
WOW [15], and S-UNIWARD [17]. The two feature sets used
are the second-order SPAM [16] of dimensionality 686 and the
Spatial Rich Model (SRM) [18] of dimensionality 34, 671.

Three non side-informed JPEG steganographic algorithms
used were nsF5 [21], the Uniform Embedding Distortion
(UED) [22], and J-UNIWARD [17]. Three side-informed algo-
rithms were also used: the Perturbed Quantization (PQ) [21],
the side-informed version of Entropy-Based Steganography
(SI-EBS) [23], and SI-UNIWARD [17]. Four different feature
sets were used for steganalysis of JPEGs: the Cartesian-
calibrated JPEG Rich Model (CC-JRM) [24] with 22, 510 fea-
tures, the compact version of JRM referred to as CF? [9], with
7, 850 features, the spatial rich model with one quantization
(SRMQ1) [18] of dimensionality 12, 753, and the union of
features from SRMQ1 and CC-JRM, referred to as JSRM [24]
whose dimensionality is 35, 263.

Classifier Ensemble, majority voting Optimal LR test
(EC-MV) (Proposed methodology)

parameter dsub L dsub L
WOW 2780 95 1550 63
S-UNIWARD 2480 85 1380 61
HUGO-BD 2620 89 1230 75

TABLE I: Comparison between the optimal values of param-
eters dsub and L found for the original EC-MV classifier and
the proposed optimal LR test, average over 10 random splits,
with feature sets shown in Figure 3 at payload R = 0.2.
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LRT in terms of PE for HUGO-BD, SRM feature
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Fig. 3: Comparison between the proposed LR test and the majority vote decision rule for spatial domain steganalysis.

While the main goal of the present paper is to analyti-
cally establish the statistical properties of ensemble classifiers
within the proposed framework of hypothesis testing, it is
also crucial to ensure that the performance of the proposed
optimal LR test is comparable to the one obtained with
the original ensemble classifier with majority voting (EC-
MV) as originally proposed in [9]. To this end, the results
presented in Figure 3 show a comparison between the EC-
MV and the proposed optimal LR test for the SRM feature
set and different embedding schemes, WOW in Figure 3a, S-
UNIWARD in Figure 3b, and HUGO-BD in Figure 3c. These
results were obtained by searching for the optimal parameters
dsub and L for each detector. To compare the values of optimal
parameters, in Table I we report the averages over 10 database
splits for all three embedding algorithms of Figure 3 at payload
R = 0.2.

Even though Figure 3 shows that the proposed optimal LR
test achieves the same performance as the EC-MV, it is not
apparent that these two detectors do behave differently with
respect to the parameters dsub and L. Figure 4 shows this
difference by presenting the performance of both detectors
measured as the total probability of error PE as a function of
L for a few fixed values of dsub. The proposed optimal LR test
performs much better for small values of L or for small values
of dsub. For large values of L and dsub the performance of
both detectors becomes almost identical. The results presented
in Figure 4 were obtained with the CC-JRM feature set and
J-UNIWARD at payload R = 0.4 bpnzAC (bits per non-zero
AC DCT coefficient). Similar trends have been observed for
other feature sets and embedding methods. This phenomenon,
together with the difference in the training phase described in
Section II, explain the difference observed in practice between
the optimal values of parameters dsub and L found for the
original EC-MV and the proposed methedology, see Table I.

Finally, one of the main goals of the present paper is to
use a statistical model of base learners’ projections within the
framework of hypothesis testing theory to obtain an analytical
expression of the proposed test statistical properties. Hence, it
is crucial to verify that in practice the theoretically established
results accurately hold for real images. Figure 5 shows a
comparison between the theoretically established false-alarm

probability as a function of the decision threshold, 1−Φ(τ lr) =
α0, see Equation (12), and the empirically measured false-
alarm probability from the testing set. For brevity, only the
results obtained from J-UNIWARD with payload R = 0.4
bpnzAC using the JSRM feature set are shown. Similar trends
can be found for other embedding methods and feature sets.

The results presented in Figure 5 clearly demonstrate that it
is feasible in practice to accurately guarantee even low values
of false-alarm probability (typically below α0 = 10−2). We
note, however, that a large number of base learners’ projections
and a high value of dsub make the theoretical results slightly
differ from the empirical ones. Note that in practice the optimal
values of the parameters dsub and L are smaller than the
highest values shown in Figure 5, see Table I; especially
the value of L which has the greatest influence on accuracy
of results. Those settings have been intentionally chosen to
emphasize the limits of the proposed methodology and for
readability of Figure 5.
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Fig. 4: Comparison between the performance, measured by
PE , of the proposed optimal LRT and the EC-MV detection
as a function of L for a few selected values of dsub. The
feature set used is CC-JRM and the alternative hypothesis is
J-UNIWARD with payload R = 0.4 bpnzAC.
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Fig. 5: Comparison between the theoretically established and
the empirical probability of false alarm as a function of the
decision threshold τ .

V. CONCLUSION

This paper proposes a statistical model of base learners’
projections in an ensemble classifier, which allows designing
an optimal detector with known statistical properties. The main
assumptions adopted in this paper are that the base learners’
projections follow a multivariate normal distribution and that
the covariance matrix remains constant, which is reasonable at
least for small payloads. This statistical model is used within
the framework of hypothesis testing theory to establish the
statistical properties of the optimal LR test. Numerical ex-
periments confirmed the validity of the proposed assumptions
that guarantee the accurateness of the theoretically established
results.
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