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Abstract
In this article, we study the properties of quantitative
steganography detectors (estimators of the payload size)
for content-adaptive steganography. In contrast to non-
adaptive embedding, the estimator’s bias as well as vari-
ance strongly depend on the true payload size. Initially,
and depending on the image content, the estimator may not
react to embedding. With increased payload size, it starts
responding as the embedding changes begin to “spill” into
regions where their detection is more reliable. We quantify
this behavior with the concepts of reactive and estimable
payloads. To better understand how the payload estimate
and its bias depend on image content, we study a maxi-
mum likelihood estimator derived for the MiPOD model of
the cover image. This model correctly predicts trends ob-
served in outputs of a state-of-the-art deep learning payload
regressor. Moreover, we use the model to demonstrate that
the cover bias can be caused by a small number of “outlier”
pixels in the cover image. This is also confirmed for the
deep learning regressor on a dataset of artificial images via
attribution maps.

Introduction
The main objective of steganalysis is to detect the

use of steganography. This requires algorithms that can
identify statistical anomalies introduced by steganographic
algorithms. Quantitative steganalysis is a term used for
detectors designed to estimate the length of the embed-
ded message. The first detectors of this type were de-
signed for least significant bit replacement (LSBR). The
RS steganalysis [14] laid the ground for a direction called
structural steganalysis further developed by Dumitrescu et
al. [12, 11] and Ker [19, 20]. A different class of quanti-
tative attacks on LSBR is the Weighted Stego-image at-
tack [13, 23, 22, 3], which was later (re)derived as a like-
lihood ratio test [40] whose expectation is the embedding
change rate. Structural steganalysis of LSBR in JPEG
images employing a zero message hypothesis [39], embed-
ding invariants, and the maximum likelihood estimation
was introduced in [24, 31]. Approaching quantitative ste-
ganalysis with machine learning by training detectors as
payload regressors (e. g., support vector regressors) on ste-
ganalysis “features” [27] allowed constructing quantitative
detectors in a fully automatized fashion for all embedding
schemes in both the spatial and JPEG domain. By mak-
ing the features “aware of parity”, further advancements
in quantitative steganalysis of LSBR became possible [16].
With high-dimensional “rich” models [15] data-driven re-

gressors became even more accurate [25, 32, 9]. Today,
state-of-the-art quantitative detectors are built with deep
convolutional neural networks (CNNs) trained as payload
regressors [29, 8].

The first rigorous analysis of the error of quantita-
tive steganalyzers appeared in [4]. The authors presented
evidence that the estimation error consists of two compo-
nents – the highly non-Gaussian between-image error or
cover bias and the Gaussian within-image error due to the
randomness in embedding (pixel visitation). The right tail
of the distribution of the between-image error was exper-
imentally shown to be well modeled with the Student’s
t-distribution, which has power tails that affect the false-
alarm rate should the quantitative steganalyzer be used
as a binary detector of steganography. The statistical dis-
tribution of the between-image error was derived by Ker
for LSB replacement and least squares quantitative ste-
ganalysis [21]. To the best knowledge of the authors, the
error of data-driven quantitative steganalyzers for content-
adaptive steganography has not been studied before.

After defining our notation and acronyms, in Section
“Detector response curves” we introduce the key concept
studied in this paper – the detector response curve defined
as the detector’s expected soft output as a function of the
embedded message length. We also introduce two novel
critical payloads for evaluating quantitative steganalyzers,
which are the reactive and estimable payloads. In Section
“Quantitative steganalyzers” we describe the quantitative
steganalyzer studied in this paper, which is a novel end-
to-end trained deep learning regressor; its performance is
briefly evaluated against state of the art. To obtain in-
sight into how the response curves of the data-driven re-
gressor depend on the embedded message length and im-
age content, in Section “MLE of payload size” we study
the response curves of a maximum likelihood estimator of
payload size derived for the MiPOD model of the cover
image. In Section “Explaining trends ...” a rather tight
match is observed between the outputs of this MLE and a
data-driven regressor, which helps us understand the ob-
served trends and behavior of the data-driven regressor.
Moreover, in Section “Analyzing cover bias” we use our
cover model and the MLE to show that the estimator’s
bias on covers is often caused by a small number of “out-
lier pixels” in the cover image. This inspired us to verify
the existence of such “influential pixels” for the data-driven
detector via attribution maps. To this end, we work with
a deep learning detector trained on an artificial version of
our dataset containing natural-looking images that follow
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To prepare the stego images for training the DLR, each
image from BB TRN and VAL set was embedded 10 times
with payloads uniformly and randomly pre-sampled from
the range [0.01, min(αmax,1.5)] bpp, where αmax is the
maximal payload for each image. During training, the net-
work is exposed to all 10 payloads every epoch. Images
from the testing set were embedded 50 times from the same
range.

Bucket estimator
The Bucket Estimator was built as described in [8]

with a few differences, which we point out. First, the
TRN set is randomly split into two disjoint subsets, which
we call TRN1 and TRN2, each with 14,000 and 3,000
images. Then, on TRN1 we trained 15 binary detec-
tors (SRNets) to distinguish the class of cover images
and stego images embedded with a fixed relative payload
α ∈ A = {0.1,0.2, . . . ,1.5} bpp. Note that we use the VAL
set for evaluating binary detectors. The SRNet detectors
are used as “feature extractors” that map an input im-
age to a 512-dimensional vector – the output of the last
convolutional layer before the IP layer. The actual bucket
estimator was trained as a multi-layered perceptron (MLP)
on the union of these features on TRN2. For MLP train-
ing, each image from TRN2 is embedded 10 times in the
same way as for DLR. Since the concatenated features have
a dimensionality of d = 512×15 = 7,680, to keep the num-
ber of parameters within the memory of our GPUs (and in
contrast to [8]), we used a MLP with three hidden layers
with 7,680, 960, and 120 nodes. The first two hidden lay-
ers are also followed by batch normalization and the ReLU
activation function. The weight decay parameter was set
to 1 to prevent the MLP from overfitting.

All deep learning detectors were initialized with JIN-
SRNet [7], which is the SRNet [5] pre-trained on Im-
ageNet [10] and its stego version embedded with J-
UNIWARD [17] with payloads uniformly randomly se-
lected from the interval [0.4, 0.6] bpnzac. The networks
were then refined for a given steganalysis task via transfer
learning as described in [7] with cross-entropy loss for bi-
nary steganalysis and L2 loss for quantitative steganalysis
(payload regression or DLR).

Experimental benchmark
We now benchmark the performance of the DLR

against the Bucket Estimator on S-UNIWARD. For this
purpose, we use the standard mean square error (MSE)
and mean absolute error (MAE) across all images in the
TST set as well as the newly introduced critical payloads.
Figure 2 shows the scatter plots of the estimated payload
vs. true payload for the Bucket Estimator (top) and for
DLR (bottom). Table 1 shows the MSE, MAE, and av-
erage reactive and estimable payloads across the TST set.
The DLR outperforms the Bucket Estimator with all four
performance measures. We experimented with a range of
different choices for the thresholds τrea and τest and even-
tually settled on τrea = 0.05 and τest = 0.03, which seemed
to visually capture the concept of these two critical pay-
loads the best.

Regressor MSE MAE αrea(0.05) αest(0.03)

Bucket 0.0150 0.0814 0.216 1.115

DLR 0.0144 0.0741 0.191 0.754

Table 1. Comparison between the Bucket Estimator and DLR

through the MSE and MAE, and the reactive and estimable pay-

loads averaged over the TST set for S-UNIWARD. Note that a

smaller reactive (estimable) payload implies better performance.

Additionally, in Figure 3 we plot the histogram of reac-
tive and estimable payloads for the DLR and for the Bucket
Estimator. In agreement with the evidence provided by the
conventional performance measures, the MSE and MAE
(Table 1), the histograms confirm that DLR’s performance
improves upon the Bucket Estimator. We notice that both
estimators are rather close in terms of starting to respond
to embedding, α̂rea, but the DLR exhibits a linear RC with
slope 1 much sooner than the Bucket Estimator.

MLE of payload size
To better understand the trends observed in RCs

across images, we use the MiPOD image model [28] and
study the RCs of a MLE of the payload size within
this model. In MiPOD, cover pixels are modeled as
independent Gaussian variables, c ∼ N (µ,Σ) with Σ =
diag(σ2

1 , . . . ,σ2
n). The mean µ is set to zero in MiPOD

because it has no effect on the stego algorithm as the em-
bedding “costs” (Fisher information) only depend on the
variance. The variance estimator was designed to min-
imize MiPOD’s empirical detectability of steganography
(see Section V in [28]). In this section, the mean has no
effect on the MLE because it is known, hence we also make
the assumption that µ = 0. Finally, we wish to emphasize
that the MLE described here is for a general ternary em-
bedding algorithm and not necessarily for MiPOD itself.
MiPOD’s variance estimator is merely used for estimating
the cover image model.

Given a steganographic scheme with symmetric costs
ρi computed from the cover image c and ignoring the effect
of quantization, the stego image pixels y = {yi} follow a
Gaussian mixture

yi ∼ βiN (−1,σ
2
i )+βiN (1,σ

2
i )+(1−2βi)N (0,σ

2
i ), (8)

where the pixel change rates βi (2) satisfy the payload
constraint (3).

Note that the stego image y is the result of a dou-
bly stochastic process. First, the cover x is sampled from
N (0,Σ) and then modified to y = x + η, where η is the
stego signal (1). With this model, one can estimate the
message length using the maximum likelihood estimator

α̂
(MLE)(x,y,α) = argmax

α

n∑

i=1

logf(y|α), (9)

where f(y|α) is the likelihood (8) of observing the stego
image residuals (8) when payload of length α is embedded
in x. In practice, for better numerical stability we first
estimate the Lagrange multiplier λ using MLE, which is
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deleting top k pixels with the largest attribution. In con-
trast, deleting k randomly chosen pixels has no effect on
the cover bias. We verified that pixels with the largest
attribution indeed have large outlierness oi (15) by select-
ing 20 pixels with the largest attribution from each image
(20×388 pixels in total) and plotting the histogram of their
outlierness oi. Figure 8 middle shows that this histogram
has a much thicker right tail when compared to oi of 20
randomly selected pixels from each image.

Next, we studied whether a large positive cover bias
can be introduced by inserting 4σ outliers at pixels with
large oi(4σi) (the insertion experiment). To this end, we se-
lected 288 images from BB1/2 with cover bias in the inter-
val [0.01,0.05]. Figure 8 right shows the average cover bias
after replacing k pixels with the largest oi(4σi) when aver-
aged over all 288 images. We observe that the DLR starts
exhibiting a positive bias, which increases when adding
more outlier pixels. In contrast, the cover bias is virtu-
ally unchanged when the pixels were chosen randomly.

Note that in both experiments, it takes more pixels
to alter DLR’s output that for the MLE. This is to be
anticipated since the DLR is a data-driven estimator and
thus is not completely aware of the source model unlike the
MLE. To confirm the effect of influential pixels as identified
by attribution and outlierness oi, we verified that altering
DLR’s output is not easily achieved by modifying randomly
selected pixels.

Conclusions
Quantitative steganography detectors output an es-

timate of the embedded secret message length. Origi-
nally conceived of and analyzed for detection of LSB re-
placement, quantitative detectors can be constructed for
any embedding scheme using machine learning. The esti-
mation error of such detectors for content-adaptive stego
schemes exhibits different properties than for non-adaptive
steganography. The estimator bias strongly depends on the
payload and the distribution of outputs no longer satisfies
the shift hypothesis. This is because content-adaptive em-
bedding preferably modifies pixels where the embedding
changes are the hardest to detect. The detector output as
a function of payload for a fixed cover image thus naturally
strongly depends on content.

In this paper, we study this dependence both exper-
imentally for a deep learning payload regressor and theo-
retically from a model of the cover image and a maximum
likelihood estimator. The MLE exhibits trends w.r.t. pay-
load that remarkably closely match the trends observed for
payload regressors built with deep learning, which allows
us to better understand the estimator error, and the cover
bias in particular, as a function of true payload. The MLE
reveals that a large positive cover bias is often due to only
a small number of “outlier” cover pixels that the estima-
tor mistakens for evidence of embedding. The same kind of
outlier pixel values affects the deep learning regressor. This
was shown on an artificial dataset by analyzing pixels with
the largest attributions. Similarly, we demonstrated that
an image with a very small cover bias can be perturbed to
exhibit a large cover bias by changing only a small number

of carefully selected pixels. This effect was first established
for the MLE and then also for a deep learning detector.

Additionally, we introduced two new concepts for
benchmarking quantitative detectors, the reactive and es-
timable payloads, which both depend on cover image con-
tent. These quantities join global error measures, such as
MSE and MAE, for comparing quantitative detectors in
practice.

Future work will be directed towards analyzing quan-
titative detectors in the JPEG domain. Moreover, we in-
tend to generalize the concept of influential cover pixels to
binary detectors of steganography.
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