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Random Projections of Residuals for Digital Image
Steganalysis

Vojtěch Holub and Jessica Fridrich, Member, IEEE

Abstract—The traditional way to represent digital
images for feature based steganalysis is to compute a
noise residual from the image using a pixel predictor
and then form the feature as a sample joint proba-
bility distribution of neighboring quantized residual
samples – the so-called co-occurrence matrix. In this
paper, we propose an alternative statistical represen-
tation – instead of forming the co-occurrence matrix,
we project neighboring residual samples onto a set
of random vectors and take the first-order statistic
(histogram) of the projections as the feature. When
multiple residuals are used, this representation is called
the projection spatial rich model (PSRM). On selected
modern steganographic algorithms embedding in the
spatial, JPEG, and side-informed JPEG domains, we
demonstrate that the PSRM can achieve a more ac-
curate detection as well as a substantially improved
performance vs. dimensionality trade-off than state-of-
the-art feature sets.

I. Introduction
Steganalysis is the art of revealing the presence of secret

messages embedded in objects. We focus on the case when
the original (cover) object is a digital image and the
steganographer hides the message by slightly modifying
the numerical representation of the cover – either the pixel
colors or the values of transform coefficients.

In general, a steganalysis detector can be built either
using the tools of statistical signal detection or by applying
a machine-learning approach. Both approaches have their
strengths as well as limitations, which is the reason why
they are both useful and will likely coexist in the fore-
seeable future. The former approach derives the detector
from a statistical model of the cover source, allowing
one to obtain error bounds on the detector performance.
Normalized detection statistics are also less sensitive to
differences between cover sources. On the other hand, to
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make this approach tractable, the adopted cover model
must usually be sufficiently simple, which limits the de-
tector optimality and the validity of the error bounds to
the chosen cover model. Simple models, however, cannot
capture all the complex relationships among individual
image elements that exist in images of natural scenes
acquired using imaging sensors. Moreover, this approach
has so far been applied only to rather simple embedding
operations, examples of which are the LSB (least signifi-
cant bit) replacement and matching [8], [38], [6], [5], and
may not be easily adapted to complex, content-adaptive
embedding algorithms, such as HUGO [34], WOW [18], or
the schemes based on UNIWARD [19]. This is because at-
tacking these schemes would require working with models
that allow for complex dependencies among neighboring
pixels. However, given the highly non-stationary character
of natural images, estimating such local model parameters
will likely be infeasible.

The latter approach to steganalysis does not need the
underlying cover distribution to build a detector. Instead,
the task of distinguishing cover and stego objects is for-
mulated as a classification problem. First, the image is
represented using a feature vector, which can be viewed as
a heuristic dimensionality reduction. Then, a database of
cover and the corresponding stego images is used to build
the detector using standard machine learning tools. The
principal advantage of this approach is that one can easily
construct detectors for arbitrary embedding algorithms.
Also, for a known cover source, such detectors usually
perform substantially better than detectors derived from
simple cover models. The disadvantage is that the error
bounds can only be established empirically, for which one
needs sufficiently many examples from the cover source.
While such detectors may be inaccurate when analyzing
a single image of unknown origin, steganographic commu-
nication is by nature repetitive and it is not unreasonable
to assume that the steganalyst has many examples from
the cover source and observes the steganographic channel
for a length of time.

In this paper, we assume that the analyst knows the
steganographic algorithm and sufficiently many examples
from the cover source are available. Since the embedding
changes can be viewed as an additive low-amplitude noise
that may be adaptive to the host image content, we
follow a long-established paradigm [39], [33], [11], [16] and
represent the image using a feature computed from the
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image noise component – the so-called noise residual.1
To obtain a more accurate detection of content-adaptive
steganography, various authors have proposed to utilize an
entire family of noise residuals, obtaining thus what is now
called rich image representations [11], [16], [13].

Traditionally, noise residuals were represented using
either sample joint or conditional probability distributions
of adjacent quantized and truncated residual samples (co-
occurrence matrices) [39], [33], [11], [16]. Higher-order co-
occurrences detect steganographic changes better as they
can capture dependencies across multiple pixels. Since the
co-occurrence dimensionality increases exponentially with
its order, the co-occurrence order one can use in practice
is limited by the total number of pixels, and steganalysts
had to quantize and truncate the residual (sometimes
quite harshly) to obtain a reasonably low-dimensional and
statistically significant descriptor for subsequent machine
learning [11], [16], [33].

In this article, we propose an alternative statistical
descriptor for noise residuals. Instead of forming co-
occurrences of neighboring quantized residual samples, we
use the unquantized values and project them on random
directions, which are subsequently quantized and repre-
sented using histograms as steganalytic features. This
brings several advantages over the representation based
on co-occurrences. First, by using large projection neigh-
borhoods one can potentially capture dependencies among
a large number of pixels. Second, by selecting random
neighborhood sizes, the statistical description can be fur-
ther diversified, which improves the detection accuracy.
Third, since more features will be statistically significant
in comparison to high-dimensional co-occurrences where
numerous boundary bins may be underpopulated, projec-
tions enjoy a much more favorable feature dimensionality
vs. detection accuracy trade-off. Fourth, a greater design
flexibility is obtained since the size and shape of the projec-
tion neighborhoods, the number of projection vectors, as
well as the histogram bins can be incrementally adjusted
to achieve a desired trade-off between detection accuracy
and feature dimensionality. Finally, the novel feature rep-
resentation appears to be universally effective for detection
of modern steganographic schemes embedding in both the
spatial and JPEG domains.

This work has evolved from an initial study by the same
authors [20]. Among the many differences and improve-
ments between this prior art and the current manuscript,
we name the following. The hand design of the projec-
tion neighborhoods and projection vectors was replaced
with a fully randomized construction driven by a single
parameter. We also investigate the effect of the quantizer
design (bin width and the number of quantizer centroids)
for detection in both the spatial and JPEG domains.
Finally, the experiments were substantially enlarged and
cover three different embedding domains for two cover
sources and state-of-the-art steganographic methods in

1The idea to compute features from noise residuals has already
appeared in the early works on feature based steganalysis [1], [7],
[31], [15].

each domain.
In the next section, we introduce the common core of

all experiments in this paper and a list of tested stegano-
graphic methods. Section III contains a brief description of
the SRM (spatial rich model) [11] and the elements from
which it is built. The same residuals are used to construct
the PSRM (projection spatial rich model) proposed in
Section IV. This section also contains several investiga-
tive experiments used to set the PSRM parameters. In
Section V, we compare the detection performance of the
proposed PSRM with the current state-of-the-art feature
descriptors – the SRM and the JRM (JPEG rich model)
proposed in [28]. The comparison is carried out on selected
modern (and currently most secure) steganographic algo-
rithms operating in the spatial, JPEG, and side-informed
JPEG domains. The paper is concluded in Section VI.

High-dimensional arrays, matrices, and vectors will be
typeset in boldface and their individual elements with the
corresponding lower-case letters in italics. The calligraphic
font is reserved for sets. For a random variable X, its
expected value is denoted as E[X]. The symbols X =
(xij) ∈ X = In1×n2 and Y = (yij) ∈ X , I = {0, . . . , 255},
will always represent pixel values of 8-bit grayscale cover
and stego images with n = n1 × n2 pixels. For a set of
L centroids, Q = {q1, . . . , qL}, q1 ≤ . . . ≤ qL, a scalar
quantizer is defined as QQ(x) , arg minq∈Q |x− q|.

II. Preliminaries
A. Common core of all experiments

In this paper, we carry out experiments on two image
sources. The first is the standardized database called
BOSSbase 1.01 [2]. This source contains 10, 000 images
acquired by seven digital cameras in RAW format (CR2
or DNG) and subsequently processed by converting to 8-
bit grayscale, resizing, and cropping to the size of 512×512
pixels. The script for this processing is also available from
the BOSS competition web site.

The second image source was obtained using the Leica
M9 camera equipped with an 18-megapixel full-frame
sensor. A total of 3,000 images were acquired in the
raw DNG format, demosaicked using UFRaw (with the
same settings as the script used for creating BOSSbase),
converted to 8-bit grayscale, and finally central-cropped to
the size of 512× 512. This second source is very different
from BOSSbase 1.01 and was intentionally included as
an example of imagery that has not been subjected to
resizing, which has been shown to have a substantial effect
on the detectability of embedding changes in the spatial
domain [29]. By adjusting the image size of Leica images to
that of the BOSSbase, we removed the effect of the square
root law [25] on steganalysis, allowing interpretations of
experiments on both sources in Section V.

For JPEG experiments, the databases were JPEG-
compressed with standard quantization tables correspond-
ing to quality factors 75 and 95. The JPEG format allows
several different implementations of the DCT transform,
DCT(.). The implementation may especially impact the
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security of side-informed JPEG steganography, in which
the sender has the uncompressed (precover2) image and
hides data while subjecting it to JPEG compression [10],
[26], [35], [17], [19]. In this paper, we work with the DCT(.)
implemented as ’dct2’ in Matlab when feeding in pixels
represented as ’double’. To obtain an actual JPEG image
from a two-dimensional array of quantized coefficients X
(cover) or Y (stego), we first create an (arbitrary) JPEG
image of the same dimensions n1 × n2 using Matlab’s
’imwrite’ with the same quality factor, read its JPEG
structure using Sallee’s Matlab JPEG Toolbox3 and then
merely replace the array of quantized coefficients in this
structure with X and Y to obtain the cover and stego
images, respectively.

The classifiers we use are all instances of the en-
semble proposed in [30] and available from http://dde.
binghamton.edu/download/ensemble. They employ Fisher
linear discriminants as base learners trained on random
subspaces of the feature space. The ensemble is run in
its default form in which the random subspace dimen-
sionality and the number of base learners is determined
automatically as described in the original publication [30].
We report the detection performance using the out-of-bag
(OOB) estimate of the testing error. This error, which we
denote EOOB, is known to be an unbiased estimate of the
testing error on unseen data [4]. It is computed by training
on a subset of the database obtained by bootstrapping
and testing on the remaining part that was unused for
training. The unique images forming the training set span
approximately two thirds of the database, while the testing
error is estimated from the remaining unused third. We
train a separate classifier for each combination of image
source, embedding method, and payload. Even though
the knowledge of the payload does not correspond to
Kerckhoffs’ principle, this testing is customary in research
articles on steganography and steganalysis to inform the
reader about how the security changes with payload.

B. Steganographic algorithms
To evaluate the performance of the proposed projection

rich model, we compare it against state-of-the-art rich fea-
ture sets on steganographic algorithms that represent the
most secure algorithms for three embedding domains. All
steganographic algorithms considered in this paper embed
a given payload while minimizing a distortion function.
We use embedding simulators that simulate embedding
changes on the rate–distortion bound [9]. A practical data
hiding algorithm would be embedding using a slightly
increased distortion, e.g., using the syndrome-trellis codes
(STCs) [9].

In the spatial domain, we use HUGO [34], the first
content-adaptive algorithm that incorporated the STCs,
WOW with its wavelet-based distortion [18], and S-
UNIWARD [19], which can be thought of as a highly
adaptive and simplified modification of WOW.

2The concept of precover is due to Ker [22].
3http://dde.binghamton.edu/download/jpeg_toolbox.zip

JPEG domain algorithms include the nsF5 [14], a
modification of the original F5 algorithm [37], the Uni-
form Embedding Distortion (UED) algorithm [17], and J-
UNIWARD [19].

We also include a comparison on steganographic al-
gorithms embedding in the JPEG domain with “side-
information” in the form of the uncompressed cover image.
Such algorithms utilize the rounding errors of DCT coef-
ficients to achieve a better security. We study two state-
of-the-art side-informed algorithms – the Normalized Per-
turbed Quantization (NPQ) [21] and SI-UNIWARD [19].
The NPQ was chosen over older versions of the Per-
turbed Quantization algorithm [14] based on the superi-
ority of NPQ over PQ reported in [21]. Both algorithms
are modified so they avoid embedding in DCT modes
(0, 0),(0, 4),(4, 0) and (4, 4) when the unquantized value is
equal to k + 0.5, k ∈ Z. The reason for this modification
can also be found in [19].

III. Spatial rich model
The statistical descriptor (feature vector) proposed in

this article uses the same family of noise residuals as
the SRM [11]. However, their statistical description in
the proposed PSRM is different – instead of forming co-
occurrences of quantized residuals, we project the un-
quantized residuals onto random directions and use the
first-order statistics of the projections as features (see
Section IV for details). To make this paper self-contained
and to better contrast the differences between SRM and
the proposed PSRM, we briefly describe the SRM residual
family as well as the SRM feature vector while focusing on
the conceptual part without going into details, which can
be found in the original publication.

A. Noise residuals
Each residual is tied to a pixel predictor, x̂ij , which is

a mapping that assigns an estimate of the cover pixel xij

as a function of pixel values from its immediate neighbor-
hood, N (Y, i, j), in the stego image Y. The noise residual
corresponding to this predictor is a matrix Z ∈ Rn1×n2

with elements

zij = x̂ij(N (Y, i, j))− yij , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. (1)

The SRM residuals are computed using two types of
pixel predictors – linear and non-linear. Each linear predic-
tor is a shift-invariant finite-impulse response linear filter
described by a kernel matrix K:

Z = K ∗Y−Y, (2)

where the symbol ′∗′ denotes the convolution.
For example, the kernel

K3 = 1
4


−1 2 −1

2 0 2
−1 2 −1

 , (3)

http://dde.binghamton.edu/download/ensemble
http://dde.binghamton.edu/download/ensemble
http://dde.binghamton.edu/download/jpeg_toolbox.zip
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which was originally proposed in [24] and theoretically
justified in [3], estimates the value of the central pixel from
its local 3× 3 neighborhood. In contrast, the kernel

K′3 = 1
4


−1 2 −1

2 0 2
0 0 0

 , (4)

uses only a portion of the same 3 × 3 neighborhood
and may return a better prediction in the presence of
a horizontal edge going through the central pixel. The
predictor with kernel K3 is non-directional because it
does not prefer pixels from a certain direction (the kernel
matrix is symmetrical). The predictor that utilizes K′3 is
directional as its output depends only on six pixel values
in the upper half of the 3× 3 neighborhood.

There are numerous other linear predictors used in
the SRM. Most are derived by assuming that the image
content locally follows a polynomial model. For example,
the pixel predictors

x̂ij = yi,j+1, (5)
x̂ij = (yi,j−1 + yi,j+1)/2, (6)
x̂ij = (yi,j−1 + 3yi,j+1 − yi,j+2)/3, (7)

are based on the assumption that image content is locally
constant, linear, and quadratic, respectively. Note that
the residuals computed using these three predictors are
all directional as they only utilize horizontally adjacent
neighbors of yij . The vertical form of these residuals that
uses only vertically adjacent pixels is obtained by simply
swapping the subscripts in (5)–(7). In general, the kernel
for the vertical predictor is a transpose of the one for the
horizontal direction.

All non-linear predictors in the SRM are obtained by
taking the minimum (maximum) of the output of two
or more residuals obtained using linear predictors. For
example, given a horizontal residual Z(h) and a vertical
residual Z(v), the non-linear residuals (residuals computed
using a non-linear predictor) are computed as:

z
(min)
ij = min{z(h)

ij , z
(v)
ij }, ∀i, j (8)

z
(max)
ij = max{z(h)

ij , z
(v)
ij }, ∀i, j. (9)

B. Quantization
The next step in forming the SRM constitutes quantiz-

ing Z to a set of centroids Q = {−Tq, (−T + 1)q, . . . , T q},
where T > 0 is an integer threshold and q > 0 is a
quantization step:

rij , QQ(zij), ∀i, j. (10)

C. Co-occurrence matrices and submodels
The next step in forming the SRM feature vector in-

volves computing a co-occurrence matrix of Dth order
from D (horizontally and vertically) neighboring values

of the quantized residual rij (10) from the entire im-
age. As argued in the original publication [11], diago-
nally neighboring values are not included due to much
weaker dependencies among residual samples in diagonal
directions. To keep the co-occurrence bins well-populated
and thus statistically significant, the authors of the SRM
used small values for D and T : D = 4, T = 2, and
q ∈ {1, 1.5, 2}. Finally, symmetries of natural images are
leveraged to further marginalize the co-occurrence matrix
to decrease the feature dimension and better populate the
SRM feature vector (see Section II.C of [11]).

Note that non-linear residuals are represented using two
co-occurrence matrices, one for Z(min) and one for Z(max),
while linear residuals require a single co-occurrence ma-
trix. The authors of the SRM combined the co-occurrences
of two linear residuals into one “submodel” to give them
after symmetrization approximately the same dimension-
ality as the union of co-occurrences from min / max non-
linear residuals. Figure 3 in [11] illustrates the details of
this procedure. This allowed a fair comparison of detection
performance of individual submodels. The authors also
used a simple forward feature selection on submodels to
improve the dimensionality vs. detection accuracy trade-
off. There are a total of 39 submodels in the SRM.

The predictors and residuals used in the proposed
PSRM are the same as those used in the SRM – a complete
list of predictors appears in Figure 2 of [11]. Everywhere in
this article, we understand by SRM the full version of this
model with all three quantization steps (its dimensionality
is 34, 671). A scaled-down version of the SRM when only
one quantization step, q, is used will be abbreviated as
SRMQq. Its dimensionality is 12, 753.

IV. Projection spatial rich model

In this section, we provide the reasoning behind the
proposed projection spatial rich model and describe it in
detail, including the experiments used to set the PSRM
parameters.

A. Motivation
The residual is a realization of a two-dimensional ran-

dom field whose statistical properties are closely tied to
the image content (e.g., larger values occur near edges and
in textures while smaller values are typical for smooth
regions). Steganographic embedding changes modify the
statistical properties of this random field. The stegana-
lyst’s task is to compute a test statistic from this random
field that would detect the embedding changes as reliably
as possible.

Traditionally, and as described in the previous section,
the random field is first quantized and then characterized
using a joint probability mass function (co-occurrence
matrix) of D neighboring residual samples. The prob-
lem with this approach is the exponential growth of
the co-occurrence size with its order D. With increasing
D, a rapidly increasing number of co-occurrence bins
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become underpopulated, which worsens the detection–
dimensionality trade-off and makes subsequent machine
learning more expensive and the detection less accurate.
This is because adding features that are essentially random
noise may decrease the ability of the machine learning
tool to learn the correct decision boundary. Also, with a
small value of the truncation threshold T , some potentially
useful information contained in the residual tails is lost,
which limits the detection accuracy of highly adaptive
schemes. Finally, since the co-occurrence dimensionality
is (2T + 1)D, changing the parameters T and D gives the
steganalyst rather limited options to control the feature
dimensionality.

There are several possible avenues one can adopt to
resolve the above issues. It is possible, for example, to over-
come the problem with underpopulated bins by replacing
the uniform scalar quantizer applied to each residual with
a vector quantizer designed in the D-dimensional space
of residuals and optimize w.r.t. the quantizer centroids.
However, as the reference [32] shows, this approach lead
to a rather negligible improvement in detection. A largely
unexplored direction worth investigating involves repre-
senting adjacent residual samples with a high-dimensional
joint distribution and then applying various dimensional-
ity reduction techniques.

The avenue taken in this paper is to utilize dependencies
among residual samples from a much larger neighborhood
than what would be feasible to represent using a co-
occurrence matrix. This way, we potentially use more
information from the residual and thus improve the de-
tection. Let us denote by N (Y, i, j) an arbitrarily shaped
neighborhood of pixel yij with |N | pixels. In the next
section, we will consider rectangular k × l neighborhoods.
Furthermore, we assume that the (unquantized) residual
samples from N (Y, i, j), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, are |N |-
dimensional vectors drawn from a probability distribution
ρ(x), x ∈ R|N |. Since for large |N |, quantizing ρ(x) and
representing it using a co-occurrence matrix would not
make a good test statistic due to heavily underpopulated
bins, we instead project the residual on random vectors
v ∈ R|N |, v 6= 0, and choose the first-order statistic of the
projections as steganalysis features.
While it is certainly possible to use higher-order statis-

tics for a fixed projection vector and neighborhood, in
general, however, it is better to diversify the features by
adding more projection neighborhoods and vectors rather
than a more detailed description for one projection and
neighborhood. See [12], [13], [16] for more details.
Intuitively, when selecting sufficiently many projection

vectors v, we improve our ability to distinguish between
the distributions of cover and stego images. Furthermore,
the random nature of vectors v is an important design
element as it makes the steganalyzer key-dependent, mak-
ing it harder for an adversary to design a steganographic
scheme that evades detection by a specific steganalysis
detector. The projection vectors could be optimized for a
given cover source and stego method to obtain the best
trade-off between feature dimensionality and detection

accuracy. However, our goal is to present a universal
feature vector capable of detecting potentially all stego
schemes in arbitrary cover sources.

B. Residual projection features
In this section, we formally describe the process used

to build the projection spatial rich model. We begin by
introducing several key concepts. A specific instance of
a projection neighborhood is obtained by first selecting
two integers, k, l ≤ s randomly uniformly, where s is a
fixed positive integer. The projection neighborhood is a
matrix Π ∈ Rk×l whose elements, πij , are k ·l independent
realizations of a standard normal random variable N(0, 1)
normalized to a unit Frobenius norm ‖Π‖2 = 1.4 This
way, the vector v obtained by arranging the elements of
Π, e.g., by rows, is selected randomly and uniformly from
the surface of a unit sphere. This choice maximizes the
spread of the projection directions.

To generate another instance of a projection neighbor-
hood, we repeat the process with a different seed for the
random selection of k, l as well as the elements of Π. For
a given instance of the projection neighborhood Π and
residual Z, the projection values P(Π,Z) are obtained by
convolving Z with the projection neighborhood Π:

P(Π,Z) = Z ∗Π. (11)

Similarly to the features of the SRM, we utilize symme-
tries of natural images to endow the statistical descriptor
with more robustness. In particular, we use the fact that
statistical properties of natural images do not change
with direction or mirroring. For non-directional residuals,
such as the one obtained using the kernel (3), we can
enlarge the set P (11) by adding to it projections with
the matrix Π obtained by applying to it one or more fol-
lowing geometrical transformations: horizontal mirroring,
vertical mirroring, rotation by 180 degrees, and transpose,
respectively:

←→Π =

 π12 π11

π22 π21

 , (12)

Π l =

 π21 π22

π11 π12

 , (13)

Π� =

 π22 π21

π12 π11

 , (14)

ΠT =

 π11 π21

π12 π22

 . (15)

By combining these four transformations, one can obtain
a total of eight different projection kernels.

The situation is a little more involved with directional
residuals. The directional symmetry of natural images

4The Frobenius norm of a matrix A ∈ Rk×l is defined as ‖A‖2 =∑k

i=1

∑l

j=1 a
2
ij .
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implies that we can merge the projections of a horizontal
residual with projection kernels Π, ←→Π , Π l, and Π	, and
the projections obtained using their transposed versions
applied to the vertical residual because its kernel is a
transpose of the horizontal kernel.
Since a linear predictor (2) is a high-pass filter, the

residual distribution for natural images will be zero mean
and symmetrical about the y axis. Consequently, the
distribution of the residual projections will also be sym-
metrical with a maximum at zero. Since we will be taking
the first-order statistic (histogram) of the projections as
the feature vector, the distribution symmetry allows us
to work with absolute values of the projections and use
either a finer histogram binning or a higher truncation
threshold T . Denoting the bin width q, we will work with
the following quantizer with T + 1 centroids:

QT,q = {q/2, 3q/2, . . . , (2T + 1)q/2}. (16)

We would like to point out that by working with abso-
lute values of the projections, our features will be unable to
detect a steganographic scheme that preserves the distri-
bution of the absolute values of projections yet one which
violates the histogram symmetry. However, this is really
only a minor issue as the projections are key-dependent
and it would likely be infeasible to build an embedding
scheme with this property for every projection vector and
neighborhood. Moreover, an embedding scheme creating
such an asymmetry would be fundamentally flawed as one
could utilize this symmetry violation to construct a very
accurate targeted quantitative attack. A good example is
the Jsteg algorithm [36].

We now provide a formal description of the features. For
a fixed set of quantizer centroids, QT,q, the histogram of
projections P is obtained using the following formula:

h(l;QT,q,P) =
∑
p∈P

[QQT,q
(|p|) = l], l ∈ QT,q, (17)

where [.] stands for the Iverson bracket defined as [S] = 1
when the statement S is true and 0 otherwise.
Considering the outputs of the residuals involved in

computing a min (max) residual as independent random
variables Z1, Z2, ..., Zr, E[min{Z1, Z2, ..., Zr}] < 0 and
E[max{Z1, Z2, ..., Zr}] > 0. Thus, the distribution of
residuals obtained using the operations min (max) is not
centered at zero and one can no longer work with absolute
values of residuals. Instead, we use the following expanded
set of centroids:

Q(x)
T,q = QT,q ∪ {−QT,q}, (18)

which has double the cardinality of QT,q. Because for any
finite setR ⊂ R, minR = −max{−R}, the distribution of
the projections P(min) of residuals Z(min) is a mirror image
about the y axis of the distribution of P(max) of Z(max).
One can use this symmetry to improve the robustness of
the features and decrease their dimensionality by merg-
ing the projections P(min) and mirrored P(max) into one
histogram:

h(l;Q(x)
T,q,P(min),P(max)) =

∑
p∈P(min) [QQ(x)

T,q

(p) = l]

+
∑

p∈P(max) [QQ(x)
T,q

(−p) = −l], l ∈ Q(x)
T,q.

(19)
We note that the min a max residuals from the same

submodel share the same projection neighborhood Π.
To reduce the feature dimensionality, we do not include

in the feature vector the last (marginal) bin h(l) corre-
sponding to l = (2T + 1)q/2 because its value can be
computed from the remaining bins and is thus redundant
for training the machine-learning-based classifier. Thus,
for each linear residual Z, the set of projections, P(Z,Π),
is represented in the PSRM using a T -dimensional vector
h(l), l ∈ QT,q − {(2T + 1)q/2}. Similarly, and for the
same reason, for a non-linear residual, we exclude the bins
corresponding to l = ±(2T + 1)q/2, which gives us 2T
features. Since in the SRM the features from two linear
residuals are always paired up into one submodel (see
Section II.C of [11]), we do the same in the proposed
PSRM, which means that the projections of residuals
from a given submodel are represented using exactly 2T
features.

In summary, for a given submodel (a pair of residuals)
and a projection neighborhood Π we obtain 2T values
towards the PSRM. Since there are a total of 39 submodels
in the SRM (and in the PSRM), the final dimensionality
of the PSRM is

d(ν) = 39 · 2 · T · ν, (20)

where ν is the number of projection neighborhoods for
each residual.

C. Parameter setting
To construct the PSRM, we need to set the following

parameters:
• ν . . . the number of projection neighborhoods Π per

residual;
• T . . . the number of bins per projection neighborhood;
• s . . . the maximum size of the projection neighbor-

hood;
• q . . . the bin width.

To capture a variety of complex dependencies among
the neighboring residual samples, ν should be sufficiently
large. Since larger ν increases the dimensionality of the
feature space, d(ν), a reasonable balance must be stricken
between feature dimensionality and detection accuracy.

Another parameter that influences the dimensionality is
T – the number of bins per projection neighborhood. As
mentioned in Section IV-A, the detection utilizes mainly
the shape of the distribution, which is disturbed by the
embedding process. Our experiments indicate that the
number of bins necessary to describe the shape of the
distribution of the projections can be rather small.

Figure 1 shows the detection–dimensionality tradeoff
for different values of d(ν) and T ∈ {1, . . . , 5}. The
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Figure 1. Detection error EOOB as a function of the PSRM feature-
vector dimensionality d(ν) for T ∈ {1, . . . , 5} quantization bins per
projection. Tested on S-UNIWARD on BOSSbase 1.01 at payload 0.4
bpp (bits per pixel).

PSRM can clearly achieve the same detection reliability
as SRM (SRMQ1) with much smaller dimensionality. One
can trade a smaller value of T for larger ν to increase
the performance for a fixed dimensionality. When choosing
ν = 55 and T = 3, the total dimensionality of the PSRM
is 39 · 2 · T · ν = 12, 870, which makes its dimensionality
almost the same of that of SRMQ1 (12, 753), allowing thus
a direct comparison of both models. We opted for T = 3
as opposed to T = 2 because the performance for both
choices is fairly similar and the choice T = 3 requires com-
puting fewer projections for a fixed dimensionality, making
the feature computation less computationally taxing.

The parameter s determines the maximal width and
height of each projection neighborhood and thus limits the
range of interpixel dependencies that can be utilized for
detection. On the other hand, if the neighborhood is too
large, the changes in the residual caused by embedding will
have a small impact on the projection values, which will
also become more dependent on the content. Moreover,
the optimal value of s is likely to depend on the cover
source. Experiments on BOSSbase 1.01 with S-UNIWARD
at payload 0.4 bpp indicated a rather flat minimum around
s = 8. We fixed s at this value and used it for all our
experiments reported in this paper.

To capture the shape of the distribution, it is necessary
to quantize the projection values. The impact of embed-
ding manifests in the spatial domain differently depending
on whether the actual embedding changes are executed
in the spatial or the JPEG domain. Given the nature of
JPEG compression, a change in a DCT coefficient has
a more severe impact in the spatial domain depending
on the quantization step of the particular DCT mode.
Consequently, the best quantization bin width q will likely
be different for detection of spatial- and JPEG-domain
steganography. Figure 2 shows that the optimal value of
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Figure 2. Detection error as a function of the quantization bin width
q when steganalyzing S-UNIWARD on BOSSbase at 0.4 bpp.
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Figure 3. Detection error as a function of the quantization bin width
when steganalyzing q J-UNIWARD on BOSSbase compressed using
quality factors 75 and 95.

q for spatial-domain embedding is q = 1, while the best
value of q for steganalysis of JPEG-domain steganography
is q = 3 (Figure 3). The PSRM versions used to detect
embedding in the spatial and JPEG domains will be called
PSRMQ1 and PSRMQ3, respectively.

V. Experiments

To evaluate the performance of the PSRM with dimen-
sion of 12, 870, we ran experiments on multiple stegano-
graphic algorithms that embed messages in different do-
mains. We contrast the results against several state-of-the-
art domain-specific features sets. To show the universality
of the proposed detection scheme, we added experiments
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on a markedly different cover source – the Leica database
described in Section II-A.

In the spatial domain, we compare the PSRM with the
SRM [11] (dimension 34, 671) and the SRMQ1 (dimension
12, 753). To the best knowledge of the authors, the SRM
and SRMQ1 are the best spatial-domain feature sets
available.

For JPEG-domain steganography, we compare with
three rich models – the SRMQ1, the JPEG Rich Model
(JRM) [28] with the dimension of 22, 510, and JSRM,
which is a merger of JRM and SRMQ1 with the total
dimension of 35, 263. Based on a thorough comparison
reported in [28], the JSRM is currently the most powerful
feature set for detection of JPEG domain steganography.

The empirical steganographic security in the JPEG
domain is tested on two JPEG quality factors (QF) – 75
and 95. We selected these two quality factors as typical
representatives of low quality and high quality compres-
sion factors.

We evaluate the performance of all feature sets on three
payloads: 0.1, 0.2, and 0.4 bits per pixel (bpp) in the
spatial domain and 0.1, 0.2, and 0.4 bits per non-zero AC
coefficient (bpnzAC) in the JPEG domain. The main rea-
son for using only three payloads is the high computational
complexity involved with testing high-dimensional features
on many algorithms covering three embedding domains.
Moreover, as will become apparent from the experimental
results revealed in the next section, showing the detection
accuracy on a small, medium, and a large payload seems
to provide sufficient information to compare the proposed
PSRM with prior art.
In order to assess the statistical significance of the

results, we measured the standard deviation of the EOOB
for all PSRM experiments measured on ten runs of the
ensemble classifier with different seeds for its random
generator that drives the selection of random subspaces
as well as the bootstrapping for the training sets. The
standard deviation was always below 0.3 %. We do not
show it in the tables below to save on space and make the
table data legible. The best performing features for every
cover source, steganographic algorithm, and payload are
highlighted in gray.

A. Spatial domain
We first interpret the results on BOSSbase shown in Ta-
ble I. Across all three embedding algorithms and payloads,
the PSRM achieves a lower detection error than both
SRMQ1 and SRM despite its almost three times larger
dimensionality. Since the PSRM uses the same residuals
as both SRM sets, it is safe to say that, for this image
source, representing the residuals with projections is more
efficient for steganalysis than forming co-occurrences. The
actual improvement depends on the embedding algorithm.
For HUGO, the PSRM lowers the detection error by about
2% w.r.t. the similar size SRMQ1. In light of the results of
the BOSS competition reported at the 11th Information
Hiding Conference [13], [12], [16], [2], this is a signifi-
cant improvement. The difference between PSRMQ1 and

SRMQ1 sets is even bigger (≈ 4%) for the highly adaptive
WOW. This confirms our intuition that the projections
do capture more complex interpixel dependencies and use
them more efficiently for detection.
Table I clearly shows that steganalysis is easier in Le-
ica images than in BOSSbase. This is mainly because
of stronger interpixel dependencies in Leica images. Im-
age downsampling without antialiasing used to create
BOSSbase images weakens the dependencies and makes
the detection more difficult [29]. Moreover, the BOSSbase
database was acquired by seven different cameras, which
makes it likely more difficult for the machine learning to
find the separating hyperplane.

While we observed a significant detection improvement
over the SRM for BOSSbase for the Leica database both
PSRM and SRMQ1 offer a similar detection accuracy. The
reader should realize that while the SRM achieves overall
the lowest detection error, comparing SRM with PSRMQ1
is not really fair as the SRM has almost three times larger
dimensionality. Since the parameters of both the PSRM
and the SRM sets were optimized for maximal detection
on BOSSbase, we attribute this observation to the fact
that the much stronger pixel dependencies in Leica images
make the co-occurrence bins much better populated, which
improves the steganalysis.

B. JPEG domain
Table II shows the results of all experiments in the JPEG
domain on both BOSSbase and Leica databases for quality
factors 75 and 95. In most cases, the PSRMQ3 achieved
a lower detection error than SRMQ1, further fostering
the claim already made in the previous section – that
the projections are better suited for steganalysis than co-
occurrences.

The JRM feature set, designed to utilize dependen-
cies among DCT coefficients, shows a rather interesting
behavior. Depending on the embedding algorithm and
the embedding operation, the JRM’s performance can
be significantly better or worse than the performance of
the spatial features (versions of PSRM and SRM). For
example, the probability of detection error for the (by
far) weakest nsF5 algorithm with payload 0.1 bpnzAC
for quality factor 95 on BOSSbase using JRM is 13.54 %
while it is 34.01 % for PSRMQ3 and 38.31 % for SRMQ1.
This is caused by the nsF5’s embedding operation de-
signed to always decrease the absolute value of DCT
coefficients. The JRM feature set is designed to exploit
the effects of this “faulty” embedding operation. On the
other hand, a qualitatively opposite behavior is observed
for J-UNIWARD, which minimizes the relative distortion
in the wavelet domain. Here, the spatial-domain features
are generally much more effective than JRM since the
embedding operation does not introduce artifacts in the
distribution of quantized DCT coefficients detectable by
the JRM.

As proposed in [27] and later confirmed in [28], the over-
all best detection of JPEG domain embedding algorithms
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Table I
Detection error of PSRM vs. SRMQ1 and SRM for three content-adaptive steganographic algorithms embedding in the

spatial domain.

Payload 0.1 bpp 0.2 bpp 0.4 bpp
Features PSRMQ1 SRMQ1 SRM PSRMQ1 SRMQ1 SRM PSRMQ1 SRMQ1 SRM
Dimension 12,870 12,753 34,671 12,870 12,753 34,671 12,870 12,753 34,671

BOSSbase
HUGO 0.3564 0.3757 0.3651 0.2397 0.2701 0.2542 0.1172 0.1383 0.1278
WOW 0.3859 0.4119 0.3958 0.2950 0.3302 0.3117 0.1767 0.2170 0.1991
S-UNIWARD 0.3977 0.4182 0.4139 0.3025 0.3358 0.3159 0.1803 0.2162 0.2010

Leica
HUGO 0.2170 0.2273 0.2110 0.0857 0.0802 0.0723 0.0213 0.0187 0.0177
WOW 0.2438 0.2418 0.2275 0.0997 0.0993 0.0903 0.0273 0.0245 0.0197
S-UNIWARD 0.2131 0.2188 0.2023 0.0800 0.0787 0.0722 0.0198 0.0192 0.0190

Table II
Detection error of PSRM vs. JRM and JSRM for three JPEG-domain steganographic algorithms and quality factors 75

and 95.

Payload QF 0.1 bpnzAC 0.2 bpnzAC 0.4 bpnzAC
Features PSRMQ3 SRMQ1 JRM JPSRM JSRM PSRMQ3 SRMQ1 JRM JPSRM JSRM PSRMQ3 SRMQ1 JRM JPSRM JSRM
Dimension 12,870 12,753 22,510 35,380 35,263 12,870 12,753 22,510 35,380 35,263 12,870 12,753 22,510 35,380 35,263

BOSSbase
nsF5 0.2609 0.2949 0.2115 0.1631 0.1742 0.0810 0.1162 0.0477 0.0188 0.0239 0.0057 0.0123 0.0036 0.0008 0.0013
UED ternary 75 0.3369 0.3621 0.3968 0.3393 0.3468 0.1856 0.2180 0.2680 0.1770 0.1934 0.0390 0.0612 0.0488 0.0202 0.0250
J-UNIWARD 0.4319 0.4578 0.4632 0.4350 0.4503 0.3244 0.3779 0.3990 0.3289 0.3564 0.1294 0.1933 0.2376 0.1228 0.1583
nsF5 0.3401 0.3831 0.1354 0.1220 0.1347 0.1749 0.2332 0.0114 0.0101 0.0089 0.0252 0.0540 0.0005 0.0005 0.0006
UED ternary 95 0.4785 0.4753 0.4750 0.4727 0.4786 0.4370 0.4331 0.4336 0.4133 0.4077 0.2759 0.2897 0.2604 0.2180 0.2205
J-UNIWARD 0.4943 0.4965 0.4923 0.4920 0.4940 0.4659 0.4752 0.4763 0.4622 0.4674 0.3256 0.3786 0.3951 0.3246 0.3576

Leica
nsF5 0.2780 0.2965 0.2463 0.2040 0.2100 0.1060 0.1085 0.0783 0.0503 0.0458 0.0135 0.0114 0.0070 0.0047 0.0042
UED ternary 75 0.3028 0.3290 0.3643 0.2965 0.2987 0.1437 0.1570 0.2233 0.1295 0.1398 0.0270 0.0293 0.0525 0.0205 0.0200
J-UNIWARD 0.3627 0.3895 0.4233 0.3777 0.3803 0.2227 0.2538 0.3438 0.2225 0.2317 0.0610 0.0683 0.1398 0.0538 0.0593
nsF5 0.3833 0.4080 0.1425 0.1428 0.1370 0.2313 0.2580 0.0078 0.0090 0.0072 0.0473 0.0575 0.0002 0.0002 0.0002
UED ternary 95 0.4793 0.4792 0.4827 0.4767 0.4703 0.4283 0.4373 0.4410 0.4200 0.4115 0.2898 0.3020 0.2555 0.2300 0.2137
J-UNIWARD 0.4769 0.4802 0.4893 0.4797 0.4728 0.4363 0.4448 0.4517 0.4335 0.4315 0.3154 0.3380 0.3552 0.2940 0.2942

Table III
Detection error of PSRM vs. JRM and JSRM for two side-informed JPEG-domain steganographic algorithms and quality

factors 75 and 95.

Payload QF 0.1 bpnzAC 0.2 bpnzAC 0.4 bpnzAC
Features PSRMQ3 SRMQ1 JRM JPSRM JSRM PSRMQ3 SRMQ1 JRM JPSRM JSRM PSRMQ3 SRMQ1 JRM JPSRM JSRM
Dimension 12,870 12,753 22,510 35,380 35,263 12,870 12,753 22,510 35,380 35,263 12,870 12,753 22,510 35,380 35,263

BOSSbase
NPQ

75
0.4613 0.4677 0.4139 0.4076 0.4078 0.3609 0.3899 0.3171 0.2779 0.2871 0.0760 0.0990 0.0654 0.0345 0.0398

SI-UNIWARD 0.4952 0.4948 0.5004 0.4970 0.4965 0.4764 0.4872 0.4908 0.4770 0.4814 0.3744 0.4083 0.4470 0.3755 0.3989
NPQ

95
0.4950 0.4960 0.4295 0.4308 0.4313 0.4708 0.4708 0.3155 0.3136 0.3095 0.3358 0.3556 0.1471 0.1342 0.1349

SI-UNIWARD 0.4955 0.4950 0.4654 0.4672 0.4696 0.4830 0.4890 0.4651 0.4599 0.4602 0.3909 0.4337 0.4418 0.3790 0.4153

NPQ
75

0.4615 0.4637 0.4257 0.4127 0.4138 0.3457 0.3545 0.3257 0.2903 0.2968 0.0802 0.0862 0.0852 0.0483 0.0508
SI-UNIWARD 0.4933 0.4960 0.4963 0.4952 0.4953 0.4727 0.4777 0.4900 0.4848 0.4748 0.3712 0.3872 0.4473 0.3752 0.3802
NPQ

95
0.4868 0.4920 0.3435 0.3505 0.3518 0.4682 0.4785 0.2920 0.3030 0.2998 0.3727 0.3773 0.1660 0.1628 0.1477

SI-UNIWARD 0.4908 0.4957 0.4460 0.4415 0.4475 0.4872 0.4973 0.4480 0.4448 0.4563 0.4312 0.4475 0.4450 0.4083 0.4220
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is typically achieved by merging JPEG and spatial-domain
features. It thus makes sense to introduce the merger of
PSRMQ3 and JRM (JPSRM) whose dimensionality is
similar to that of the JSRM (a merger of SRMQ1 and
JRM). As expected, the JPSRM / JSRM provide the
lowest detection error when compared to feature sets con-
strained to a specific embedding domain. On BOSSbase,
the projection-based models provided the lowest detection
error for almost all combinations of payload, embedding
algorithm, and quality factor. On Leica, the performance
of both JPSRM and JSRM was rather similar. Again, we
attribute this to the fact that for the Leica source, the
co-occurrences are generally better populated than for the
BOSSbase. Finally, we would like to point out that for J-
UNIWARD adding the JRM to PSRMQ3 generally brings
only a rather negligible improvement, indicating that the
main detection power resides in the spatial features (the
PSRMQ3).

C. Side-informed JPEG domain
The performance comparison for side-informed JPEG-
domain embedding methods shown in Table III strongly
resembles the conclusions from the previous section. The
merged feature spaces (JPSRM and JSRM) generally
provide the lowest detection error when considering the
statistical spread of the data (0.3%). It is worth pointing
out that the JRM features are rather effective against the
NPQ algorithm (see, e.g., the quality factor 95 and payload
0.4 bpnzAC). This indicates a presence of artifacts in the
distribution of DCT coefficients that are well detected with
the JRM, which further implies that the NPQ algorithm
determines the embedding costs in the DCT domain in a
rather suboptimal way. Also note that the detection errors
for BOSSbase and Leica are much more similar in the
JPEG domain when compared with the spatial domain.
This is likely an effect of the lossy character of JPEG
compression, which “erases” the high-frequency details
(differences) between both sources.

VI. Conclusion
The key element in steganalysis of digital images using

machine learning is their representation. Over the years,
researchers converged towards a de facto standard repre-
sentation that starts with computing a noise residual and
then taking the sample joint distribution of residual sam-
ples as a feature for steganalysis. This co-occurrence based
approach dominated the field for the past seven years.
Co-occurrences, however, are rather non-homogeneous de-
scriptors. With an increasing co-occurrence order, a large
number of bins become underpopulated (statistically less
significant), which leads to a feature dimensionality in-
crease disproportional to the gain in detection perfor-
mance. The co-occurrence order one can use in practice
is thus limited, which prevents steganalysts from utilizing
long-range dependencies among pixels that might further
improve detection especially for content-adaptive stegano-
graphic schemes.

Aware of these limitations, in this article, we introduce
an alternative statistical descriptor of residuals by project-
ing neighboring residual samples onto random directions
and taking the first-order statistics of the projections
as features. The resulting features are better populated
and thus more statistically significant. Furthermore, the
projection vectors as well as the size and shape of the
projection neighborhoods further diversify the description,
which boosts detection accuracy. The advantage of repre-
senting images using residual projections as opposed to
co-occurrences is demonstrated on several state-of-the-art
embedding algorithms in the spatial, JPEG, and side-
informed JPEG domains.

The new representation is called the projection spatial
rich model (PSRM). We introduce two versions – one
suitable for detection of spatial-domain steganography and
one for the JPEG domain. Both versions differ merely in
the quantization step used to quantize the projections. The
PSRM is based on the exact same set of noise residuals
as its predecessor – the spatial rich model. The fact that
PSRM equipped with the same set of residuals as the SRM
offers a better detection performance at the same dimen-
sionality is indicative of the fact that the projections are
indeed more efficient for steganalysis than co-occurrences.

The biggest advantage of PSRM over SRM becomes
apparent for highly content adaptive algorithms, such as
WOW or schemes employing the UNIWARD function.
Besides a more accurate detection, the PSRM also enjoys
a much better performance vs. dimensionality ratio. For
spatial-domain algorithms, one can achieve the same de-
tection accuracy as that of SRM with dimensionality 7–
10 times smaller. This compactification, however, comes
at a price, which is the computational complexity. This
seems inevitable if one desires a descriptor that is more
statistically relevant and diverse – the PSRM consists
of a large number of projection histograms rather than
a small(er) number of high-dimensional co-occurrences.
The PSRM feature computation requires computing about
65,000 convolutions and histograms. A possible speed-
up of the PSRM feature computation using graphical
processing units (GPUs) was proposed in [23]. The PSRM
feature extractor is available from http://dde.binghamton.
edu/download/feature_extractors/.

Finally, we make one more intriguing remark. The latest
generation of currently most secure algorithms that embed
messages in quantized DCT coefficients but minimize the
embedding distortion computed in the spatial (wavelet)
domain (J-UNIWARD and SI-UNIWARD) seem to be
less detectable using features computed from quantized
DCT coefficients and become, instead, more detectable
using spatial-domain features (PSRM). This challenges
the long heralded principle that the best detection is
always achieved in the embedding domain. Unless the
embedding rule is flawed (e.g, the embedding operation
of LSB flipping or the F5 embedding operation), one
should consider for detection representing the images in
the domain in which the distortion is minimized.

http://dde.binghamton.edu/download/feature_extractors/
http://dde.binghamton.edu/download/feature_extractors/
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