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Abstract—Deep convolutional neural networks (CNNs) have
become the tool of choice for steganalysis because they outper-
form older feature-based detectors by a large margin. However,
recent work points at cases where feature-based detectors per-
form better than CNNs due to their failure to compute simple
statistics of DCT coefficients. We introduce a shallow “OneHot”
CNN, which encodes DCT coefficients using clipped one-hot
encoding into a binary volumetric representation of the DCT
plane fed to a convolutional block designed to learn relevant
intra-block and inter-block relationships using vanilla and dilated
convolutions. Methodology for plugging the “OneHot” network
into conventional steganalysis CNNs is also introduced for an
end-to-end learnable detector with improved performance.

Index Terms—Steganography, steganalysis, convolutional neu-
ral networks, deep learning

I. INTRODUCTION

While CNN detectors [27], [30], [3] clearly outperform clas-
sifiers with hand-crafted feature sets for steganalysis in both
JPEG and spatial domain (see, e.g., the detailed survey [6]),
there is recent evidence that CNNs unexpectedly struggle to
perform well in certain cases:

« All ALASKA steganalysis challenge participants [28], [9]
consistently underperformed on nsF5 [12].

e In [4], SRNet [3] does not follow the theoretically
predicted trend for nsF5 [12], while all other tested
steganographic schemes follow the model.

o J-UNIWARD [16] is surprisingly best detected in JPEGs
obtained with the “Trunc” quantizer [5] by JPEG rich
model (JRM) [18] and not a CNN.

Figure 1 shows the total detection error under equal priors Pg
for two scenarios in which two leading CNN architectures for
JPEG domain steganalysis, the SRNet and J-XuNet [27], are
outperformed by an older detection paradigm, the JRM model
and the ensemble classifier [19]. In this paper, we analyze
these intriguing failures and address the deficiency with a
shallow CNN, the “OneHot” CNN, that can be plugged into
a conventional CNN architecture as a dual branch for an end-
to-end learnable detector.

In Section II, we study SRNet and its variants on nsF5,
and link its struggles to the inability to “see” simple artifacts
in the distribution of DCT coefficients exploited by the JRM.
After briefly reviewing prior art on CNNs with DCT inputs, in
Section III we introduce a shallow “OneHot” CNN that can
be plugged to SRNet and trained in an end-to-end fashion
to address the above struggles (Section IV). The paper is
concluded in Section V. Datasets (JPEG round/trunc sources),
performance measures, and some technical aspects of training
are detailed in Section VI.
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Figure 1. Detection error Pg of SRNet, J-XuNet, and JRM+ensemble for (a)
J-UNIWARD 0.4 bpnzac in JPEG trunc source and (b) nsF5 0.2 bpnzac in
JPEG round source.

II. STRUGGLES OF CNNS IN JPEG STEGANALYSIS

Figure 1 shows that there exist cases where CNNs under-
perform by a large margin when compared to JRM, which
is a rather simple feature set. Examining each JRM sub-
model (Figure 2) separately reveals that most of the detection
performance is due to the sub-model *Ax_T5’ corresponding
to integral co-occurences from absolute values of the DCT
plane computed with a clipping threshold 7" = 5. CNNs
fed with decompressed JPEGs are apparently unable to see
artifacts in the distribution of DCTs, such as the co-occurrence
"Ax_T5’.

Feeding the array of DCTs directly to SRNet, however,
failed to produce reliable detection or did not converge (DNC).
We hypothesize that this is due to the fact that, unlike pixels,
DCTs are largely decorrelated and locally heterogeneous,
making it harder for the convolutions to extract relevant image
components and noise statistics. Most effort in computer vision
directed towards training on DCT inputs has focused on either
avoiding the costly JPEG decompression step to speed-up
training [21] or on approximating a CNN trained on spatial-
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Figure 2. 1— Pg when staganalyzing nsF5 0.2 bpnzac in JPEG round QF100
using individual JRM submodels and using the entire JRM (dashed line).

Table 1
DETECTION ERROR OF SRNET AND ITS TWO SHALLOWER VARIANTS
USING THE ORIGINAL AND LONGER TRAINING SCHEDULE FOR NSF5 0.2
BPNZAC JPEG ROUND QF 100.

Architecture description Original schedule  Longer schedule

SRNet DNC 5.35
SRNet, Layers1-8+Global 13.36 9.66
Average Pooling+FC
(fully connected)
SRNet, Layers8-12+FC 25.46 19.84

JRM 4.17

domain inputs [10]. Neither is relevant for our needs. In [24],
a histogram layer is introduced that can compute predefined
higher-order statistics, which would merely mimic the JRM.

In our case, we found out that adjusting the training
schedule partially solved the problem with convergence and
loss of performance at the expense of a significantly longer
training time. Table I shows the results of SRNet with DCT
inputs for nsF5 0.2 bpnzac in JPEG round QF 100 using the
original training schedule [3] and a longer schedule using a
doubled batch-size of 64 and seeding from a much larger
payload 0.4 bpnzac. We also studied shallower versions of
SRNet by pruning different layers to show that this difficulty is
not linked to an excessive number of parameters to learn. Note
that when using the Titan Xp GPU, SRNet’s longer schedule
takes 5 days to train compared to 1.2 days for the original
training schedule.

III. ONEHOT CNN

A simple transformation of the input DCT plane (the
“clipped one-hot encoding”) before the first convolution will
allow a CNN compute occurrences and co-occurrence his-
tograms. The DCT array M is first clipped to a thresh-
old T and then transformed to a binary volume of size
(T+1)x HxW:
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Figure 3. Pg of OneHot CNN on nsF5 0.2 bpnzac in round QF 100 JPEGs
for different clipping thresholds 7.

where [.] is the (element-wise) Iverson bracket [.]. In fact,
one can even find a specific kernel that will compute a
desired histogram. For example, horizontal co-occurrences
for coefficient pairs (z,y) € {0, ...,T}? can be computed by
convolving the input volume with the following convolutional
kernel K € R(T+1)x3x3_followed by global average pooling

K,=010, t=ug
000
K=K, =001, t=y 2)
000
K; = Ogsxs else.

Inter-block statistics can be designed similarly by using
dilated convolutions with rate 8 introduced in wavelet de-
compositions algorithms [15], also referred to as “a trous”
convolutions widely used in computer vision [7], [23], [29] as
a way to increase the receptive field of convolutional layers.

Figure 4 shows the overall architecture of the proposed One-
Hot network. Note that the “clipping” operation is necessary
for memory constraints. Figure 3 shows how the detection
error Py, reacts to different clipping thresholds. While T" = 10
seems to be optimal, in practice any 7' > 5 can be chosen,
as improvements recorded for higher thresholds are less than
0.5%. Tuning D, and D5 also seems to have a rather minor
effect on performance. However, setting (Dy, D) = (64,0)
or (0,64), i.e., using only dilated convolutions or only vanilla
convolutions, respectively, seems to hurt the detection perfor-
mance by more than 2%. Table II shows that the proposed
OneHot CNN performs better than JRM in the two problematic
cases introduced in Section I.

The OneHot CNN is trained with the same training schedule
and hyper-parameters as SRNet, and takes around 13 hours on
NVIDIA’s Titan Xp GPU.

A. Cartesian Calibration

Cartesian calibration [13], [17] is a way to augment any
feature set by adopting additional features computed from a
reference image. The reference image is obtained by decom-
pressing the original image, cropping by four pixels in both
directions, and recompressing the cropped image. It has been
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Figure 4. OneHot CNN architecture. D; corresponds to the depth of representations at different layers of the network.

Table 1T
DETECTION ERROR P, OF JRM AND THE ONEHOT CNN FOR THE TWO
PROBLEMATIC CASES: JPEG ROUND, NSF5 AND JPEG TRUNC,
J-UNIWARD FOR VARIOUS QUALITY FACTORS AND PAYLOADS.

QF | 100 | 95 | 85
Round, nsFS | 02 01 | 02 01 | 02 o0l
JRM 417 2199 | 7.94 2737 | 122 3049
OneHot CNN | 349  20.65 | 7.90 27.06 | 1128 29.95
Trunc, JUNI | 04 03 | 04 03 | 04 03
JRM 1081 19.60 | 1538 23.18 | 17.47 2449
OneHot CNN | 7.36  14.05 | 1432 21.55 | 1645 2279

Table III
DETECTION ERROR Pg OF CCJRM AND THE CALIBRATED ONEHOT CNN
FOR JPEG ROUND, NSF5 FOR VARIOUS QUALITY FACTORS AND

PAYLOADS.
QF | 100 | 95 | 85
Round, nsF5 | 02 01 | 02 01 | 02 0.1
ccJRM 211 1803 | 7.15 2681 | 10.80 29.78
ccOneHot CNN | 1.39  15.52 | 6.66 2575 | 10.09  29.26

shown that cartesian calibration helps nsF5, Jsteg, YASS, and
other steganographic schemes [17].

We show that the OneHot CNN can also be augmented with
cartesian calibration by adding a second OneHot branch taking
the reference image as input. Both branches are independent
until the fully FC layer, which takes a concatenation of the
2 x 32 representation as inputs. Denoting this architecture
ccOneHot CNN, Table III shows its superior performance w.r.t.
ccJRM.

IV. ONEHOT+SRNET

In this section, we show that merging the OneHot network
with conventional CNN architectures produces more universal
detectors. We use SRNet to show how these two networks
are merged and how the resulting architecture denoted One-
Hot+SRNet compares to simply concatenating (a trained)
SRNet’s last layer and JRM features as a feature set and
training FLLD ensemble. This strategy is denoted JRM+SRNet.

The OneHot+SRNet is built by merging SRNet and OneHot
in a branch-parallel fashion, each branch B outputs a feature
extraction Fp (the output of the layer before F'Cp, the fully
connected layer of branch B) and a binary output pp (the
output of the F'Cg+softmax). Fsrnet and Foneror are then
concatenated and fed to the final FC layer, which outputs prc,
the final classification probability.

For each component B (SRNet, OneHot, and FC), we use
the binary cross-entropy loss: Lpg —(ylog(py) + (1 —
y)log(p%)), where y is the binary target, and combine the
losses as follows:

>

Be{SRNet,OneHot, FC'}

L= ABLpB, 3)

where Ap is a scaling hyperparameter for each branch B
weighting the importance of training the branch B compared
to other branches. The weights can be assigned manually as
done in [11], [20], [25], or heuristically modeled as noise
parameters and learned as done in [8]. In the following
experiments we set all Ag = 1.

Another key element in this merging architecture is making
sure that each weight in the network is only updated once
during back-propagation, which is done by “stopping” the
gradients at the input of the merged FC layer, to ensure that
the gradients of Lpc are not computed w.r.t. to the weights
of SRNet and OneHot.

Table IV shows that this strategy works well in practice.
The first two blocks of the table show that OneHot+SRNet
substantially improves SRNet. For nsF5 in JPEG round, the
improvement is comparable to JRM+SRNet. For J-UNIWARD
in JPEG trunc, the improvement is consistently better than
JRM+SRNet. The next two blocks show that OneHot+SRNet
has comparable detection performance to SRNet for J-
UNIWARD and UED-JC [14] in JPEG round while avoiding
some large degradations of JRM+SRNet (e.g., J-UNIWARD
for QF 100 and 95).

In Table V, we show that OneHot+SRNet substantially im-
proves detection in a more diverse dataset. We use ALASKA



Table IV
DETECTION ERROR Pg FOR VARIOUS JPEG QUALITY FACTORS,
ROUND/TRUNC, EMBEDDING SCHEMES, AND PAYLOADS.

QF | 100 | 95 | 85
Round, nsF5 | 0.2 01 | 02 01 | 02 0.1
SRNet 13.88 3076 | 12.63 2535 | 11.70  24.39
JRM+SRNet 197 1811 | 350 1939 | 363 1942
OneHot+SRNet | 199 1855 | 332 1973 | 3.50  19.22
Trunc, J-UNI | 0.4 03 | 04 03 | 04 0.3
SRNet 1637 2126 | 3026 3582 | 2041 2626
JRM+SRNet 762 1749 | 1432 2287 | 1014 1776
OneHot+SRNet | 7.29  13.64 | 1418 21.79 | 10.13  16.16
Round, J-UNI | 04 03 | 04 03 | 04 0.3
SRNet 1252 1670 | 17.40 2439 | 9.17 1432
JRM+SRNet 1532 1864 | 17.94 2674 | 9.18  14.44
OneHot+SRNet | 11.94 1699 | 17.52 2481 | 884 14.04
Round, UED-IC | 0.3 02 | 03 02 | 03 0.2
SRNet 6.96  10.16 | 10.90 17.56 | 4.44  7.26
JRM+SRNet 769 1053 | 1099 17.86 | 4.04 738
OneHot+SRNet | 7.26 1058 | 1135 1825 | 440 758
Table V

DETECTION ERROR Pg AND MISSED DETECTION RATE AT 5% FALSE
ALARM, M D5, FOR ALASKA V1 WHEN TESTED AGAINST INDIVIDUAL
STEGO SCHEMES AND THEIR MIXTURE.

ALASKA vl QF95 | SRNet | OneHot+SRNet
J-UNI 10.63, 18.34 10.97, 18.20
EBS 8.21, 11.51 8.24, 11.71
UED 10.97, 17.97 12.04, 20.68
nsF5 27.90, 70.86 16.37, 34.02
Mixture 12.96, 25.08 12.01, 20.34

vl 256 x 256 tiles as described in VI compressed with JPEG
quality factor 95. As prescribed by the challenge winners [28],
the detectors are trained as multi-class and used as binary
detectors. Color channels for SRNet are merged in the first
layer by using 3 x 3 x 3 convolution kernels, and the “clipped
one-hot encoding” in the OneHot branch is done separately for
each channel using the same threshold, producing a volume
of size 3(T + 1) x H x W. Note that for ALASKA vl we
use Aspnet = 4 and Apc = Aonerot = 1 as it gave the best
results.

V. DISCUSSION AND CONCLUSIONS

While in other fields CNNs have been reported to be
underperforming, for example, in solving the seemingly trivial
coordinate transform problem [22], to the best of the au-
thors’ knowledge, no prior art uncovered failings of CNNs
in steganalysis. In this work, a new CNN architecture is
proposed, the OneHot CNN, to overcome struggles of CNNs
in at least two particular scenarios reported in this paper.
It is based on the clipped one-hot encoding, which enables
computing higher-order statistics of DCT coefficients in a
flexible learnable manner.

The paper additionally describes a dual-branch architecture
for adding the OneHot CNN to existing CNNs for steganalysis
(SRNet) for an end-to-end trainable detector. This overcomes
the reported struggles while not decreasing the performance in
cases when the OneHot branch is not effective. For ALASKA
vl and QF 95, OneHot+SRNet tile detector performs 4.7%

better than SRNet in terms of M D5 by substantially improv-
ing the detection of nsF5.

We anticipate that the proposed OneHot architecture will
find applications in forensics for detection of higher-order
artifacts in the distribution of DCT coefficients. All code
used to produce the results in this paper, including the
network configuration files, will be made available from
http://dde.binghamton.edu/download/ upon acceptance of this

paper.

VI. SETUP OF EXPERIMENTS

Unless mentioned otherwise, all experiments were exe-
cuted on the union of BOSSbase 1.01 [1] and BOWS2 [2]
converted to grayscale and resized to 256x256 using Mat-
lab’s ’imresize’ with default parameters. As in [3], [4], the
dataset was randomly divided into three sets with 14,000
(BOSSbase+BOWS2) / 1,000 (BOSSbase) / 5,000 images
(BOSSbase) for training, validation, and testing. The “trunc”
and “round” sources correspond to images where the final
DCT quantizer in JPEG compression is truncation towards
zero and round, respectively.

In Section IV, ALASKA vl [9] dataset has been used
with the scripts adapted to produce 256x256 crops with JPEG
compression only done in the “round” mode. This dataset was
randomly divided into three sets with 42,500 / 3,500 / 3,500
for training, validation, and testing. The splits were made to
be compatible with the datasets used in [28].

The steganographic algorithms used in this paper are: J-
UNIWARD [16], UED-JC [14], EBS [26], and nsF5 [12],
embedded with fixed payloads (BOSS+BOWS2) or adaptive
payload based on the image processing history, with priors 0.4,
0.3, 0.15, and 0.15, respectively (ALASKA v1). In ALASKA
vl, color steganography is done by spreading the payload
between Y, C.., and C}, as described in [9] (Payload repartition
among color channels).

A. Data augmentation in DCT domain

The first step to using DCT domain inputs in deep learning
is to perform data augmentation in the DCT domain. Rotations
by multiples of 7/2 and horizontal/vertical flips can be done in
a lossless fashion directly on DCT coefficients M € Z7*W
thanks to the symmetries of DCT bases. We denote fs(M)
any operation f performed in a block-wise fashion, with a
block size of 8, e.g., Tg is the 8 x 8 block-wise matrix

transpose. For simplicity, we introduce J = [(—1)/]o<i<n
] 0<j<W

and I = [(—=1)"o<icu € {1,—1}7*W_ all-ones matrices
0<j<w

with a negative sigﬁj in odd columns and rows, respectively.
Egs. 4 and 5 show how to vertically flip and rotate by 7/2

Lossless flip" (M) = J - flipy o flip" (M) (4)
Lossless rot™2(M) = I - Tg o rotgﬂ/2 orot™2(M),  (5)

where - is an element-wise multiplication, and o is the
composition operation. All other valid flips and rotations can
be derived in a similar fashion (or as compositions of 4 and
5).
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