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Abstract. Detection of LSB replacement in digital images has received
quite a bit of attention in the past ten years. In particular, structural
detectors together with variants of Weighted Stego-image (WS) analy-
sis have materialized as the most accurate. In this paper, we show that
further surprisingly significant improvement is possible with machine–
learning based detectors utilizing co-occurrences of neighboring noise
residuals as features. Such features can leverage dependencies among
adjacent residual samples in contrast to the WS detector, which im-
plicitly assumes that the residuals are mutually independent. Further
improvement is achieved by adapting the features for detection of LSB
replacement by making them aware of pixel parity. To this end, we in-
troduce two key novel concepts – calibration by parity and parity-aware
residuals. It is shown that, at least for a known cover source when a bi-
nary classifier can be built, its accuracy is markedly better in comparison
with the best structural and WS detectors in both uncompressed images
and in decompressed JPEGs. This improvement is especially significant
for very small change rates. A simple feature selection algorithm is used
to obtain interesting insight that reveals potentially novel directions in
structural steganalysis.

1 Introduction

Least Significant Bit (LSB) replacement, also colloquially called LSB embedding,
is arguably the oldest data hiding method. According to the CEO of WetStone
Technologies, Inc., as of December 1, 2011 in their depository containing 836 data
hiding products, 582 (70%) of them hide messages using LSB embedding. To the
same day, the IEEE Xplore database registered 182 conference and 22 journal
articles on LSB embedding, which further underlines the enormous popularity
of this topic among researchers.

The first accurate detector of LSB replacement was the heuristic RS anal-
ysis [10] published in 2001, serendipitously discovered during research on re-
versible watermarking. The simplest case of RS analysis, the Sample Pairs (SP)
analysis, was analyzed and reformulated by Dumitrescu et al. [5] into a frame-
work amenable to further generalization and great improvement [6,4]. The least-
squares version of SP by Lu et al. [24] later inspired further significant devel-
opment mostly due to Ker, who derived the detectors from parity symmetries



of natural images, extended the framework to triples [14] and quadruples of
pixels [15], and provided further valuable insight [17,16,18].

In 2004, a different kind of LSB detector was introduced [9] that was later
dubbed Weighted Stego-image (WS) analysis and further improved in [19] by
introducing moderated weights, a better pixel predictor, and a simpler yet more
accurate bias correction. The WS detector differed from the structural detectors
in that it did not utilize trace sets but instead incorporated the parity through
a pixel predictor. The improved version of the WS detector was shown to out-
perform all other structural attacks in raw, never compressed images, while the
triples analysis was identified as the most accurate for decompressed JPEGs. An
unweighted version of WS equipped with a recompression predictor was shown
to be very effective in decompressed JPEGs provided the quantization table can
be estimated [2].

Recently, the WS detector was rederived [26] using invariant hypothesis test-
ing by adopting a parametric model for the cover. An Asymptotically Universally
Most Powerful (AUMP) test that seems to coincide with a generalized likelihood
ratio was derived in [7]. This detector is a variant of the WS analysis with weights
that give it Constant False Alarm Rate (CFAR) property, which allows threshold
setting independent of the image source. Finally, we point out that with the ex-
ception of [3,7], all LSB replacement detectors mentioned above are quantitative
in the sense that the detection statistic is an estimate of the change rate.1

Steganalysis of embedding operations other than LSB flipping went in a
different direction due to the fact that parity symmetries are no longer useful
even for rather trivial modifications of LSB embedding, such as LSB matching.
For such embedding operations, the most accurate detectors today are built as
classifiers using features obtained as sampled joint distributions (co-occurrence
matrices) among neighboring elements of noise residuals [12,11,27,25,13]. These
detectors perform equally well for both LSB replacement and LSB matching
because features formed from noise residuals are generally blind to pixels’ parity.

In contrast to modern steganalysis features (briefly outlined in Section 2), the
WS method, which also works with noise residuals, makes an implicit assumption
that adjacent residual samples are independent (Section 3). This suggests a
potential space for improvement, which we confirm in Section 4 with a simple
four-dimensional co-occurrence matrix obtained from the same noise residual
that is typically used with WS analysis. With the help of feature selection,
improvement over the state of the art (triples analysis) is achieved with as few
as three co-occurrence bins for decompressed JPEGs. Besides better utilization of
spatial dependencies through co-occurrences, we introduce calibration by parity
and parity-aware residuals as two general methods to make features aware of
pixel parity to further improve their sensitivity to LSB replacement. By scaling
up the feature space complexity using rich models, the best results of this paper
are reported in Section 5. The paper is summarized in Section 6.

1 Since the relationship between the relative payload and change rate depends on the
syndrome coding method employed (see, e.g., Chapter 8 in [8]), everywhere in this
paper we strictly speak of change-rate estimators.



1.1 Notation
We use boldface symbols for vectors and capital-case boldface symbols for ma-
trices or higher-dimensional arrays. The symbols X = (xij) ∈ X = In1×n2 and
Y = (yij) ∈ X , I = {0, . . . , 255}, will always represent pixel values of 8-bit
grayscale cover and stego images with n = n1n2 pixels; XT denotes the trans-
pose. We use R and Z for the set of real numbers and integers. The operation
of rounding x ∈ R to an integer is round(x). Given T > 0, truncT (x) = x when
x ∈ [−T, T ], and truncT (x) = T sign(x) otherwise. We also define for x ∈ Z,
LSB(x) = mod(x, 2), x̄ = x + 1 − 2LSB(x), which is x with its LSB “flipped.”
The symbol β stands for the change rate defined as the ratio between the num-
ber of embedding changes and the number of pixels. We reserve Pr(E) for the
probability of event E.

1.2 Setup of all experiments
All experiments in this paper are carried out on BOSSbase ver. 0.92 [1] and
its JPEG compressed versions obtained using the Matlab imwrite command.
The original database contains 9, 074 512×512 images acquired by seven digital
cameras in the RAW format (CR2 or DNG) and subsequently processed by
resizing and cropping to the size of 512× 512 pixels.

The classifiers we use are all instances of the ensemble proposed in [22,21] and
available from http://dde.binghamton.edu/download/ensemble. It employs
Fisher linear discriminants as base learners trained on random subspaces of the
feature space. The out-of-bag estimate of the testing error on bootstrap samples
of the training set is used to automatically determine the random subspace
dimensionality and the number of base learners as described in [22]. The final
classifier decision is obtained by fusing the decisions of its base learners. We train
a separate classifier for each image source and payload.

The detection accuracy is evaluated in a standard fashion using the minimal
total detection error under equal priors computed from the ROC from the testing
set:

PE = min
PFA

PFA + PMD(PFA)
2 , (1)

where PFA is the false alarm rate and PMD is the missed detection rate. What
is reported in all graphs and tables is the average value of this error, P̄E, over
ten random divisions of the database into equally-sized training and testing
sets. The spread of the error over the database splits also includes the effects of
randomness in the ensemble construction (e.g., formation of random subspaces
and bootstrap samples). We measure this spread using Mean Absolute Deviation
(MAD) defined as the mean of |PE(i)− P̄E|, where PE(i) is the testing error on
the ith database split.

2 Steganalysis features
Modern steganalysis features are built as co-occurrence matrices from noise resid-
uals. Below, we summarize the approach taken in [11]. Denoting an estimate of



the cover image pixel xij from its neighborhood N (Y, i, j) as Pred(N (Y, i, j)),
the noise residual, Z = (zij),

zij = yij − Pred(N (Y, i, j)), (2)

is quantized with a quantization step q > 0 and truncated to a finite dynamic
range T = {−T,−T + 1, . . . , T}:

rij , truncT (round(zij/q)) . (3)

The statistical properties of R = (rij) are captured as joint probability mass
functions (pmfs) or co-occurrence matrices of m neighboring residual samples in
the horizontal and vertical direction. The horizontal co-occurrence for residual
R is

C(h)
d = Pr(rij = d1 ∧ . . . ∧ ri,j+m−1 = dm), d = (d1, . . . , dm) ∈ T m, (4)

while the vertical matrix, C(v)
d , is defined analogically. Both have (2T + 1)m

elements.
Most pixel predictors are realized as shift-invariant finite-impulse response

linear filters captured by a kernel matrix. For example, the kernel

K =

−0.25 0.5 −0.25
0.5 0 0.5

−0.25 0.5 −0.25

 , (5)

proposed in [19] predicts the value of the central pixel from its local 3 × 3
neighborhood using the operation of convolution: K ?Y.

Symmetries are conveniently utilized to further reduce the dimensionality of
the co-occurrences and to make them better populated. Given d ∈ T m, we as-
sume that for natural images Cd ≈ C−d and Cd ≈ C←−d ,←−d = (dm, dm−1, . . . , d1).
Symmetrization by sign means merging the bins Cd+C−d, while symmetrization
by direction requires merging Cd + C←−d .

For example, for T = 2 and m = 4, which are the parameters solely used in
this paper, the original co-occurrence matrix, Cd, with (2×2+1)4 = 625 elements
is reduced to 325 elements using the directional symmetry or 338 elements using
the sign symmetry. When both symmetrizations are applied, the dimension is
reduced to 169.

3 Motivation

We now provide heuristic arguments for why detectors that utilize joint statistics
of neighboring residual samples are likely to outperform variants of the WS
analysis. It is because the WS detector can be derived from the assumption that
the individual residual values are independent. Detailed technical arguments
appear in [7] and require proper treatment of quantization effects. The author
derives a CFAR variant of the WS detector starting with the independence



assumption imposed on residual samples obtaining the detector in an asymptotic
limit of infinite pixel bit-depth.

Deriving the detector while considering dependencies among residuals would
require tackling the difficult problem of estimating the covariance between resid-
uals as well as higher-order moments from a rather limited data. Instead, in this
paper we represent groups of neighboring residual samples with co-occurrence
matrices and use machine learning rather than the likelihood ratio test. While
this approach is suboptimal, it is tractable and, as shown below, greatly improves
the accuracy of all variants of WS.

Researchers have been aware for quite a long time that by leveraging the de-
pendencies among neighboring residual samples,2 one can obtain quite substan-
tial improvement in detecting steganographic changes. Steganalyzers working
with features formed as joint or transition probability distributions as features
were shown to outperform [27,25,12,11,13] all previously proposed attacks on
LSB matching and the content-adaptive HUGO. In summary, it makes perfect
sense to expect that the accuracy of the WS detector can be improved as well
by considering higher-order statistical constructs from the residual.

4 Making features parity aware
Features computed from noise residuals, which are outputs of linear filters, such
as (5), “do not see” pixel parity as this information is lost when, for example,
taking a difference between two pixel values. This means that such features
will detect LSB matching and LSB replacement with approximately the same
accuracy.

We now describe several ways how to make the features parity aware. To this
end, we introduce the following notation. For image X ∈ In, we denote by Ẋ,
X̃, X̄ the image X after setting all its LSBs to zero, randomizing all LSBs, and
flipping all LSBs, respectively. Formally,

ẋij = xij − LSB(xij), (6)
x̃ij = ẋij + ϕ, ϕ r.v. uniform on {0, 1}, (7)
x̄ij = xij + 1− 2LSB(xij). (8)

The residuals of X, Ẋ,X̃, and X̄ will be denoted correspondingly as R, Ṙ,R̃, and
R̄. In general, a feature computed from a residual R will be denoted as f(R).

Borrowing the idea from the WS detector, we define the concept of a “parity-
aware residual.” Given a residual R = (rij), its parity-aware version is

R(π) = (r(π)
ij ), r

(π)
ij = (1− 2LSB(xij)) rij . (9)

To make a feature vector of image X parity aware, one can follow the idea of
Cartesian calibration [20] and augment it with a reference feature computed from
Ṙ, R̃, or R̄. We call this “calibration by parity.” Additionally, we can compute
the feature from the parity-aware residual, f(R(π)).
2 The dependencies are due to in-camera processing, such as denoising, filtering, color
interpolation, and also due to the traces of content in the residual.



Source JPEG 80 Uncompressed
Symm. None Both Dir Sign None Both Dir Sign

1 f(R) 0.0164 0.0162 0.0158 0.0159 0.3261 0.3282 0.3246 0.3305
2 [f(R), f(Ṙ)] 0.0114 0.0103 0.0103 0.0106 0.1958 0.1971 0.1959 0.2007
3 [f(R), f(R̃)] 0.0139 0.0130 0.0141 0.0135 0.2534 0.2524 0.2497 0.2531
4 [f(R), f(R̄)] 0.0128 0.0123 0.0129 0.0128 0.2239 0.2281 0.2242 0.2286
5 f(R(π)) 0.0165 0.0398 0.0163 0.0388 0.1253 0.3456 0.1249 0.3480
6 f (663) 0.0086 0.1154

Table 1. Average detection error P̄E for LSB replacement with change rate β = 0.01 in
uncompressed and JPEG 80 BOSSbase. Six different feature sets and their symmetriza-
tions are tested; the last five are parity aware. The last set, f (663), is the 663-dimensional
merger of [f(R), f(Ṙ)] and f(R(π)) symmetrized as explained in the text.

4.1 Testing

In the remainder of this section, we test the above features on BOSSbase and its
JPEG compressed version to investigate the efficiency of calibration by parity
and the parity-aware residual as well as the effect of symmetrization on detection
performance for both types of features. Since these experiments are investigative
in nature, they will be carried out only for one type of residual R obtained using
the predictor K (5). The basic (parity-unaware) feature is

f(R) = C(h)
d + C(v)

d , (10)

obtained as sum of the horizontal and vertical co-occurrences3 with parameters
T = 2 and m = 4, and with total dimensionality of 625 in its non-symmetrized
version.

Table 1 shows P̄E on BOSSbase and its version compressed with JPEG qual-
ity 80. The results are for a fixed change rate β = 0.01, six different feature
sets, and four types of symmetrization. As expected, the detection error is sig-
nificantly lower for decompressed JPEGs than for uncompressed images. The
symmetrization also has a very different impact on the features. In general, fea-
tures computed from the parity-aware residual, R(π), should be symmetrized
only directionally but not by sign. The symmetrization has a much lesser im-
pact on features calibrated by parity, for which both the directional and sign
symmetries can be applied. The best calibration by parity is by zeroing out the
LSB plane, i.e., [f(R), f(Ṙ)]. For JPEG images, this type of calibration gives
the best results while features computed from the parity-aware residual are the
best for uncompressed images. Finally, combining calibration by zeroing-out the
LSBs with parity-aware residual is beneficial as can be seen from the last row
(f (663)) showing the 663-dimensional merger of [f(R), f(Ṙ)] symmetrized by both
direction and sign with f(R(π)) symmetrized directionally.

3 The symmetry of the kernel K allows us to add both co-occurrences.



The fluctuations over the ten database splits are all statistically insignificant
as the MAD of PE(i) over the runs (not shown) was between 5×10−4 on JPEGs
and 4× 10−3 for uncompressed images.

4.2 Analysis by cover source

In this section, we apply feature selection to reveal several interesting facts about
the detection of LSB replacement using parity-aware features from Table 1.

The dimensionality of f(R) and [f(R), f(Ṙ)] symmetrized using both sym-
metries is d = 169 and 338, respectively, while the directionally-symmetrized
f(R(π)) has dimensionality of d = 325. We use a simple forward feature selec-
tion (FFS) method in which the features are selected sequentially one by one
based on how much they improve the detection w.r.t. the union of those already
selected. We start with the feature with the lowest individual detection error
estimated from the training set. Having selected k ≥ 1 features, the k + 1st
feature is selected as the one among the d − k remaining features that leads to
the biggest drop in the error estimate when the union of all k + 1 features is
used. This strategy continuously utilizes feedback of the ensemble classifier as it
greedily minimizes the detection error in every iteration, taking thus the mutual
dependencies among individual features into account. This is an example of a
wrapper [23], which is a feature selection method using the machine-learning
tool as a black-box and is thus classifier-dependent.

Decompressed JPEGs. We start with the source of JPEG compressed images.
Table 2 (left) shows the results of the FFS when applied to the 169-dimensional
feature vector f(R). We used a larger change rate β = 0.02 to make the effects
more pronounced. The most remarkable phenomenon is the large decrease in
detection error when the second bin is supplied to the best individual bin. While
the second bin by itself has a very poor performance almost equal to random
guessing, it extremely well complements the first bin. The error drops further
with added bins but does so rather gradually after the initial drop. Note that
the first bin corresponds to a residual four-tuple with large differences among
neighboring samples. Such a group of values seems to be much less frequent in
decompressed JPEGs than in their stego versions (c.f. the last column in the
table) because the compression smooths the covers and thus empties this bin
while the embedding repopulates it. The second bin serves as a reference, which
is approximately invariant to embedding, and the pair together facilitates a very
accurate detection. In fact, all four next selected bins, k = 2, 3, 4, 5, have a
rather poor individual performance, suggesting that they all serve as different
references to the first bin.

Remarkably, after merging only the first three bins, the cumulative error of
0.0215 is already lower than for the triples analysis – the best prior art performer
(see Table 5). When all 169 features are used, the error drops further to 0.005.
We remind that this result is obtained for a feature vector that is unaware of
the pixel parity! Applying the FFS to f(R) Cartesian-calibrated by parity, f(Ṙ),



k P̄
(cum)
E P̄

(ind)
E Bin Bin count P̄

(cum)
E P̄

(ind)
E Bin Bin count

1 0.2986 0.2986 (-1 2 -1 0) 1509/2291 0.2226 0.2226 (-1 -1 -1 0) 2950/5730
2 0.0377 0.4798 (-1 -1 1 0) 4878/5061 0.0370 0.4660 ( 0 0 1 0) 10130/9470
3 0.0215 0.4582 (-2 0 0 0) 2939/2746 0.0261 0.4712 ( 0 -1 -1 0) 3930/4190
4 0.0190 0.4721 (-2 0 -1 1) 940/989 0.0209 0.4433 ( 0 0 0 0) 116120/91530
5 0.0149 0.4761 (-1 2 -2 0) 2155/2262 0.0117 0.4970 ( 1 0 -2 2) 650/650

169 0.0050 - - - - - - -

Table 2. Forward feature selection strategy with change rate β = 0.02 in JPEG 80: cu-
mulative and individual P̄E, selected bins, and average bin count in cover/stego images.
Left: symmetrized f(R), dimension 169. Right: directionally symmetrized f(R(π)), di-
mension 325. The last row is obtained when all features are used.

returns the same first four bins as for f(R), which is why we are not showing
the results. This also implies that the main power of the detection is drawn from
the singular property of the cover source (compression “empties out” certain
bins) rather than the parity asymmetry of LSB replacement. This is additionally
confirmed by the fact that LSB matching can be detected with the same feature
vector f(R) equally reliably as LSB replacement.

Furthermore, the best individual bin (−1, 2,−1, 0) seems to be universal
across sources of images with suppressed noise, which immediately disperses
any thoughts that the co-occurrence bins might somehow utilize JPEG compat-
ibility for detection. We confirmed this by repeating the same experiment with
the feature vector f(R) for BOSSbase images denoised using the 3 × 3 Wiener
filter with noise variance σ2 = 2, 5, 10 and for BOSSbase denoised using the 3×3
median filter.4

The 325-dimensional feature vector f(R(π)) obtained from the parity-aware
residual exhibits a similar initial phenomenon, see Table 2 (right). The best
individually performing bin is now different than in images with suppressed
noise, which only strengthens our interpretation above.

Uncompressed images. The second experiment was carried out on the uncom-
pressed BOSSbase. In Table 3 (left), we report the results for the best-performing
bins obtained from the parity-aware residual. Although the cumulative error now
falls off much slower than for decompressed JPEGs, we again observe a large ini-
tial drop – the best individual performer is supplied with a reference bin that is
by itself a random guesser. Interestingly, the second selected bin is the negative of
the first bin. In fact, the same is true for the first eight selected bin pairs! To ob-
tain insight into why the bins pair up in this manner, realize that E[r(π)

ij ] = 0 for
unchanged pixels, while E[r(π)

ij ] = −1 whenever the pixel ij was changed. Thus,
while both bins, d,−d ∈ T 4, occur equally likely in covers, in stego images the
one with more negative values is more populated than its negative counterpart.
4 We used Matlab commands wiener2 and medfilt2.



k P̄
(cum)
E P̄

(ind)
E Bin Bin count Wie 2 Wie 5 Wie 10 Med

1 0.4126 0.4126 (-2 -1 0 0) 1353/1536 0.3277 0.2988 0.2536 0.2729
2 0.2164 0.4954 ( 2 1 0 0) 1323/1320 0.1130 0.0709 0.0620 0.0474
3 0.1810 0.4866 (-2 -2 -1 -2) 1912/1976 0.0226 0.0491 0.0365 0.0111
4 0.1489 0.4910 ( 2 2 1 2) 1901/1868 0.0223 0.0354 0.0293 0.0092
5 0.1438 0.4915 (-2 0 -2 -2) 1503/1478 0.0222 0.0299 0.0236 0.0087

325 0.0384 - - - 0.0172 0.0133 0.0110 0.0021

Table 3. Forward feature selection strategy for f(R(π)), dimension 325, for change
rate β = 0.02: cumulative and individual P̄E, selected bins, and average bin count in
cover/stego images. Left: uncompressed images. Right: denoised images. The last row
is obtained when all features are used.

The reason why the boundary bin (−2,−1, 0, 0) was chosen as the best can be
explained by its population. While there are other good individual performers
with individual errors in the range PE ≈ 0.42− 0.45, they are less populated.

About 30 features are enough to obtain a lower detection error than the
best structural performer – the WS analysis with moderated weights with bias
correction (see Table 5).

Denoised images. The last investigative experiment was carried out for four
different versions of BOSSbase denoised using the 3 × 3 Wiener filter with
noise variance σ2 = 2, 5, 10 and the 3 × 3 median filter. For the directionally-
symmetrized f(R(π)) we show in Table 3 (right) the cumulative detection error
when selecting the five best bins using the FFS. The last row shows the detection
error P̄E when using all 325 features f(R(π)). The best performing bin was again
(−1, 2,−1, 0), as in case of decompressed JPEGs, with the exception of Wiener-
filter images with σ2 = 2 where the best bin was the same as the one found for
uncompressed images. In all cases, we observed a sharp drop in detection error
after the second bin is added to the best bin. Images processed by the median
3× 3 filter appear to be particularly easy for detection of LSB replacement. For
these four sources, the FFS did not seem to select the bins in pairs as observed
for uncompressed images, which indicates that the detection utilizes the low level
of noise of covers more than the singularity of LSB replacement.

5 Scaling up the image model

In this section, we scale up our approach to the rich image model built in [11].
Due to the complexity of this model and the limited space in this paper, we
cannot describe it here in detail and instead refer to the original publication.
We use the predictors described in Section IV of [11] designed to better adapt
to content around edges and in textures. The resulting set of 39 feature sets
obtained with T = 2, q = 1, and m = 4 forms the rich model feature vector f (r).
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Fig. 1. Average detection error P̄E for different versions of the rich model (see text for
details). Left: dependence on the change rate for two selected quality factors. Right:
Dependence on the quality factor for two change rates.

We test the following four versions of the rich model (the dimensionalities
are in brackets):

1. f (r)(R) symmetrized by both sign and direction (12,753);
2. f (r)(R(π)) symmetrized only directionaly (25,350);
3. [f (r)(R), f (r)(Ṙ)] symmetrized by both sign and direction (25,506);
4. Merger of 2) and 3): f (50,856) = [f (r)(R), f (r)(Ṙ), f (r)(R(π))] (50,856).

Note that we do not symmetrize f (r)(R(π)) by sign as this would compromise its
parity awareness as seen in Table 1.

Table 4 contrasts the performance of f (50,856) with f (663) and the best prior-
art detectors from Table 5. The top two charts in Figure (1) show that the
f (50,856) model brings improvement over the 663-dimensional model especially
for small change rates and high quality factors / uncompressed images. The two
bottom charts inform us about the importance of making the feature vector f (r)

parity aware. The gain is the biggest for high-quality JPEGs and uncompressed
images and it also increases with the change rate.



6 Conclusion

In 2005, the author of [14] expressed the following opinion about the state of
the art in detection of LSB replacement: “... Because it makes full use of struc-
tural information, in some sense this framework [structural steganalysis] should
be the last word on the detection of LSB replacement, although many practical
questions remain open.” In this paper, we challenge the supremacy of structural
detectors and show that feature-based detectors with parity-aware features can
significantly outperform all structural detectors as well as variants of WS anal-
ysis in both decompressed JPEG images and in uncompressed images. After all,
it is only natural that the WS analysis with its limiting assumption of indepen-
dent residual samples can be markedly improved as it has been shown in the
literature before that utilizing dependencies in noise residual is quite important
for detection of steganography.

Although the largest gain is demonstrated for high-dimensional rich models,
state of the art can be outperformed using as few as three co-occurrence bins
in decompressed JPEGs and thirty bins for uncompressed images. Our analy-
sis shows that features built as co-occurrences of neighboring noise residuals are
especially effective for detection in images with low level of noise, such as decom-
pressed JPEGs or low-pass filtered images. In fact, here the detection strength
is almost entirely in the peculiarity of the cover source rather than the asym-
metry of the embedding operation (LSB replacement) as comparable detection
accuracy can be obtained for LSB matching.

We introduce and study two general methods for making features parity
aware – by calibration by parity (adding features computed from the image with
zeroed-out LSBs) and by computing the features from a parity-aware residual.
The latter is especially effective for steganalysis in uncompressed images.

Our approach has some obvious limitations imposed by the necessity to build
a classifier. In particular, it is only feasible when sufficiently many images from
a given source are available. For an unknown source, the accuracy of detection
will undoubtedly be negatively affected by the mismatch between the training
and testing data. Thus, for practical applications, quantitative LSB detectors
and especially the CFAR detector of [7] will still be very important and useful
tools. If the cover source is known, however, classifiers, such as those proposed
here, offer a definitive advantage in terms of detection accuracy. The rich models,
and in general any high-dimensional steganalysis, require extensive computing
resources, which limits them to primarily off-line applications rather then real-
time traffic monitoring. We note that the classifier training in high dimensions
is quite feasible with tools, such as the ensemble classifier [22]. It is the time
needed to compute the feature vector, that needs to be done for each analyzed
image, that limits the practical use of such highly complex detectors.

Last but not least, our study seems to hint at new directions in structural ste-
ganalysis. We noticed a surprising universality across a wide spectrum of cover
sources. Certain co-occurrence bins appear to be the overall best performers
when accompanied with suitable reference features that by themselves are ran-
dom guessers. In uncompressed images, bins of the parity-aware residual should



be combined in mutually-negative pairs. A study with a simplified version of
the residual, such as the second-order differences, may reveal well-defined flows
between “trace sets” indexed by the residuals that might eventually lead to novel
structural attacks. This work also reveals a possible way how to describe in a
unified manner the WS analysis and structural detectors, which is a very exciting
topic that we do not further elaborate on in this paper due to lack of space.
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β Det 70 75 80 85 90 95 100 UNCOMP.

0.0005
Tr/WSb 0.4022 0.4148 0.4190 0.4343 0.4464 0.4637 0.4767? 0.4776?

f (663) 0.2121 0.2366 0.2689 0.3050 0.3563 0.4068 0.4695 0.4681
f (50,856) 0.1095 0.1240 0.1579 0.1907 0.2435 0.3170 0.4433 0.4340

0.001
Tr/WSb 0.3168 0.3411 0.3521 0.3728 0.3961 0.4296 0.4547? 0.4536?

f (663) 0.1270 0.1458 0.1709 0.2044 0.2558 0.3266 0.4380 0.4380
f (50,856) 0.0610 0.0699 0.0858 0.1078 0.1439 0.2126 0.3968 0.3743

0.0025
Tr/WSb 0.1738 0.1973 0.2163 0.2372 0.2742 0.3350 0.3875? 0.3869?

f (663) 0.0527 0.0575 0.0676 0.0816 0.1094 0.1704 0.3522 0.3522
f (50,856) 0.0185 0.0245 0.0278 0.0365 0.0504 0.0869 0.2857 0.2512

0.005
Tr/WSb 0.0852 0.1014 0.1139 0.1283 0.1682 0.2346 0.2918? 0.2925?

f (663) 0.0186 0.0211 0.0255 0.0325 0.0443 0.0718 0.2369 0.2369
f (50,856) 0.0073 0.0092 0.0103 0.0134 0.0210 0.0371 0.1681 0.1441

0.01
Tr/WSb 0.0388 0.0464 0.0537 0.0628 0.0832 0.1341? 0.1697? 0.1662?

f (663) 0.0045 0.0066 0.0086 0.0125 0.0186 0.0302 0.1154 0.1154
f (50,856) 0.0027 0.0032 0.0049 0.0067 0.0113 0.0203 0.0686 0.0582

0.02
Tr/WSb 0.0199 0.0225 0.0268 0.0327 0.0430 0.0613 0.0675? 0.0664?

f (663) 0.0009 0.0013 0.0021 0.0048 0.0079 0.0166 0.0332 0.0332
f (50,856) 0.0010 0.0011 0.0017 0.0032 0.0066 0.0126 0.0193 0.0173

Table 4. Comparison of the average detection error P̄E for the best prior art detector,
which is the triples analysis (Tr) and weighted stego-image with bias correction (WSb)
marked by the symbol ?, the feature f (663) from Section 4, and the rich model f (50,856).



β Det 70 75 80 85 90 95 100 UNC.

0.0005

SP 0.4725 0.4727 0.4752 0.4754 0.4792 0.4800 0.4849 0.4855
WSb 0.4265 0.4323 0.4388 0.4477 0.4571 0.4642 0.4767 0.4776
WS 0.4246 0.4240 0.4347 0.4422 0.4538 0.4635 0.4783 0.4768
Tr 0.4022 0.4148 0.4190 0.4343 0.4464 0.4637 0.4853 0.4839

AUMP 0.4564 0.4559 0.4620 0.4656 0.4698 0.4746 0.4805 0.4813

0.001

SP 0.4458 0.4448 0.4501 0.4510 0.4587 0.4626 0.4709 0.4719
WSb 0.3717 0.3768 0.3879 0.3978 0.4124 0.4316 0.4547 0.4536
WS 0.3580 0.3654 0.3768 0.3911 0.4086 0.4310 0.4548 0.4542
Tr 0.3168 0.3411 0.3521 0.3728 0.3961 0.4296 0.4702 0.4673

AUMP 0.4135 0.4139 0.4236 0.4317 0.4386 0.4514 0.4611 0.4614

0.0025

SP 0.3681 0.3768 0.3812 0.3854 0.3954 0.4066 0.4275 0.4255
WSb 0.2639 0.2690 0.2809 0.2922 0.3124 0.3436 0.3875 0.3869
WS 0.2356 0.2460 0.2630 0.2804 0.3069 0.3437 0.3878 0.3898
Tr 0.1738 0.1973 0.2163 0.2372 0.2742 0.3350 0.4243 0.4185

AUMP 0.3037 0.3056 0.3205 0.3392 0.3547 0.3812 0.4056 0.4044

0.005

SP 0.2766 0.2842 0.2909 0.2981 0.3106 0.3271 0.3595 0.3600
WSb 0.1831 0.1838 0.1907 0.1990 0.2121 0.2386 0.2918 0.2925
WS 0.1415 0.1563 0.1690 0.1848 0.2109 0.2392 0.2975 0.2939
Tr 0.0852 0.1014 0.1139 0.1283 0.1682 0.2346 0.3548 0.3432

AUMP 0.1962 0.2015 0.2153 0.2316 0.2494 0.2867 0.3256 0.3276

0.01

SP 0.1756 0.1802 0.1879 0.1949 0.2035 0.2195 0.2594 0.2576
WSb 0.1083 0.1120 0.1164 0.1181 0.1251 0.1341 0.1697 0.1662
WS 0.0730 0.0848 0.0935 0.1048 0.1232 0.1397 0.1770 0.1722
Tr 0.0388 0.0464 0.0537 0.0628 0.0832 0.1377 0.2494 0.2383

AUMP 0.1064 0.1081 0.1195 0.1316 0.1513 0.1818 0.2146 0.2162

0.02

SP 0.0916 0.0931 0.0989 0.0979 0.1094 0.1168 0.1447 0.1410
WSb 0.0550 0.0565 0.0587 0.0592 0.0599 0.0613 0.0675 0.0664
WS 0.0319 0.0359 0.0408 0.0494 0.0585 0.0676 0.0769 0.0714
Tr 0.0199 0.0225 0.0268 0.0327 0.0430 0.0696 0.1392 0.1277

AUMP 0.0498 0.0516 0.0563 0.0629 0.0790 0.1029 0.1231 0.1181

Table 5. Detection error P̄E for five structural detectors, six change rates, β, and eight
cover sources: uncompressed BOSSbase (UNC) and its JPEG compressed versions using
quality factors 70,75,. . .,100. Shaded in gray are the best results for each change rate.
The acronyms are explained in Appendix A.



A Prior art

To establish a baseline and to identify the current most accurate LSB replace-
ment detectors, we report here the results of five attacks that we consider
state of the art: SP analysis [5], WS analysis with prediction kernel K (5)
with moderated weights with (WSb) and without (WS) bias correction [19],
triples analysis with m,n ∈ {−5, . . . , 5} (notation used as in [14]), and the
AUMP detector [7] implemented with the recommended pixel block size m = 16,
q = 6 (polynomial degree 5), and, per author’s recommendation and in con-
trast to the paper, max{1, σ̂} as an estimate of the standard deviation to as-
sure numerical stability. The code for all detectors is available for download at:
http://dde.binghamton.edu/download/structural_lsb_detectors.

Table 5 portrays triples analysis as the most accurate for decompressed
JPEGs up to the quality factor of about 95 when it is outperformed by WSb,
which is the best also for raw images. Our results for SP, WSb, WS, and triples
seem compatible with previous art, at least as much as one can judge by results
on different image sources. However, we observed a disturbingly large discrep-
ancy between our results and what was reported on the same image database
in [7] for WS as well as the SP. The author reports the entire ROC curves for
relative payload R = 0.05, which corresponds to change rate β = 0.025 since the
author is not considering any matrix embedding at the sender. Reading out the
PE from the ROC as the most distant point to the main diagonal in Fig. 5 in [7],
the WS method and the weighted SP achieve PE ≈ 0.2 and PE ≈ 0.45, which is
significantly worse than our results, P̄E = 0.0664 and P̄E = 0.1410, respectively,
obtained for the change rate β = 0.02 (which is additionally slightly smaller than
R/2 = 0.025).
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