
Searching for the Stego-Key

aJessica Fridrich∗, aMiroslav Goljan, and bDavid Soukal
aDepartment of Electrical and Computer Engineering

bDepartment of Computer Science
SUNY Binghamton, Binghamton, NY 13902-6000, USA

ABSTRACT

Steganalysis in the wide sense consists of first identifying suspicious objects and then further analysis during which
we try to identify the steganographic scheme used for embedding, recover the stego key, and finally extract the
hidden message. In this paper, we present a methodology for identifying the stego key in key-dependent
steganographic schemes. Previous approaches for stego key search were exhaustive searches looking for some
recognizable structure (e.g., header) in the extracted bit-stream. However, if the message is encrypted, the search
will become much more expensive because for each stego key, all possible encryption keys would have to be tested.
In this paper, we show that for a very wide range of steganographic schemes, the complexity of the stego key search
is determined only by the size of the stego key space and is independent of the encryption algorithm. The correct
stego key can be determined through an exhaustive stego key search by quantifying statistical properties of samples
along portions of the embedding path. The correct stego key is then identified by an outlier sample distribution.
Although the search methodology is applicable to virtually all steganographic schemes, in this paper we focus on
JPEG steganography. Search techniques for spatial steganographic techniques are treated in our upcoming paper.

Keywords: Steganography, forensic, steganalysis, stego key, search, key

1. STEGANOGRAPHY AND STEGANALYSIS

The purpose of steganography1 is to hide the very presence of communication by embedding messages into
innocuous-looking cover objects, such as digital images. To accommodate a secret message, the original image,
also called the cover image, is slightly modified by the embedding algorithm to obtain the stego image. The
embedding process may depend on a secret stego key KS. The stego key is used to control the embedding process,
such as the selection of pixels or coefficients carrying the message, etc. Before embedding, the message is usually
pre-pended with a header H and further encoded using compression algorithms and/or encrypted using an
encryption algorithm with the encryption key KE.

In contrast to watermarking when the embedded message has a close relationship to the cover image supplying data,
such as sender or receiver information, authentication codes, etc., in steganography, the cover image is a mere
decoy and has no relationship to the hidden data. The most important requirement for a steganographic system is
undetectability: stego images should be statistically indistinguishable from cover images. In other words, there
should be no artifacts in the stego image that could be detected by an attacker with probability better than random
guessing, given the full knowledge of the embedding algorithm, including the statistical properties of the source of
cover images, except for the stego key (Kerckhoff’s principle).

The art of discovering secret messages is called steganalysis. As pointed out in the previous paragraph, in theory,
steganography is considered broken even when the only thing we have is evidence that a certain document contains
hidden data without actually being able to extract it or identify the particular steganographic software that was used
for hiding. On the other hand, it makes sense to include other forensic activities related to message detection and
extraction to steganalysis. On a more general level, steganalysis comprises of the following phases ordered by the
level of success achieved during detection:

0) Identification of web sites, Internet nodes, or computers that should be analyzed (intelligent web-crawlers).
1) Development of algorithms that can distinguish stego images from cover images.

∗ fridrich@binghamton.edu; phone 1 607 777-2577; fax 1607 777-4464; http://www.ws.binghamton.edu/fridrich

2) Identification of the embedding mechanism, e.g., Least Significant Bit embedding (LSB), adding 1 or –1
(±1 embedding), embedding in the frequency domain, embedding in the image palette, sequential, random,
or content-adaptive embedding, etc.

3) Determining the steganographic software9, e.g., Steganos, S-Tools, Hide&Seek, F5, OutGuess, etc.
4) Searching for the stego key KS and extracting the embedded data
5) Deciphering the extracted data and obtaining the secret message (cryptanalysis).

Depending on the specific steganographic and detection algorithms, some of the phases listed above may merge or
be skipped entirely. Most steganalytic algorithms proposed today are targeted to a specific embedding
mechanism2,3,4. On the other hand, universal blind detectors5,6,7 may bring a decisive answer to Phase 1 without
necessarily determining the embedding method. Once the embedding operation or specific artifacts in the image are
known, we may identify possible candidates for the stego software in Phase 3.

The steganalytic work does not have to necessarily follow the phases above. For example, we may have some a
priori knowledge about the stego software that may drastically simplify the analysis  the suspect has downloaded
a certain stego program from the net, or the stego program was found on the hard disk on a seized computer. In the
latter case, it is also not unreasonable to encounter situations when the forensic investigators will have access to
multiple versions of one image (to the cover and stego image). In these cases, the basic steganalysis has been
simplified and the analyst may strive to recover more details, such as the stego key and, eventually, recovering the
hidden data itself.

2. COMPLEXITY OF THE STEGO KEY SEARCH

In this paper, we investigate Phase 4 – the search for the stego key under the assumptions that we already know (or
suspect) the steganographic algorithm under investigation. One common approach, which has also been used by
Provos8, is to apply the dictionary attack and/or brute-force the stego key while looking for a recognizable header as
a sign that we have come across the correct stego key. In fact, this approach could be used as a primitive
steganalytic method for Steps 1 and/or 2. This search, however, will fail if the embedded data stream does not have
any recognizable structure. There are a number of ways how to avoid using recognizable headers for steganographic
communication. One could simply encrypt the secret message including its header. To prevent the fixed header to
be encrypted to the same sequence of bytes for different images, one can pre-pend a random “salt” to the beginning
of the message prior to encryption. Another possibility is to use the PGP Stealth program
(http://www.cypherspace.org /openpgp/stealth/) that was specifically developed for use with steganography.

Thus, one needs to count with the possibility that the embedded data will not exhibit any recognizable structure that
could be used for stego key search. In this case, although the search for the stego key is still possible, it becomes
significantly more complicated because now for each stego-key KS, we need to try all possible encryption keys.
Thus, the complexity of the brute force search becomes proportional to the product of the number of stego and
crypto keys:

Complexity ~ |K|×|E|,

where K and E are the sets of all stego and encryption keys, respectively, and |X | denotes the cardinality of X .
Even though for some stego programs the stego key space itself may be small enough to make the brute force
search for the stego key plausible, if the message has been encrypted, the search may become computationally
infeasible.

The main contribution of this paper is the finding that the brute force search for the stego key can be done for a very
wide class of steganographic techniques in O(|K|) steps and is independent of the encryption algorithm, as long as
the embedded message does not occupy 100% of the image capacity.

Before we proceed with the rest of this paper, we remark that methods that do not have any stego-keys, such as
EzStego or the original version of J-Steg9, can be reliably detected (using the chi-square attack10 and difference
histograms4, respectively), the message easily extracted, and the steganalysis can be readily moved to Phase 5 –
cryptanalysis. Thus, thanks to current advances in detection algorithms, steganalysis of these programs has been
essentially reduced to cryptanalysis.

The same steganographic techniques, however, can be easily modified by embedding the message bits along a
pseudo-random walk. Recently, methods, such as Pairs Analysis11, RS Analysis2, generalized chi-square attack8,12,
universal blind detectors5,6,7, and JPEG steganalysis4,13 have addressed the issue of detection of randomly spread
messages. Despite the fact that most of these detection techniques can also relatively accurately estimate the
unknown message length, they do not provide any information about the stego key. In order to recover the secret
message, we have to go through both steganalytic Phases 4 and 5. In this paper, we show that Phase 5 can be
performed without going through Phase 6 even when the embedded data is encrypted, thus drastically reducing the
complexity of steganalysis.

The paper is organized as follows. In the next section, we define the embedding paradigm that will be investigated
in this paper. The stego key search method is described in simple intuitive terms in Section 4. Detailed description
of the search algorithm for JPEG images is given in Section 5. In Section 6, we demonstrate the method on the F5
algorithm and in Section 7, we continue with another example – the OutGuess. Finally, in Sec. 8, we elaborate on
how our contribution affects the definition of steganographic security and construction of better steganographic
methods. In the same section, we conclude the paper and outline future research directions.

3. EMBEDDING PARADIGM ADDRESSED

The stego-key search methods described in this paper are applicable to virtually all steganographic methods whose
embedding mechanism has the following three primitives (assuming the image consists of individual units or
samples):

1. To embed m bits, m samples are chosen in a pseudo-random fashion from the cover image.
2. The message bits are embedded as Parities of individual image samples.
3. If necessary, the samples’ parity is changed using an Embedding Operation.

Most steganographic techniques indeed work in this manner. The random path selection is usually implemented
using a Pseudo-Random Number Generator (PRNG) that is seeded with a seed derived from a user-specified stego
key or a passphrase. The output of the PRNG is used to generate a pseudo-random walk through the image samples
(pixels for spatial image formats or DCT coefficients for JPEGs).

The parity function assigns a binary value (parity) to every possible value of the samples. In most stego programs,
the parity is the same for all samples and independent of the stego key, as it is the case for the most frequently used
parity – the least significant bit (LSB) of image samples. In more sophisticated methods, the parity function can be
chosen in such a manner to minimize the embedding distortion (see the optimal parity assignment14). Also, the
parity may depend on the sample position and/or on the stego key, as in Stochastic Modulation Steganography15.

The secret message is embedded in the form of a bit-stream as the parity of the samples along the pseudo-random
walk. In order to match the image feature parity with the message bit, the sample is modified using an embedding
operation. This operation could be deterministic or probabilistic. For example, for the LSB embedding, the sample
parity is defined as its LSB and the embedding operation is shown in Table 1.

The program Hide16 also hides data in LSBs of pixels (e.g., it is based on the same parity mapping), however, it
uses a different probabilistic embedding operation (see Table 2). In other words, when the message bit does not
match the pixel parity (its LSB), Hide either adds or subtracts 1 with equal probability 50% with the exception of
values 0 and 255, which are only increased or decreased, respectively.

Modified value when the message bit is Sample
value 0 1
2i 2i 2i+1
2i+1 2i 2i+1

Modified value when the message bit is Sample

value 0 1
2i 2i 2i+1 or 2i–1
2i+1 2i or 2i+2 2i+1

Table 1. LSB embedding operation. Table 2. ±1 embedding operation.

4. PRINCIPLES OF THE STEGO KEY SEARCH

One possible approach to the stego key search could be to first identify which samples have been modified and then
try to reverse-engineer the PRNG that generated the embedding path. However, this approach is infeasible for

several reasons. First, it is in general very hard to identify which samples have been modified. Second, even if we
were able to identify the modified samples, we will not know the order in which they were modified and we will not
know the complete path because on average 50% of samples were not modified because their parity already
matched the message bit. Third, most PRNG are very hard to reverse-engineer in the sense of identifying the seed
from the PRN sequence. For cryptographically strong PRNGs, this task is as complex as an exhaustive search for
the key. Consequently, it seems that the only way to find the stego key is to use an exhaustive search, possibly
combined with the dictionary attack. The key search algorithm proposed in this paper is of this type, as well.

To avoid any confusion, we formulate the stego key search more precisely. The steganographic algorithm may
employ some form of a many-to-one mapping (e.g., a hash function) to map the user passphrase (or password) to
the seed for the PRNG. As a result, it may be impossible to identify the user password itself using any search
method. Thus, in this paper, when we speak about searching for the stego key, we are really searching for the seed
that was used to initialize the PRNG rather than the user passphrase itself. In other words, if our search is
successful, we will be able to find the correct seed, the embedding path, and extract the embedded bits even though
we may not be able to recover the passphrase. Having said this, due to convenience we will never the less speak
about stego keys and stego key search, meaning we are in fact searching for the PRNG seeds.

Now, we are ready to briefly outline the principles of our stego key search method. Let the cover image X be
represented by N samples {xi}, i∈{1, …, N}=I. Depending on the image format, the samples xi can be shades of
gray, color indices, or DCT coefficients. Let K be the space of all possible stego keys that lead to different pseudo-
random paths. After embedding the message, the stego image S={si} is obtained. During embedding, m≤N samples
in X are visited (and potentially modified) along the path generated from the stego key K0∈K. Our task is to find the
embedding key K0 given only the stego image. We proceed in the following manner.

As the first step, we may filter the stego image to improve the SNR between the cover image and the stego signal.
The filtering will also decorrelate the stego image samples. This preliminary step can improve the performance of
the stego key search quite dramatically17, especially for stego schemes that work in the spatial domain. For JPEG
images, we do not perform this step, because individual DCT coefficients already exhibit little inter-block
correlations.

For each key Kj∈K, let I(j) denote the set of sample indices visited along the path generated from the key Kj.
Assuming the message embedded in the image is a random binary stream, in the sequence {si}i∈I(0) on average 50%
of samples will already have the correct parity and 50% of them will be modified by the embedding operation.
Thus, taking the first n samples, n<m along the path generated from the correct key, the expected number of
modified samples is n/2, while the expected number of modified samples along a path generated from an incorrect
key is n×m/(2N)<n/2 (as long as m<N). Thus, if the stego image is not fully embedded, the distribution of samples
{si}i∈I(0) along the correct path will be different from the distributions taken along the incorrect paths {si}i∈I(j), j>0.
Modeling the samples si as realizations of an i.i.d. random variable, their Probability Density Function (PDF) is
their complete statistical characterization. Therefore, it makes sense to try to identify the correct key as the one
producing an “outlier distribution” of samples si. To identify the outlier distribution, we test that the distribution of
{si}i∈I(j) corresponds to an incorrect key.

Assuming the embedding changes are randomly scattered in the stego image, the density of embedding
modifications in the whole image is the same as along an incorrect path. Thus, the expected distribution of n
samples si along a path generated from an incorrect key can be obtained by calculating the PDF h of samples {si}
from the whole stego image (total of N samples). Then, for each key, we test that the samples {si}i∈I(j) are drawn
from h. For this purpose, we employ non-parametric statistical tests, such as the chi-square test.

In Sec. 5, we provide further details of this approach and demonstrate its feasibility on a simulated F5 algorithm. In
Sec. 6, we discuss practical issues for stego key search for OutGuess.

4.1 Search speed and candidates for the correct key
Because the size of the key space varies significantly among steganographic systems and can be quite large, the
most important requirement for an effective stego key search algorithm is its speed with which it processes
individual keys. To maximize the processing speed and the probability of finding the correct key in a reasonable
amount of time, one can employ several measures:

a) The stego key search should start with a dictionary attack and inspect the most likely keys first.
b) The number of samples n along each path could be varied for each key based on the evidence we

collect as we add more samples (see the paper by Chandramouli18 for details).
c) The testing may consist of several hierarchical passes. All keys are first processed using a fast detector

with an extremely low probability of missing a correct key but possibly with a high false positive rate.
It will produce a smaller set of keys that is further processed using another test that has higher
reliability but also higher computational complexity. We can cascade several detectors in this manner
to maximize the speed of the search algorithm (an example of this approach is given in Sec. 6).

d) For many steganographic techniques, it is possible to estimate the relative message length (F5, J-Steg,
OutGuess, spatial LSB embedding). This estimate gives us information on how to choose n and how
many false outliers we can expect during the search.

It is possible that more than one key pass Step c) above. In fact, the number of keys that are identified as potentially
correct strongly depends on the relative message length q=m/N, the number of samples n, the properties of the cover
image, and the number of inspected keys NK. To identify the correct key, for each candidate key we can determine
the whole embedding path and inspect n samples that were not visited during embedding and are thus unmodified
(complement checking). For an incorrect key, we expect statistical evidence compatible with an incorrect key, while
for the correct key the samples’ distribution should again be an outlier.

In the next section, we describe the details of the search algorithm for the JPEG format. The stego key search for
images in spatial formats is treated in our forthcoming publication17.

5. STEGO KEY SEARCH FOR JPEG IMAGES

Let X be the set of quantized DCT coefficients of the cover JPEG image, |X|=N. The stego image S is obtained from
X by visiting (and potentially modifying) m coefficients along the path generated from the key K0, m<N.
Furthermore, let L = min S and R = max S be the smallest and largest DCT coefficients in S. The histogram of DCT
coefficients of the first n samples from I(j) will be denoted as hk(Kj, n), k=L, …, R. To calculate the expected value
and variance of hk(Kj, n) for an incorrect key, we formulate Lemma 1.

Lemma 1. Let Z = {z1, …, zN} be a set of N real numbers and I = {1, …, N}. For a fixed n ≤ N, let ωn be a
random variable defined as the sum of n randomly selected elements in Z:

∑
=

⊂∈

=

randomInI
IIIi

in

nn
nn

z

,||
,

ω .

Then, ∑ =
=

N

i in z
N
nE

1
)(ω and 















−

−







 −

= ∑∑ ==

2

11
2

1

1
)(

N

i i
N

i ik zzN
N

N
n

N
n

Var ω .

Proof: (see reference22).

Let hk be the value of the normalized histogram of DCT coefficients obtained from the whole stego image (all N
samples), ∑khk=1. For a fixed k, define zi =

iksδ for all i∈{1,…, N} and δuv is the Dirac symbol. Then, hk(Kj, n) = ∑i

zi, where i goes through the first n indices in I(j). By Lemma 1,

{ } kk
N

i ijk nhNh
N
nz

N
nnKhE === ∑ =1

),((1)

{ } ()
1

)1(
1

1
),(22

−
−

−=−
−







 −

=
N

nNhnhhNNNh
N

N
n

N
n

nKhVar kkkkjk .

Assuming the key Kj is an incorrect key, the variable 2
1−dχ

()

∑ =−
−

−
−

=
d

k
k

kjk
jd nh

nhnKh
nN

NnK
1

2
2

1
),(1),(χ (2)

has the chi-square distribution with d–1 degrees of freedom. For practical calculations, the histogram values
hk(Kj, n), k = L, …, R should be grouped into d categories c1, …, cd to make sure that each category is well
populated. In this section, we assume d = R–L+1 and ck = hk for all k = 1, …, d for simplicity.

Assuming the key Kj is incorrect, the probability of obtaining the value),(2

1 nK jd −χ ≥ t in the chi-square test is

∫
∞

−
−

−

−







 −

Γ

=
t

dx

d dxxe
d

jp
1

2
1

2

2
1

2
12

1)(= 





+







 −

Γ







 −

−

t
O

d

et td

1

2
1

2
22

3

. (3)

During the key search, we will be focusing on those keys Kj that produce small values of p(j) (or, equivalently, large
values of the chi-square statistic). Such keys will be the candidates for the correct key K0. At this point, it would be
useful to know what values of),(2

1 nK jd−χ should be considered as outlier values and, also, how many “outlier”
values one can expect after going through NK keys. Obviously, this depends on m (or the message length), the
properties of the cover image, the number of samples along each path n, and on NK. To obtain a quantitative insight
into this issue, first note that

()
01

2
0

0
2

1
1/),(1),(a
nN

Nn
h

hnnKh
nN

NnnK
d

k
k

kk
d −

−
≈

−
−
−

= ∑ =−χ , (4)

where a0 depends on the cover and stego image. This is because for the correct key K0 limn→∞ hk(K0, n)/n ≠ hk. Note
that the expected value of),(2

1 nK jd−χ over incorrect keys is 1)],([2
1 −=− dnKE jdχ , which is independent of n.

The constant a0 depends on the histogram of samples {xi} from the cover image and the relative message length
q=m/N. The dependency on q is especially important. In Section 5.1, we derive an expression for a0 for the F5
algorithm. Finally, assuming the key Kj is incorrect, from (3) and (4) the probability of obtaining a value

),(),(0
2

1
2 nKnK dj −≥ χχ is

()






 −

Γ









−
−

≈≥

−
−

−
−

−

2
1

2
1

),()(

2
1

2
3

0

0
2

1
2

0

d

ea
nN

Nn
nKnKP

a
nN

Nn
d

dj χχ . (5)

To show how to further proceed with the analysis and how to calculate a0, we will assume that the steganographic
algorithm under inspection is the F5.

5.1 The F5 algorithm
Introduced by Westfeld19 in 2001, the F5 embeds message bits as the LSBs of coefficients along a key-dependent
random walk through all DCT coefficients of the cover image while skipping the DC coefficients and all
coefficients that are zeros. If the coefficient’s LSB does not match the message bit, the absolute value of the
coefficient is always decremented. If the subtraction leads to a zero coefficient (the so-called shrinkage occurred),
the same message bit must be embedded at the next coefficient, because at the receiving end, the message is

extracted only from non-zero coefficients. As a special feature, the F5 algorithm employs matrix embedding to
minimize the necessary number of changes to embed a message of certain length.

In this section, we discuss the key search for a modified F5 algorithm in which the matrix embedding is turned off
(otherwise the F5 algorithm does not fit the paradigm of Sec. 3). Because matrix embedding essentially makes use
of the whole image, the stego key search becomes much more difficult and less efficient when matrix embedding is
used. In fact, we recommend matrix embedding as one of the possible mechanisms to thwart stego key search
algorithms of the type described in this paper.

Let us denote the normalized histogram of the DCT coefficients in the cover image with capital letters Hk. Then,
after embedding (and visiting m coefficients), the expected value (over different messages) hk of the normalized
histogram of DCT coefficients in the stego image is

,0for , 2/)2/1(
,0for , 2/ 2/
,0for , 2/)2/1(

1

1100

1

<+−=
=++=
>+−=

−

−

+

kHqHqh
kHqHqHh
kHqHqh

kkk

kkk

 (6)

where q=m/N is the relative message length (q=1 for a fully embedded image). After substituting (1) and (6) into
(4), after some algebra, we obtain

()
00

2

1

2
0

0
2

1
1

4
)1(1/),(1),(a

nN
Nnq

nN
Nn

h
hnnKh

nN
NnnK

d

k
k

kk
d −

−
=

−
−
−

=
−

−
−

= ∑ =− χχ , (7)

where () ()∑∑ =
+−−

=
− −

+
+

+
−

=
R

k
k

kk
Lk

k

kk

h
HH

h
HH

h
HH

1

2
1

0

2
111 2

1
0

)(χ . (8)

We note that χ0

2 is still a function of q (because hk depends on q), however the dependence on q is “weak” in the
sense that 0<u0≤χ0

2(q)≤u1 for all q, and u0 and u1 constants. We are now in the position to estimate the number of
incorrect keys Nout producing outlier values of the chi-square statistic χ2 comparable to the correct key after going
through NK keys:

()






 −

Γ










 −
−
−

≈≥=

−
−
−

−
−

−

2
1

8
)1(1

),(

8
)1(12

3

0
2

0
2

1
2

out

0
2

d

eq
nN

Nn
NnKPNN

q
nN

Nn
d

KdK

χ
χ

χχ (9)

5.2 Stego key search for F5
Because for natural images hk has a sharp peak at 0 and then quickly falls off, we merged the histogram values into
d=5 categories:

 Category 1: c1= hL+…+h–2 (10)
 Categories 2–4: c2= h–1, c3= h0, c4= h1

 Category 5: c5= h2+…+hR .

The performance of the stego key search strongly depends on the parameters n, m (or q), and NK. The number of
samples n cannot be too small, otherwise the chi-square test would not have sufficient statistics. Also, smaller
values of n lead to larger Nout necessitating “complement checking” (see Sec. 4.1) further slowing down the key
search. Thus, there is a lower bound on the message length for which the stego key search is feasible.

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Nout/NK 10–43 10–33 10–25 10–18 10–12 10–7.5 10–4 0.01

 Table 3. Relative number of incorrect keys producing the chi-square value comparable with the
 correct key. The test image was a grayscale 864×1152, 80% quality JPEG, n=104, d=5.

On the other hand, messages with q close to 1 will also pose a problem because the difference in histograms
between a correct and an incorrect path will be increasingly small as q approaches 1. This qualitative feeling can
clearly be seen in (9) and is illustrated in Table 3.

To obtain the same number of outliers Nout for two different message lengths q1 and q2, the number of samples n1
and n2 must be chosen so that

2
2

2

22
1

1

1)1()1(q
nN

nq
nN

n
−

−
=−

−
 (11)

However, this in turn imposes a lower bound on the message lengths for which we can perform the stego key search
because in all cases n≤qN.

To test our stego key search algorithm, a simple Matlab routine was implemented to search through 106 keys with
n=104 samples for q=0.3 (m=298600) and the same test image as the one used to obtain Table 3. A Pentium IV,
2.7GHz PC went through all keys in 8.5h, which corresponds to 32 keys per second. The correct key was identified
as an outlier (see Fig. 1.).

We acknowledge that the search could be substantially sped up by programming it in C rather than Matlab.
However, the most decisive factor influencing the speed of the key search is the PRNG used for generating the
random paths. Steganographic algorithms that generate a random permutation of all samples will lead to slower key
searches than algorithms for which only a small portion of each path can be generated without having to produce
the whole embedding path. The results for the F5 are given here for illustration of the search algorithm. Practical
implementation issues, ideas for speeding up the search, and various tricks one can use for specific steganographic
schemes are elaborated upon in the next section where we discuss OutGuess.

Fig. 1. The outlier of the chi-square statistics identifies the correct key among 106 keys. On the right, the chi-square distribution
for d=5 degrees of freedom obtained from the experimental data (outlier denoted with arrow).

6. STEGO KEY SEARCH FOR OUTGUESS

In this section, we study the key search for the OutGuess algorithm20. We explore some important implementation
issues in more detail, paying attention to the speed of the key search. Also, this study is an example of how one can
proceed for a specific steganographic program and how to utilize specific embedding features to our advantage.

OutGuess was proposed by Provos20 to counter the steganalytic attack proposed by Westfeld10. The embedding
process proceeds in two passes. In the first pass, similar to J-Steg, OutGuess embeds message bits along a random
walk into the LSBs of coefficients while skipping 0’s and 1’s. A pre-calculated number of DCT coefficients are left
unmodified with the intention to adjust (after embedding) the histogram of the stego image to its original state.
Thus, after embedding the image is processed again using a second pass. This time, corrections are made to the
coefficients that were not visited during the first pass to make the stego image histogram match the cover image
histogram. The program is freely available at http://www.outguess.org.

The embedded data always consist of two parts – a header and the message data. The header is embedded in
coefficients determined by the secret shared stego key. It contains information about the message length and a
session key. The embedding path in OutGuess is a function of the message length and the session key. The pseudo-
random selection of coefficients proceeds sequentially through the image while the offset between selected
coefficients is subjected to pseudo-random variations tuned so that OutGuess goes through the whole image during
the first pass.

The sequential character of the path generation creates some difficulties for our stego key search. The first n
coefficients from each path do not form a random sample of all coefficients. Thus, (2) will not have the chi-square
distribution. This can be simply remedied by generating the complete embedding path (instead of the first n
samples) and then randomly selecting from it n samples. While this approach indeed works as expected, it is slow
because the whole path must be generated for each key.

To improve the search speed, we have decided to use a different approach. Because the embedding operation in
OutGuess is LSB flipping (see Table 1), we expect hi(K0, n) = hi+1(K0, n), i = 2, 4, 6, … and i = –2, –4, –6, … along
the path from the correct key K0. This is because LSB flipping equalizes the histogram values of coefficients that
form an LSB pair. This observation is the basis of the “chi-square attack10” and is also the starting point for our
stego key search for OutGuess. Again, denoting the normalized histogram of the cover image with capital H, the
expected values of the stego image histogram hk are

h2i= q/2H2i+1+(1–q/2)H2i, h2i+1= (1–q/2)H2i+1+q/2H2i. (12)

Each variable hk(Kj, n) follows a binomial distribution with the following mean and variance:

Correct key: E(hk(Kj, n)) = n(h2i+h2i+1)/2 = n(H2i+H2i+1)/2 = n ih2 , k∈{2i,2i+1}

 Var(hk(Kj, n)) = n ih2 (1– ih2)(N01–n)/(N01–1) , (13)
 Incorrect key: E(hk(Kj, n)) = nhk,

 Var(hk(Kj, n)) = nhk(1–hk)(N01–n)/(N01–1) ,

where N01 is the number of all DCT coefficients different from 0 and 1 and ih2 =(h2i+h2i+1)/2. The stego key search
proceeds by testing for each key Kj that the histogram hk(Kj, n) corresponds to the correct key. The chi-square test is
used to test that h2i = ih2 ,

()
∑ =−

−

−
−

=
R

Li
i

iji
jd h

hnnKh
nN

NnnK
2

2

2
22

01

012
1

/),(1),(χ . (14)

For the correct key K0, (14) has a chi-square distribution with 4 degrees of freedom (over all random messages). For
an incorrect key, from (12) and (13) we obtain

E[h2i(Kj, n)/n– ih2]2 = (H2i–H2i+1)2(1–q)2/4+(N01–1)/(N01–n)h2i(1–h2i)/n .

In the expression above, we used the fact that E(ξ2)=E(ξ)2+Var(ξ) for any random variable ξ. Thus, for an incorrect
key Kj and for large n, we can write:

.
)(1

2
)1(

)1()1/()(4/)1()(1
)),((

1
122

2
122

01

01
2

1
2

22
22

122

01

012
1

∑

∑

=
+

+

=
+

−

+
−

−
−−

≅

≅
−−−+−−

−
−

=

d

i
ii

ii

d

i
i

iiii
jd

HH
HH

nN
Nqn

h
hhNnNqHH

nN
N

nnKE χ
 (15)

Notice that the outlier value is again proportional to the product of the sample length n and (1–q)2. The stego key
search now proceeds by calculating (14) for each key while identifying outlier distributions that produce small

values of the chi-square statistics. In sections below we describe in detail how the stego key search was customized
for OutGuess.

For the chi-square test, we grouped the histogram values into d=5 categories consisting of four pairs (–4,–3), (–2,–
1), (2,3), (4,5), and the remaining coefficients

Category 1–4: c1= h–4, c2= h–2, c3= h2, c4= h4 (16)
 Category 5: c5= … h–8+h–6+ h6+h8… .

6.1 OutGuess random path generator
There are two published versions of OutGuess – version 0.13b and 0.2. Because both versions are very similar from
the point of view of this paper, we describe them at the same time while pointing out their differences throughout
the text. The embedding algorithm has the following features:

1. The pseudo-random path is determined by a user-specified pass phase. After the pass phrase is hashed

using the MD5 hash function, the hash is used to initialize an RC4 PRNG.
2. The message is stored in LSBs of DCT coefficients whose selection depends on the OutGuess version

Version 0.2 uses all DCT coefficients different from 0 or 1.
Version 0.13b uses all non-DC coefficients whose values are neither 0 nor 1.

3. The message can be optionally “wrapped” using an error correcting code (ECC).
4. OutGuess tries many stego (session) keys and embeds the message bits while measuring the embedding

distortion to the cover image. The stego key that gives the least distortion is finally selected for embedding.
The program communicates the session key and the message length in a fixed 32-bit header along with the
message.

5. The version 0.2 allows for correction of distortion of the global histogram so that the stego image
histogram of DCT coefficients is virtually identical to the cover image histogram.

We have modified the original source code of the program (for both versions) to implement the following stego key
search algorithm. The choice of the parameters T and n is discussed later.

6.2 Stego key search algorithm for OutGuess 0.13

0. Read the stego image under inspection and extract all DCT coefficients. Calculate the critical value χ2
c of

χ2 corresponding to 4 degrees of freedom for a given significance level (we used α = 0.001). Before
embedding, OutGuess calculates the maximal message length Nmax (Nmax=N01 for version 0.13, and
Nmax=min{N01/2, 2N01h–2/(h–2+h–1)} for version 0.2).

1. Select a stego key K to be tested.
2. Initialize the PRNG using K.
3. Read the header and extract the message length m and the session key KS.
4. Test the validity of the header

a. If the option of using ECC has been selected, check the consistency of the ECC code. If it is not
valid, K cannot be the right stego key. Go to Step 9.

b. If m>Nmax, reject K as being wrong and go to Step 9.
c. (Consistency check) If m is not consistent with our a priori information about the message length,

reject the key and go to Step 9.
d. If m<n, reject the key and go to Step 9.

5. Seed the generator with the extracted session key KS and generate the embedding path.
6. Extract the first n DCT coefficients from the path and test them as follows:

a. Evaluate the chi-square statistics),(2
1 nKd −χ .

b. If),(2
1 nKd −χ <χ2

c , reject the key and go to Step 9, otherwise continue.
7. K is a potential key – it has passed the test based on n coefficients. We repeat Step 6 with n = m – the

length of the alleged message extracted from the header. At this point, we could also engage the
complement checking as described in Sec. 4.1.

8. If the sequence of m coefficients passes the test, K is declared the correct stego key and the search
algorithm stops.

9. If there are any stego keys to be tested, go to Step 1. If there are no stego keys left, the search did not find
any correct key.

In this algorithm, we first test whether the header corresponding to the key K could belong to a real message. For
example, if the user specified the usage of an ECC code, this fact itself forms a constraint helping us reduce the
number of operations because most keys will lead to an incorrect header, and thus the main bulk of computations
can be eliminated (in our experiments, only about 15–25% of keys lead to a valid header).

Then, we extract n coefficients from the message and subject them to the chi-square test. If the test is negative, we
pronounce the key in question as incorrect. However, if this test is successful, we retrieve all m DCT coefficients
corresponding to the message and run the same test again for the whole sequence of m bits. If this test is positive,
we have found the right key. At this point, we could also use the idea of complement checking (see Sec. 4.1).

The choice of the parameter n is quite important. If n is too small, the chi-square statistics may still be in its
“transient phase” due to insufficient statistics. Thus, the correct key may not pass through Step 6 or, on the other
hand, an incorrect key may be passed to Step 7, which unnecessarily increases the computational load. On the other
hand, if n is too large, we waste our time by computing the chi-square statistics for large amounts of data where a
smaller amount would have been sufficient. Even though we did not implement it, it would be possible to estimate
the optimal value of the parameter n dynamically based on the percentage of keys that pass Step 6 and the average
time spent in Steps 6 and 7. Balancing the parameter n during the test could improve the performance for large key
sets. In our experiments, n = 700 (for the default quality factor in OutGuess) usually gave us the best ratio of tested
keys per second. For larger messages, it is necessary to increase n as can be seen in (16).

The consistency check 2c) represents some a priori information we might have about the message length. For
example, the steganalytic tool that drew our attention to the image might have provided us with an estimate me of
the message length2,3,4,1113. If m is “significantly” different from me, we reject the key. The consistency check can
further increase the speed of the stego key search.

The validity test in Step 4 has a major influence on the running speed. Typically, only about 15–25% percent of
keys lead to a valid header. Similarly, the usage of the ECC code helps reduce the number of operations. For large
n, excluding keys based on compatibility with the ECC improved the speed by a factor of 50. This gain becomes
insignificant with smaller n (e.g., around 500).

The key search algorithm was tested on a variety of images with dimensions 1024×768. In each image, we have
embedded messages of length 25%, 50%, and 100% of the maximal histogram-correctable message. Outguess was
set to use the quality factor 75 (its default). The search rate of 20000–35000 keys per second was achieved on a
Pentium IV machine HT (hyper threading) running at 2.4GHz, 512MB, 3200 DDR RAM. This rate would allow us
to search through all numerical passwords of length up to 9 digits (~ 30-bit keys) in about 12 hours. The distribution
of the statistic (15) for 1.1×106 keys and different values of n is shown in Fig. 2.

Fig. 2. Test statistic (15) for n=700 and 1500 for 106 keys. The outlier correct key is indicated with an arrow.

The key search speed is mostly influenced by the quality of the image, not by the length of the message. Because
OutGuess never uses all possible DCT coefficients (Outguess limits the maximal message length to 50% of all
available coefficients), we can detect stego keys even for fully embedded messages.

There are other aspects of Outguess that are relevant for the stego key search. First of all, the program uses the RC4
stream cipher to encrypt messages. Thus, any message is transformed into a pseudo-random stream and this makes
the chi-square test extremely powerful and accurate. Second, Outguess uses a very fast algorithm to generate the
pseudo-random embedding path. It goes through the image in a row-by-row manner and at each place it chooses the
next coefficient by calculating a random shift from the current position; the maximum length of the shift is
dynamically adapted every 8 bits according to the number of bits that remain to be embedded and the number of
bits in the free space. Thus, the embedding path depends on the message length, not only on the key. This way, the
message is spread uniformly. This path generation makes our search run much faster than if the embedding path
was generated by permuting all DCT coefficients.

We close this section with one more observation. Any counter-measures that Outguess uses to fool the detectors do
not affect our key search because we follow the decoding algorithm exactly as if we tried to recover the message
and we stop before we encounter coefficients modified due to the histogram-correction step. This is why the stego
key search can be performed in the same manner for both versions of OutGuess.

7. CONCLUSIONS

In this paper, we present a methodology for identifying the stego key in key-dependent steganographic schemes.
Previous approaches for stego key search were exhaustive searches looking for some recognizable structure
(header) in the extracted bit-stream. However, if the message is encrypted, the search becomes much more
expensive because for each stego key, all possible encryption keys would have to be tested. In this paper, we show
that for a very wide range of steganographic schemes, the complexity of the stego key search is determined only by
the size of the stego key space and is independent of the encryption algorithm. The correct stego key can be
determined through an exhaustive stego key search by quantifying statistical properties of samples along portions of
the embedding path. The correct stego key leads to an outlier sample distribution. The search methodology is
applicable to virtually all steganographic schemes, but this paper focuses on JPEG steganography.

Search techniques for spatial steganographic techniques are treated in our upcoming paper17. For spatial formats, we
first preprocess the stego image to increase the SNR between the stego signal and the cover image. Denoising
filters, together with the chi-square test can be used to detect stego keys even for stego schemes for which there is
no realible steganalysis, such as +–1 embedding or stochastic modulation15.

The existence of fast stego key search algorithms underlines the need for long steganographic keys and secure
PRNGs. Combining a strong encryption algorithm with an insufficient stego key space may actually lead to
successful attacks on the scheme. If the stego key search can be searched in a reasonable time, this method could be
used as a detection method.

Besides making the stego key space large, there is one simple countermeasure that effectively prevents stego key
searches similar to those described in this paper. If the embedding scheme used every sample in the image with the
same probability, independently of the message length, our stego key search would fail. For example, to embed a
message of relative length q, one can embed each message bit into disjoint groups of floor(1/q) samples as their
combined parity (XOR of parities of individual samples). At most one arbitrarily chosen sample needs to be
changed in each group. The message can be padded if necessary to make sure all image samples were potentially
used. Now, the samples along the correct path will have the same properties as samples along an incorrect key.

Another effective measure against the key search is the matrix embedding19. It essentially achieves the same effect
as the group parity embedding and in addition minimizes the number of embedding changes, which further
increases the security of the steganographic scheme. However, in the JPEG format, one can still determine the
correct key when the groups in the matrix embedding are small, e.g., (1,2,4)-matrix embedding. This is because the
DCT coefficients are distributed unevenly (generalized Gaussian) and bits extracted along an incorrect path exhibit
slight bias by which one can identify the correct key, which always produces a random bit-stream (the messages in

F5 are encrypted). Using groups of 8 or more pixels in matrix embedding did not produce any measurable bias in
the extracted bit-stream that one could use for stego key search.

ACKNOWLEDGEMENTS

The work on this paper was supported by the Air Force Research Laboratory, Air Force Material Command, USAF,
under research grant number F30602-02-2-0093. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation there on. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of Air Force Research Laboratory, or the U. S. Government.

REFERENCES

1. R.J. Anderson and F.A.P. Petitcolas, “On the Limits of Steganography”, IEEE Journal of Selected Areas in

Communications, Special Issue on Copyright and Privacy Protection, vol. 16(4), pp. 474−481, 1998.
2. J. Fridrich, M. Goljan, and R. Du, “Detecting LSB Steganography in Color and Gray-Scale Images”, Magazine

of IEEE Multimedia, Special Issue on Security, October-November issue, pp. 22–28, 2001.
3. S. Dumitrescu, Wu Xiaolin, and Z. Wang, “Detection of LSB Steganography via Sample Pair Analysis”, In:

LNCS, vol. 2578, Springer-Verlag, New York, pp. 355–372, 2002.
4. T. Zhang and X. Ping, “A New Approach to Reliable Detection of LSB Steganography in Natural Images”,

Signal Processing, vol. 83, No. 10, pp. 2085–2094, 2003.
5. H. Farid and L. Siwei, “Detecting Hidden Messages Using Higher-Order Statistics and Support Vector

Machines”, In: LNCS, vol. 2578, Springer-Verlag, New York, pp. 340–354, 2003.
6. J.J. Harmsen and W.A. Pearlman, “Steganalysis of Additive Noise Modelable Information Hiding”, Proc. EI

SPIE Electronic Imaging, Santa Clara, January 21–24, pp. 131–142, 2003.
7. R. Tzschoppe, R. Bäuml, J.B. Huber, and A. Kaup, “Steganographic System based on Higher-Order Statistics”,

Proc. EI SPIE Electronic Imaging, Santa Clara, January 21–24, pp. 156–166, 2003.
8. N. Provos and P. Honeyman, “Detecting Steganographic Content on the Internet”, CITI Technical Report 01-

11, 2001.
9. Steganography software for Windows, http://members.tripod.com/steganography/stego/software.html
10. A. Westfeld and A. Pfitzmann, “Attacks on Steganographic Systems”, In: LNCS, vol.1768, Springer-Verlag,

New York, pp. 61−75, 2000.
11. J. Fridrich, M. Goljan, and D. Soukal, “Higher-Order Statistical Steganalysis of Palette Images”, Proc. EI

SPIE: Electronic Imaging, Santa Clara, January 21–25, pp. 178–190, 2003.
12. A. Westfeld, “Detecting Low Embedding Rates”, In: LNCS, vol. 2578, Springer-Verlag, New York, pp. 324–

339, 2003.
13. J. Fridrich, M. Goljan, and D. Hogea, “New Methodology for Breaking Steganographic Techniques for

JPEGs”, In Proc. EI SPIE Electronic Imaging, Santa Clara, January 21–24, pp. 143–155, 2003.
14. J. Fridrich and R. Du, “Secure Steganographic Methods for Palette Images”, In: LNCS, vol. 1768, Springer-

Verlag, New York, pp. 47–60, 2000.
15. J. Fridrich and M. Goljan, “Digital Image Steganography Using Stochastic Modulation”, Proc. EI SPIE

Electronic Imaging, Santa Clara, January 21–24, pp. 191–202, 2003.
16. T. Sharp, “An Implementation of Key-Based Digital Signal Steganography”, In: LNCS vol. 2137, Springer-

Verlag, New York, pp. 13–26, 2001.
17. J. Fridrich, M. Goljan, D. Soukal, and T. Holotyak, “Forensic Analysis: Determining the Stego Key from Stego

Images”, submitted to the 6th Information Hiding Workshop, Toronto, May 23–25, 2004.
18. R.Chandramouli and N.D. Memon, “On sequential watermark detection”, to appear in IEEE Transactions on

Signal Processing, Special Issue on Signal Processing for Data Hiding in Digital Media and Secure Content
Delivery, 2003.

19. A. Westfeld, High Capacity Despite Better Steganalysis (F5–A Steganographic Algorithm). In: LNCS,
vol. 2137, Springer-Verlag, New York, pp. 289–302, 2001.

20. N. Provos, “Defending Against Statistical Steganalysis”, 10th USENIX Security Symposium, Wash. DC, 2001.
21. F. Alturki and R. Mersereau, “A Novel Approach for Increasing Security and Data Embedding Capacity in

Images for Data Hiding Applications”, Proc. of ITCC, Las Vegas, Nevada, pp. 228–233, 2001.
22. J. Fridrich and M. Goljan, “On Estimation of Secret Message Length in LSB Steganography in Spatial

Domain”, to appear in EI SPIE Electronic Imaging, San Jose, January 18–22, 2004.

