
Advancing the JPEG Compatibility Attack: Theory, Performance,
Robustness, and Practice

Eli Dworetzky, Edgar Kaziakhmedov, and Jessica Fridrich
Binghamton University

Department of Electrical and Computer Engineering
Binghamton, NY 13850

{edworet1,ekaziak1,fridrich}@binghamton.edu

ABSTRACT
The JPEG compatibility attack is a steganalysis method for detect-
ing messages embedded in the spatial representation of an image
under the assumption that the cover image was a decompressed
JPEG. This paper addresses a number of open problems in previous
art, namely the lack of theoretical insight into how and why the
attack works, low detection accuracy for high JPEG qualities, ro-
bustness to the JPEG compressor and DCT coefficient quantizer, and
real-life performance evaluation. To explain the main mechanism
responsible for detection and to understand the trends exhibited by
heuristic detectors, we adopt a model of quantization errors of DCT
coefficients in the recompressed image, and within a simplified
setup, we analyze the behavior of the most powerful detector. Em-
powered by our analysis, we resolve the performance deficiencies
using an SRNet trained on a two-channel input consisting of the
image and its SQ error. This detector is compared with previous
state of the art on four content-adaptive stego methods and for a
wide range of payloads and quality factors. The last sections of this
paper are devoted to studying robustness of this detector with re-
spect to JPEG compressors, quantizers, and errors in estimating the
JPEG quantization table. Finally, to demonstrate practical usability
of this attack, we test our detector on stego images outputted by
real steganographic tools available on the Internet.

CCS CONCEPTS
• Security and privacy; • Computing methodologies → Im-
age manipulation; Neural networks;

KEYWORDS
Steganography, steganalysis, JPEG, compatibility, robustness, round-
ing errors, deep learning, wrapped distributions
ACM Reference Format:
Eli Dworetzky, Edgar Kaziakhmedov, and Jessica Fridrich. 2023. Advancing
the JPEG Compatibility Attack: Theory, Performance, Robustness, and Prac-
tice. In Proceedings of the 2023 ACM Workshop on Information Hiding and
Multimedia Security (IH&MMSec ’23), June 28–30, 2023, Chicago, IL.. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IH&MMSec ’23, June 28–30, 2023, Chicago, IL.
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-XXXX-XXX. . . $15.00
https://doi.org/10.1145/XXXXXXX

1 INTRODUCTION
The JPEG Compatibility Attack (JCA) is a specialized image ste-
ganalysis method that can reliably detect messages embedded with
spatial-domain steganography under the assumption that the cover
image is a decompressed JPEG. The compression imposes strict con-
straints on the spatial-domain representation, which allows very
accurate detection of pixel modifications even for small payloads.

The assumption that the cover was originally stored as JPEG is
feasible as the vast majority of images are stored in the JPEG format.
Two scenarios can make the JCA applicable, either due to action
of the user or the stego program itself. A steganographer might
supply a decompressed JPEG to the stego tool perhaps because it
offers a larger embedding capacity than hiding directly in its JPEG
form or because the data hiding tool cannot handle the JPEG format.
In the second scenario, a stego tool accepts JPEG images on their
input but hides in their decompressed form. To show how wide
spread the second scenario is and to underline the relevance of our
work, we downloaded from the Internet 45 stego tools available
from various repositories. Out of these 45 tools, 42 accepted a JPEG
cover image and 15 (or 36%) of these tools produced stego images
in raster format that were all perfectly detected as stego with our
implementation of the JCA (Section 10).

The attack was originally conceived in [12] based on the idea
that one could prove that a given image contains blocks of 8 × 8
pixels that could not be obtained by decompressing any combina-
tion of 64 quantized Discrete Cosine Transform (DCT) coefficients.
A brute force search in the form of a tree-pruning algorithm was
proposed to obtain such proof. For larger quality factors (smaller
JPEG quantization steps), the complexity of this search increases
rapidly, which makes this attack impractical to use at scale. More-
over, since the original JPEG compressor is not available to the
Warden, in practice the incompatibility of a block would also need
to be verified w.r.t. all JPEG decompressors, which further increases
the complexity and may not even be feasible.

A quantitative version of this attack that estimates the change
rate introduced by Least Significant Bit (LSB) replacement was
proposed in [4, 5], where a recompressed-decompressed version
of the image was used as a pixel predictor in the weighted Stego-
Image (WS) attack [22]. The detection accuracy of this attack is
fairly robust w.r.t. errors in the estimated quantization table as well
as different JPEG compressors. This approach is, however, funda-
mentally limited to LSB replacement and cannot detect embedding
that uses LSB matching, which is the case of all modern content-
adaptive stego algorithms. The same recompression predictor was
also used in [27], where the number of pixels by which the stego im-
age and its recompressed version differed was used as the detection

https://doi.org/10.1145/XXXXXXX
https://doi.org/10.1145/XXXXXXX

statistic. The departure from the WS detector allowed detection of
embedding operations other than LSB replacement.

An improved localized version of this attack [23] counts the num-
ber of different pixels between the image and the recompressed-
decompressed version in each 8 × 8 block. A 65-dimensional his-
togram of these counts, which we call the recompression residual
histogram (RRH), served as a feature vector for training a classi-
fier. The authors reported a markedly improved detection accuracy
especially for larger quality factors and small payloads.

All forms of the JCA generally become less accurate for high qual-
ities because the process of recompression-decompression, which
is used as a powerful reference, is more affected by rounding in the
spatial domain when decompressing the original cover image. The
stego changes thus become harder to distinguish from recompres-
sion artifacts, which decreases the detection accuracy especially
for content-adaptive steganography as the recompression artifacts
and stego changes often occur in approximately the same areas of
the image. Addressing these deficiencies is one of the goals of this
paper.

In Section 2, we introduce the notation used throughout the pa-
per and relevant background material from the field of directional
statistics. Section 3 describes the compression pipelinewithinwhich
the JCA operates, which includes the original compression, decom-
pression and embedding, and recompression by the Warden. This
pipeline is analyzed in Section 4 by imposing a model on the DCT
coefficient quantization errors during the initial compression. In
Section 5, this model allows us to derive the most powerful detector
in the form of the likelihood ratio (LRT), which is subsequently
used to obtain insight into the inner workings of the JCA and also
explain the trends in detection accuracy observed for heuristic de-
tectors in Section 6. Section 7 contrasts the detection of the LRT,
our newly proposed CNN-based detectors, and previous art — for
a wide range of JPEG quality factors, payloads, and embedding
schemes. The remaining sections are devoted to studying impor-
tant practical aspects of the JCA. Section 8 focuses on the JCA’s
robustness to various JPEG compressors and DCT quantizers. Since
the JCA needs to estimate the quantization table of the original
JPEG compression, in Section 9 we demonstrate that the table can
be accurately estimated from the decompressed cover / stego image
while pointing out an important fact that, for the purpose of the
JCA, only divisors of quantization steps (the so-called sufficient
steps) need to be estimated. In Section 10, we report how our JCA
performed in real life conditions on existing stego tools. The paper
is concluded in Section 11.

2 PRELIMINARIES
2.1 Notation
The operation of roundingx ∈ R to the nearest multiple of a positive
integer q is denoted by [x]q ≜ q · [x/q], where the square bracket
is the operation of integer rounding [x]1 = [x]. The quantization
(rounding) error is defined as errq (x) ≜ x − [x]q . Rounding x
“towards zero” is denoted as trunc(x) and is defined as trunc(x) =
⌊x⌋ for x ≥ 0 and trunc(x) = ⌈x⌉ for x < 0, where ⌊x⌋ and ⌈x⌉
represent flooring and ceiling. Clipping x to a finite dynamic range
[0, 255] is denoted clip(x)with clip(x) = x for x ∈ [0, 255], clip(x) =
0 for x < 0 and clip(x) = 255 for x > 255. The symbol ≜ is used

whenever a new concept is defined. The uniform distribution on
the interval [a,b] will be denoted U[a,b] while N(µ,σ 2) is used
for the Gaussian distribution with mean µ and variance σ 2. If X is a
random variable, then fX , E[X], and Var[X] denote the probability
density (PDF), expectation, and variance of X , respectively.

Boldface symbols are reserved for matrices and vectors. The
symbols ′⊙′ and ′⊘′ denote element-wise product and division
between vectors / matrices of the same dimensions. For readabil-
ity, we slightly abuse notion when referring to the (element-wise)
matrix extensions of the above operations. For example, rounding
x ∈ Rm×n w.r.t. a matrix q ∈ Rm×n is defined by [x]q ≜ q⊙ [x⊘ q]
where [·] denotes element-wise integer rounding in this context.
Similarly, we define errq(x) ≜ x − [x]q.

2.2 Directional statistics
For any real-valued random variable X and positive integer q, the
distribution of the quantization error errq (X) is obtained by parti-
tioning R into intervals of length q and applying the law of total
probability. From the perspective of directional statistics [28] we
can also obtain the distribution of errq (X) by wrapping the dis-
tribution of X onto a circle with circumference q. In other words,
errq (X) has a wrapped PDF of the form

∑
n∈Z fX (x + qn) with a

support confined to the interval [−q/2,q/2).1 Seeing this connec-
tion between quantization error and wrapped distributions will
allow us to use the following results during our study of the JCA.

When X ∼ N(µ,σ 2), the quantization error errq (X) follows a
wrapped Gaussian distribution NW (µ,σ 2,q) whose PDF is

д(x ; µ,σ 2,q) ≜
1

√
2πσ 2

∑
n∈Z

exp
(
−
(x − µ + qn)2

2σ 2

)
, (1)

when −q/2 ≤ x < q/2 and д(x ; µ,σ 2,q) = 0 otherwise. We note
that the wrapped Gaussian is equivalent to what was called a folded
Gaussian in [8] and [9]. However, since the class of wrapped distri-
butions is well studied and is the standard nomenclature in direc-
tional statistics [28], we use the term wrapped hereafter.

The wrapped Gaussian is adequately approximated by the trun-
cated sum over the 2N +1 terms for which n ∈ {0,±1, . . . ,±N }; the
choice of N depends on µ,σ 2,q and the desired precision [28]. For
example, д(x ; 0, 1/12,q) is well-approximated by one term (n = 0)
for q ≥ 2 and three terms (n = −1, 0, 1) for q = 1. General bounds
for the approximation error are found in [8, 24, 28].

Finally, we recall a fundamental asymptotic result known as
Poincaré’s Limit Theorem (PLT) [28] applied to quantization error.
If X is an absolutely continuous random variable and q is fixed,
then the distribution of errq (cX) tends to the uniform distribution
U[−q/2,q/2) as c → ∞. A generalized PLT is developed in [20] for
wrapping a joint distribution onto a compact symmetric space. Here,
we state a simplified version for wrapping distributions over Rm
onto am-torus via themap errq where q ∈ Rm .2 IfX is an absolutely
continuous random vector on Rm , then the distribution of errq(cX)

tends to the uniform distribution on the set
∏m

i=1[−qi/2,qi/2) as
c → ∞.

1One can think of the interval [−q/2, q/2) as having its end points glued together to
form the circle (or a 1-torus).
2Loosely speaking, am-torus is the hypercube

∏m
i=1[−qi /2, qi /2) with its opposing

faces glued together (topologically) where
∏

denotes the cartesian product.

3 PIPELINE
In this section, we introduce the pipeline through which an orig-
inally uncompressed (raw) image is JPEG compressed and then
decompressed for spatial domain embedding, and possibly embed-
ded with a secret message. For clarity, all objects included in this
initial compression-decompression will be denoted with a super-
script ′(0)′. JPEG compression proceeds by dividing the image into
8 × 8 blocks, applying the DCT to each block, dividing the DCT
coefficients by quantization steps, and rounding to integers. The
coefficients are then arranged in a zig-zag fashion, losslessly com-
pressed, and written into the JPEG file together with a header. In
this paper, we constrain ourselves to grayscale images.

The original uncompressed 8-bit grayscale image with N1 × N2
pixels is an element of {0, 1, . . . , 255}N1×N2 . Throughout this paper,
x(0) = (x

(0)
i j) denotes one specific 8×8 block of uncompressed pixels

where 0 ≤ i, j ≤ 7. For clarity, we strictly use i, j to index pixels
and k, l to index DCT coefficients.

During JPEG compression, the block of DCT coefficients before
quantization, y(0) ∈ R8×8, is obtained using the formula y(0)kl =

DCTkl (x(0)) ≜
∑7
i , j=0 f

i j
kl x

(0)
i j , 0 ≤ k, l ≤ 7, where

f
i j
kl =

wkwl
4

cos
πk(2i + 1)

16
cos

πl(2j + 1)
16

, (2)

are the discrete cosines and w0 = 1/
√
2, wk = 1 for 0 < k ≤ 7.

The pair (k, l) is called the kl th DCT mode. Before applying the
DCT, each pixel is adjusted by subtracting 128 from it during JPEG
compression, a step we omit here since it has no effect on our
analysis. For brevity, we will also use matrix notation and denote
the DCT of a block u as v = Du where vkl = DCTkl (u) for all
k, l . Here, D is a 64 × 64 matrix of discrete cosines and u, v are the
blocks rearranged as column vectors. Note that D⊤ = D−1 due to
orthonormality.

The block of quantizedDCTs is c(0) = [y(0)⊘q], c(0)kl ∈ {−1024, . . . ,
1023} where q = (qkl) is a luminance quantization matrix of
quantization steps qkl supplied in the header of the JPEG file.
For a JPEG compressor that uses truncation instead of rounding,
c(0) = trunc(y(0) ⊘ q).

During decompression, the above steps are reversed. First, de-
quantizing c(0) yields ỹ(0) = q⊙ c(0). Applying the inverse DCT, the
block x̃(0) of non-rounded pixels after decompression is obtained
by x̃

(0)
i j = DCT−1i j (̃y

(0)) ≜
∑7
k ,l=0 f

i j
kl ỹ

(0)
kl , where x̃

(0)
i j ∈ R, or in

the matrix form x̃(0) = D⊤ỹ(0). The pair (i, j) used to index x̃ (0)i j is
called the ijth JPEG phase [15]. Finally, rounding x̃(0) to integers
and clipping to a finite dynamic range [0, 255] produces the fully
decompressed block x = (xi j).

At this point, the steganographer may embed the cover image
x with a secret message by introducing embedding changes η to
produce the stego image x(s) = x+η. In the JCA, the (cover or stego)
image is again JPEG compressed and decompressed by the Warden
to obtain a reference image. To simplify the analysis and improve
the clarity of our results, we postpone discussion of potentially
mismatching the steganographer and Warden’s JPEG compressors
to Section 8. Until then, we assume the two parties share and have
full knowledge of the same JPEG compressor (besides the initial

x(0)

y(0) ỹ(0)

x̃(0) x

y ỹ

x̃

ε(0) = y(0) − ỹ(0)

δ = x̃(0) − x

ε = y − ỹ

D

[·]q

D−1

[·]

D

[·]̂q

D−1

Figure 1: JPEG compression - decompression - recompres-
sion pipeline. Adjusting pixels to [−128, 127] and clipping to
[0, 255] are ignored.

compression possibly involving trunc). Since q is not available in
a decompressed JPEG’s file format, recompression in practice is
performed using a quantization matrix, q̂, estimated directly from
x or x(s). To simplify matters further, until Section 9 we assume the
Warden knows the exact quantization table q̂ = q.

Figure 1 visually conveys the JCA pipeline considered in this
paper. As shown, the recompressed blocks y, ỹ, x̃ are all defined by
repeating the compression process. We omit c(0) and c from Figure 1
since the operation [·]q combines quantizing and dequantizing
into one step. All stego versions of the objects considered in the
recompression will be denoted with a superscript ′(s)′ — the cover
versions do not have a superscript.

We denote the initial quantization error by ε(0) ≜ y(0) − ỹ(0),
the decompression (rounding) error in the spatial domain by δ ≜
x̃(0) − x, and the recompression quantization error by ε ≜ y − ỹ.
For brevity, we often refer to ε as the Q error and D−1ε as the
spatial domain Q error, or SQ error. We refer to clip([̃x]) − x as the
recompression residual which was the object of focus in the previous
art [23]. Ignoring clipping, the (negative) SQ error can be seen as
the unrounded recompression residual since x is a block of integers:

[−D−1ε] = [̃x − x] = [̃x] − x. (3)

4 PIPELINE ANALYSIS
Equipped with the tools introduced in Section 2.2, we can now study
the objects in Figure 1. We start by modeling the initial quantization
error, ε(0), as a random vector. We then derive the distributions of
subsequent objects, ultimately formulating how a steganographic
embedding impacts the distribution of the Q errors ε . In summary,
the analysis in this section will leverage these facts:

(1) Cover / stego images are stored using integers which allows
us to analytically isolate the rounding errors in each domain.

(2) The dimensionality of the blocks is high enough to use the
Central Limit Theorem (CLT) to approximate the marginals
using Gaussians when switching between domains.

(3) Poincaré’s theorem tells us the distribution of δ is approx-
imately uniform with jointly independent components for
lower JPEG quality factors.

4.1 Rounding errors in the spatial domain
By the linearity of the DCT, we can express the non-rounded block
of pixels x̃(0) as

x̃(0) = D−1ỹ(0)

= D−1y(0) − D−1ε(0)

= x(0) − D−1ε(0). (4)

Consider the case of the round quantizer; the values of ε(0)kl are
contained within [−qkl /2,qkl /2).

Assumption 1. For all modes (k, l), the DCT quantization errors
ε
(0)
kl are jointly independent and satisfy

ε
(0)
kl ∼ U[−qkl /2,qkl /2). (5)

Assumption 1 has been studied in [32], used in [8, 9, 29], and
can be justified directly by the Poincaré Theorem for small quan-
tization steps qkl . By the joint independence of ε(0)kl and the fact

that E[ε(0)kl] = 0 and Var[ε(0)kl] = q2kl /12, Lindeberg’s extension of
the CLT implies that the marginals of x̃(0) approximately follow
the Gaussian distribution

x̃
(0)
i j ∼ N(x

(0)
i j , s

(0)
i j), (6)

with variance

s
(0)
i j =

1
12

7∑
k ,l=0

(f
i j
kl)

2q2kl . (7)

The rounding error in the spatial domain has the form

δ = x̃(0) − [̃x(0)] = err1(−D−1ε(0)), (8)

because x(0) is a block of integers. We conclude that the marginals
of δ are approximately distributed by δi j ∼ NW (0, s(0)i j , 1) for all
JPEG phases.

We note that when quantization steps are large or when an
alternate quantizer such as trunc is used, Assumption 1 may no
longer hold. Nonetheless, the PLT still allows us to say something
about the joint distribution of the rounding errors δ . Looking at Eq.
(7), notice that the probability mass of ε(0) spreads out as the entries
of q increase. Thus, the distribution of δ is well-approximated
by the joint uniform distribution on [−1/2, 1/2)64 for sufficiently
low enough quality factors. We experimentally observed that the
marginals δi j are uniform for QFs 98 and below, and thus, we infer
that the PLT has applied for these qualities.

Note that if the quantizer is trunc, the variance Var[ε(0)kl] is larger
compared to round regardless of the distribution of uncompressed
DCT coefficients y(0). Hence, we also conclude that the PLT has
applied for QFs 98 and below in the case of trunc.

4.2 Cover images
By reasoning similar to that of Eq. (4), the linearity of the DCT
implies

y = ỹ(0) − Dδ . (9)

Assumption 2. The cover block x = [̃x(0)] has rounded to pixels all
within the dynamic range [0, 255]. The rounding errors δ are jointly
independent for all JPEG qualities.

If x̃ (0)i j is outside the dynamic range, δi j will belong to an interval
potentially much larger than [−1/2, 1/2) with bounds dependent
on image content. As discussed at the end of Section 4.1, the PLT
only guarantees joint independence for QFs 98 and below for round
and trunc. We assume joint independence for QF99 and 100 as well
in Assumption 2 for modeling simplicity. Using Assumption 2, we
may ignore the effects of clipping and approximate the marginals
of y using the CLT:

ykl ∼ N(ỹ
(0)
kl , skl), (10)

skl =
7∑

i , j=0
(f

i j
kl)

2Var[δi j]. (11)

Note that for QFs 98 and below, the approximate uniformity of δ
implies Var[δi j] ≈ 1/12, which yields skl ≈ 1/12 by the orthonor-
mality of the DCT. The Q error computed via the true quantization
matrix q can be expressed as

ε = y − [y]q = errq(−Dδ), (12)

since ỹ(0)kl is an integer multiple of qkl for all (k, l). Thus, we con-
clude that εkl ∼ NW (0, skl ,qkl).

4.3 Stego images
We model the embedding changes ηi j as content-adaptive ±1 noise
in the spatial domain; we have x(s) = x + η. Specifically, we treat
ηi j as a random variable supported on {−1, 0, 1} with PMF P(ηi j =
1) = P(ηi j = −1) = βi j , where βi j are known as the change rates
(or selection channel) determined by the stego scheme. Under this
framework, the non-rounded recompressed DCTs have the form

y(s) = ỹ(0) − Dδ + Dη. (13)

Assumption 3. The embedding changes ηi j are jointly independent
and independent of the rounding errors δi j .

This is a reasonable assumption for steganography that mini-
mizes an additive distortion and does not use the rounding errors
as side-information for embedding. Applying the CLT again, we
have

y
(s)
kl ∼ N(ỹ

(0)
kl , skl + rkl), (14)

rkl =
7∑

i , j=0
(f

i j
kl)

2Var[ηi j]. (15)

Thus, the Q error for a stego block can be written as

ε(s) = errq(−Dδ + Dη), (16)

since ỹ(0)kl is an integer multiple of qkl for all modes. Hence, ε(s)kl ∼

NW (0, skl + rkl ,qkl) which means the embedding increases the
variance of the wrapped Gaussian.

5 STATISTICAL HYPOTHESIS DETECTOR
The analysis carried out in the previous section allows us to for-
mulate a statistical hypothesis test about the Q errors for detecting
steganography. Then, we introduce rules for eliminating blocks
from the test for a tighter fit of modeling assumptions in practice,
which improves the detection accuracy. Afterwards, we briefly dis-
cuss other considerations for modeling assumptions. The analysis

of this section is useful to obtain insight into why and how the JCA
works and to explain trends observed for other types of detectors
studied in Section 6.

All experiments in this section, and in this paper in general, were
conducted on the union of the BOSSbase 1.01 [1] and BOWS2 [2]
datasets, each with 10,000 grayscale images resized to 256 × 256
pixels with imresize in Matlab using default parameters. We refer
to the union as BOSSBOWS2. This dataset is a popular choice for
designing detectors with deep learning because small images are
more suitable for training deep architectures [6, 34–36, 38]. The
training set (TRN) contained all 10,000 BOWS2 images along with
4,000 randomly selected images from BOSSbase. The remaining
images from BOSSbase were randomly partitioned to create the
validation set (VAL) and the testing set (TST) containing 1,000 and
5,000 images, respectively.

5.1 Likelihood ratio test
Given a collection B of 8× 8 blocks from an N1 ×N2 decompressed
image, the Warden is faced with the following hypothesis test for
all 0 ≤ k, l ≤ 7 across all blocks x ∈ B:

H0 : εkl ∼ NW (0, skl ,qkl) (17)
H1 : εkl ∼ NW (0, skl + rkl ,qkl), rkl > 0. (18)

Assumption 4. The Q errors εkl are jointly independent within and
between blocks.

This assumption allows us to construct a detector from the
marginals; working with a joint density leads to similar compu-
tational complexity issues encountered in [9, 12]. Thus, the log-
likelihood ratio test for an image is

L(B) =
∑
x∈B

7∑
k ,l=0

Lkl (x) (19)

=
∑
x∈B

7∑
k ,l=0

log
д(εkl ; 0, skl + rkl , q̂kl)

д(εkl ; 0, skl , q̂kl)
H1
≷
H0

γ . (20)

Assuming the change rates (and thus rkl) are known, the War-
den is faced with a simple hypothesis, for which the LRT is uni-
formly most powerful in the clairvoyant case according to the NP-
lemma [21]. As a remark, we remind the reader that the quantization
matrix must be estimated from the image first — a preanalytical step
discussed in Section 9. Until then, we assume the true quantization
matrix is known, i.e. q̂ = q.

Moreover, the LRT is composite if rkl is unknown, which would
be the case when detecting multiple steganographic methods, an
unknown payload size, or a steganographic method with unknown
or partially known selection channel, e.g. side-informed stega-
nography [13, 16, 18] or methods with synchronized embedding
changes [7, 17, 26]. On the other hand, for detecting a known ste-
ganography and a known payload size, the selection channel is
approximately available — the change rates βi j can be computed
from the analyzed stego image — which means that rkl can also be
approximately computed. By the Lindeberg’s extension of the CLT,
the normalized LRT

Λ(B) =
L(B) − EH0 [L(B)]√

VarH0 [L(B)]
(21)

follows the distribution N(0, 1) underH0, which allows setting a
decision threshold for the normalized LRT that achieves the largest
detection power for a fixed false-alarm probability.

5.2 Block elimination
In practice, blocks should be eliminated from hypothesis testing if
they do not adhere to at least one of the assumptions above; there
is no guarantee that the conclusions apply to such blocks. To this
end, we formulate rules for rejecting a block x from B based on the
following common phenomena.

(1) Block saturation: A block x with pixel values xi j is saturated
if there exists a phase (i, j) such that xi j = 0, 1, 254, or 255.

(2) Block sparsity: A block x is sparse if the number of zero DCT
coefficients in y is larger than or equal to 8. To account for
floating-point error in theDCT, a coefficientykl is considered
“zero” if |ykl | < 10−5.

Saturated blocks potentially violate Assumption 2 due to clipping.
We include pixel values 1 and 254 to account for the possibility
of embedding into pixels at the boundary of the dynamic range.
As for sparse blocks, having 8 or more zero DCTs concentrate
around zero is highly unlikely since the ykl are Gaussian random
variables.3 Hence, we conclude that the CLT fails for sparse blocks.
Therefore, if a block is deemed saturated or sparse (or both), then
the block is rejected. Throughout the paper, all experiments with
block elimination abide by this criteria.

We note that content-adaptive schemes tend to embed in non-
saturated and non-sparse blocks. Thus, block elimination may ar-
tificially increase the image’s overall change-rate which is to the
Warden’s benefit. On the other hand, we do not foresee steganog-
raphers intentionally embedding in rejected blocks since doing
so would be highly detectable by methods outside the JCA and
methods we introduce later in Section 6.

The BOSSBOWS2 dataset contains a small number of images
(depending on JPEG quality) whose blocks were all eliminated due
to lack of content. In our experiments, we eliminated these singular
images entirely since they are known to be bad covers.

6 MACHINE LEARNING DETECTORS
The LRT detector discussed above was derived in the DCT domain
under the assumption that the distributions of different 8× 8 blocks
are independent. The embedding changes are, however, performed
in the spatial domain, and the Warden can and should make use of
dependencies between pixels across the block boundaries, which
is ignored by the LRT test. Moreover, the heuristic block rejec-
tion rules were adopted based on experiments and are likely an
additional source of suboptimality as the modeling assumptions,
such as the validity of the CLT, will generally depend on the block
content as well as the quality factor. Thus, the authors anticipate
Convolutional Neural Network (CNN) detectors will provide bet-
ter detection performance especially when supplying the image
under investigation as one of the channels on top of the Q / SQ
error during training. Such detectors could also potentially be more
robust to differences between JPEG compressors, DCT quantizers,

3The authors observed that zero DCTs typically occur in entire rows or columns of
modes which is why the sparse block threshold was chosen to be 8.

and possibly trained for unknown payloads simply by enlarging
the training set.

These advantages motivated the authors to study deep learning
based detectors. All previous art made use of the recompression
residual clip([̃x]) − x as a reference signal, because recompressing
the image and then decompressing to the spatial domain essentially
erases the embedding changes for lower quality factors. For detect-
ing content-adaptive stego schemes, however, the original image
should be used as input so the network can properly learn the selec-
tion channel and form better detection statistics from dependencies
between neighboring pixels.

Section 6.1 and Section 6.2 introduce the experimental setup for
SRNet and the prior art, respectively.

6.1 SRNet
In this paper, we report the results for three flavors of SRNet [6]:
an SRNet trained only on Q errors (Q-SRNet), on SQ errors (SQ-
SRNet), and on two channels (SQY-SRNet) — the normalized image
x/255 (Y channel) and the SQ error — which provided by far the
best overall performance especially for high quality factors. We
also investigated an SRNet trained on both the image and its re-
compression residual but found that it performed worse than the
LRT for high QFs. We hypothesize the recompression residual loses
information about the embedding after rounding / clipping in the
spatial domain.

Training was done for 50 epochs using mini-batches of size 64,
the adamax optimizer, the one-cycle learning-rate (LR) scheduler
with maximum LR 1×10−3 [31], and the cross-entropy loss function.
All classifiers were trained using a pair-constraint, requiring batches
to contain cover-stego pairs.

To augment the training data, a random dihedral group (D4)
operation was applied to each cover-stego pair in the batch before
extracting Q / SQ errors. Observe that the quantization table must
be transposed when images are rotated by 90 or 270 degrees.

In experiments with multiple payloads, we trained networks
from scratch on the largest payload with maximum LR 1 × 10−3.
The checkpoint with minimal validation loss was then used as a
starting seed for training on smaller payloads with maximum LR
3 × 10−4. Curriculum training in this manner significantly helped
facilitate convergence.

6.2 RRH
For comparison against the prior art, we also implemented the RRH
method [23] (see Section 1) trained on the union of the TRN andVAL.
The recompression residual was computed using Matlab’s imwrite
and imread to match the initial (de)compressor implementation.

7 EXPERIMENTS
The goal of this section is to determine the best detector from
Section 5 and 6. First, we compare the performance of the LRT
and the three SRNets w.r.t. JPEG quality for a fixed stego scheme
and payload. The best detector of these four is then tested against
the prior art, RRH, for a variety of stego schemes and payloads.
Throughout the section, we present the results through the lens
of our analysis in Section 4. We assume the JPEG compressor is
fixed and the Warden knows the true quantization table to mitigate

the effects of confounding variables while studying detectability
trends.

7.1 Methodology
As in Section 5, we used the same split 14,000 / 1,000 / 5,000 for TRN
/ VAL / TST. Images were initially compressed and decompressed
using Matlab’s imwrite and imread. In order to fairly compare the
LRT to the machine learning detectors (as outlined in [11]), we
use the non-normalized version L(B) (19) and choose the deci-
sion threshold that minimized PE on the union of TRN and VAL.
The measurement PE is the probability of error under equal priors
defined by PE = (PMD + PFA)/2, where PMD and PFA are the proba-
bilities of missed detection and false alarm. The test accuracy of the
LRT is then computed on TST using this fixed threshold. Owing to
Doddington’s rule of 30 and for visual clarity, in all experiments in
this paper we report test accuracies above 0.9970 as “≈ 1”.

7.2 Performance w.r.t quality
In Figure 2, the left plot visualizes the trends for the LRT and
all versions of SRNet. Since SQY-SRNet outperformed the other
detectors especially for high qualities, we continued by testing
SQY-SRNet and the prior art on the following four content-adaptive
steganographic schemes: S-UNIWARD [16], HILL [25], MiPOD [30],
and WOW [14]. These schemes were tested on the following range
of payloads so an informative comparison between SQY-SRNet and
RRH can be made: 0.02, 0.01, 0.005, and 0.002 bpp. We refer the
reader to Tables 5 and 6 in the appendix for the full results for
SQY-SRNet and the prior art. A subset of these results are shown in
the right plot of Figure 2. The SQY-SRNet significantly outperforms
the RRH especially for small payloads for QFs above 93.

Note that the model-based MiPOD is consistently more secure
that the other three cost-based stego algorithms. The difference is
most pronounced for the smallest payloads and largest qualities.
We were able to trace the reason for this to the average number
of modified pixels by these four schemes. For QF100 and payload
0.002 bpp, the average number of changed pixels for MiPOD, S-
UNIWARD, WOW, and HILL are 9.7, 12.2, 13.8, and 14.1, which
matches the trend in increased detectability with SQY-SRNet: 0.689,
0.811, 0.863, and 0.872.

We note that the performance of the LRT matches the perfor-
mance of Q-SRNet except for QFs 99–100. We interpret this overlap
as an indication that our modelling assumptions take into account
all relevant information contained in the Q error representation
of the image (besides inter-block dependencies). We hypothesize
that the deviation for QFs 99–100 occurs due to δ not being jointly
independent since the PLT does not apply for these qualities as per
Section 4.1. This implies the CLT may not apply to the marginals of
y, hence the εkl is not guaranteed to follow the wrapped Gaussian
in Section 4.2.

We note that SRNet generally has trouble forming inter-block
statistics in DCT domain representations [37] which is likely why
we see a jump in performance when the SQ error is used instead.

In [12], QF100 is deemed the hardest quality for the JCA due
to search complexity. This hints at the existence of suboptimality
in the prior art for which QF97 is empirically the hardest quality.

Figure 2: Left: Testing accuracy as a function of JPEG quality for LRT (21) and all flavors of SRNet. Embedded using MiPOD
at 0.01 bpp. Right: Testing accuracy as a function of JPEG quality for SQY-SRNet (purple) and RRH (green). Embedded using
MiPOD (solid) and HILL (dashed) at 0.005 bpp.

Note that SQY-SRNet closely matches the monotonic behavior we
intuitively expect.

8 ROBUSTNESS TO JPEG COMPRESSORS
There exist many variants of JPEG compressors, which can differ
in the implementation of the DCT, the quantizer, and the internal
number representation. If two compressors differ, they may pro-
duce different JPEG images from the same uncompressed (or raw)
image. Similarly, if two decompressors differ, they may produce
different decompressed images from the same JPEG file. As a re-
sult, a cover image can potentially originate from a vast number of
JPEG compressor-decompressor combinations [3]. In this section,
we study three types of mismatches involved with the steganog-
rapher’s and Warden’s choices of compressors / decompressors.
We will show experimentally that SQY-SRNet can be trained to be
substantially more robust to implementation differences compared
to the prior art RRH. Additionally, we will employ the analysis
from Section 4 to explain quality factor trends and performance
differences between quantizers.

8.1 Types of mismatch
To make our discussion of compressor mismatch and robustness
precise, we introduce the following notation based on the JPEG
pipeline discussed in Section 3 and shown in Figure 1. The reader
is advised to follow Figure 3 for easier understanding. In general,
the initial JPEG compression compS (S for “steganographer”) satis-
fies ỹ(0) = compS(x(0)), mapping the uncompressed image to the
dequantized DCT coefficients.4 In order to embed a secret mes-
sage, the steganographer (or the embedding tool) decompresses
the image using decS to obtain the cover image x = decS (̃y(0)). The
Warden typically does not have access to compS and decS and must

4In practice, compressors compute quantized DCTs c(0) , but note that it is equivalent
to use dequantized DCTs ỹ(0) .

use their own compW and decW (W for “warden”) to generate JPEG
covers for their training dataset. The subsequent recompression
and decompression is denoted ỹ = comp2W(x) and [̃x] = dec2W (̃y).
We remind the reader that the steganographer typically does not
have access to compS either. Figure 3 visualizes the relationship be-
tween these compressors and decompressors based on the pipeline
in Figure 1. Additionally, Figure 3 delineates how the Warden gen-
erates decompressed JPEGs for training their detector (top row)
and how the steganographer generates the decompressed JPEG for
embedding (bottom row).

Since the recompression method for the JCA is the Warden’s
choice, they are generally free to select the one that works the best
overall. To simplify matters, we exlusively use Matlab’s imwrite
for comp2W and imread for dec2W to compute the recompression
residual for the prior art RRH [23] since this variant was used for
benchmarking in Section 6. To compute Q / SQ errors, we manually
recompress via SciPy’s dct for all experiments since rounding errors
are not easily attainable using off-the-shelf JPEG compressors.

Fixing comp2W and dec2W, we focus on three types of mis-
matches depicted in Figure 3. First, the “decompressor mismatch”
refers to mismatching implementations of decS and decW. Second,
the “quantizer mismatch” considers differences between the quan-
tizers of compS and compW each possibly being round or trunc. For
experiment feasibility, we do not consider differences between DCT
implementations of compS and compW. Both the decompressor
mismatch and quantizer mismatch contribute to the overall cover
source mismatch between the Warden’s training set and the covers
the steganographer uses in practice. The third type of mismatch,
called “steganographer’s mismatch”, occurs when the steganogra-
pher uses an implementation of decS different than the one used for
compS. 5 This mismatch may complicate the distribution of round-
ing errors and potentially decrease the performance of the JCA. We
5In general, since the steganographer and Warden do not have access to the full
compression history, there could be mismatches between any pair of compS , decS ,

compW decW

compS decS

comp2W dec2W

Training

Testing

steganographer’s mismatch

x(0) ỹ(0)

x

x(0) ỹ(0)
x

ỹdecompressor
mismatch

quantizer
mismatch

Figure 3: Compression pipeline for images in training set (top row) and pipeline for images created by the steganographer
(bottom row). The quantizer and decompressor mismatch are drawn using the same line style (dashed) to signify they are
types of cover source mismatch. See Sec. 8.1 for more detail.

remind the reader that there is no need to study differences in quan-
tizer for comp2W since Q error is always computed using round (it
does not make sense to use trunc per our analysis). Additionally,
the “quantizer” for all decompressors decS, decW, dec2W always
involves rounding to nearest integer and clipping to dynamic range
as per JPEG standard.

The following implementations are considered in our experi-
ments: Matlab’s imwrite/imread, Python3 library PIL (PIL), Im-
ageMagick’s Convert (Convert), Int and Float DCT compressors in
libjpeg (version 6b).6 Fast DCT compression in libjpeg has not been
included in our tests because it is not recommended for QFs larger
than 97 since the compression is then slower and more lossy than
on smaller QFs.7 When studying differences between quantizers,
we compare Matlab’s imwrite to a manually implemented trunc
compressor written in Python3 using SciPy’s dct.

8.2 Mismatching the decompressor
First, we solely focus on the combined effect of the decompressor
mismatch and steganographer’s mismatch. In particular, we deter-
mine the best decW for training assuming 1) compS and compW
are fixed to Matlab’s imwrite and 2) the steganographer was free
to choose any of the decompressors. Table 1 shows the testing
accuracies for SQY-SRNet trained and tested on mismatched decom-
pressors for QFs 95, 99, 100. While a loss can indeed be observed
especially in the case when the detector was built with images gen-
erated by ’Float’ and ’Convert’ decompresser, the detector trained
on images decompressed with Python’s PIL and Matlab’s imread
generalized overall very well when evaluated on images from all
five decompressors decS.

We also studied RRH’s robustness to decompressor since no
benchmarking exists in [23]. The testing accuracies for the RRH
are shown in Table 2. We observed that QF99 and 100 had the same
pattern in the results (with accuracies in the range [.7486, .7616]
for QF100), so we report the results for QFs 90, 95, 99.

and comp2W . Note the Warden can guarantee no mismatch occurs between comp2W
and dec2W .
6http://libjpeg.sourceforge.net/
7Taken from libjpeg documentation https://manpages.ubuntu.com/manpages/artful/
man1/cjpeg.1.html.

The recompression residual will typically contain blocks with
no pixel changes or blocks with large patterns of changes; resid-
ual blocks will rarely contain single pixel changes especially for
QFs with no 1’s in the quantization table [23]. Thus, for QF92 and
below, embedding is highly detectable since single pixel changes
will appear in the recompression residual. We observed, however,
that the steganographer’s mismatch commonly creates salt-and-
pepper noise artifacts in the recompression residual, which the
RRH misinterprets as steganography. For example, QF90 RRH has
an accuracy of .6349 (see Table 2) when the float decompressor is
used for both decW and decS and the compressor compS is Mat-
lab’s imwrite; just having steganographer’s mismatch can greatly
impact RRH’s performance. When decW is imread instead, QF90
RRH is a random guesser now due to the combined effect of de-
compressor mismatch and steganographer’s mismatch. For QFs
above 92, steganographer’s mismatch is less problematic since the
RRH classifier gets trained on covers that more commonly produce
salt-and-pepper noise.

8.3 Mismatching the quantizer
Having seen that training on MATLAB’s imread or PIL decom-
pressors generalize the best for decompressor mismatch, we turn
to investigating the effect of using a trunc quantizer for both for
compS and compW while considering effects of steganographer’s
mismatch. Table 3 shows that training on either the imread or
PIL decompressor gives similar accuracies when images are ini-
tially compressed with a trunc quantizer. Overall, the accuracies
are somewhat lower compared to when quantized with round (c.f.
Table 1) with the largest difference for QF100. This is related to the
differences between both quantizers, namely the way they affect
the distribution of the rounding errors δi j in the spatial domain (8).
Except for QFs 99–100, δ is well-approximated by the uniform dis-
tribution for both quantizers (see Section 4.1 and the PLT). There-
fore, the SQ errors for both quantizers approximately follow the
same distribution under assumptions of Section 4 which explains
the matching accuracies for QF95. For QFs 99–100, however, the
DCT quantization errors for the trunc quantizer ε(0)kl ∈ [0,qkl) for

positive DCTs and ε
(0)
kl ∈ (−qkl , 0] for negative DCTs. Thus, any

http://libjpeg.sourceforge.net/
https://manpages.ubuntu.com/manpages/artful/man1/cjpeg.1.html
https://manpages.ubuntu.com/manpages/artful/man1/cjpeg.1.html

Table 1: Testing accuracy for SQY-SRNet trained on decW and
tested on decS. Each row / column corresponds to the de-
compressor used for training / testing, respectively. Matlab’s
imwrite is used for compS and compW. Q / SQ errors are com-
puted with SciPy’s dct. Embedded using MiPOD at 0.01 bpp.

QF decW
decS

imread float int convert PIL

100

imread .9721 .9556 .9716 .9568 .9729
float .9500 .9742 .9491 .9739 .9491
int .9695 .9587 .9682 .9570 .9685

convert .9461 .9732 .9455 .9742 .9456
PIL .9721 .9633 .9706 .9635 .9708

99

imread .9856 .9846 .9870 .9849 .9859
float .9781 .9875 .9784 .9899 .9777
int .9845 .9833 .9856 .9832 .9838

convert .9760 .9878 .9770 .9885 .9771
PIL .9843 .9864 .9849 .9860 .9844

95

imread ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1
float ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1
int ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1

convert ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1
PIL ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1

Table 2: Testing accuracy for RRH trained on decW and
tested on decS. Matlab’s imwrite is used for compS and compW
and used to compute the recompression residual. Embedded
using MiPOD at 0.01 bpp.

QF decW
decS

imread float int convert PIL

99

imread .7538 .7315 .7523 .7341 .7522
float .7481 .7453 .7451 .7485 .7437
int .7552 .7323 .7518 .7342 .7512

convert .7486 .7446 .7460 .7480 .7448
PIL .7540 .7339 .7518 .7363 .7517

95

imread .9042 .5000 .9031 .5000 .9041
float .5288 .6813 .5281 .6828 .5281
int .9035 .5000 .9032 .5000 .9041

convert .5166 .6834 .5159 .6834 .5172
PIL .9022 .5000 .9019 .5000 .9029

90

imread ≈ 1 .5000 ≈ 1 .5000 ≈ 1
float .4819 .6349 .4816 .6359 .4817
int ≈ 1 .5000 ≈ 1 .5000 ≈ 1

convert .4831 .6350 .4828 .6350 .4823
PIL ≈ 1 .5000 ≈ 1 .5000 ≈ 1

asymmetry in the distribution of the DCT coefficients in the cover
image transfers to an asymmetry of the quantization errors, giving
them a non-zero mean. In contrast, the distribution of quantiza-
tion errors for the round quantizer is much less affected by such
asymmetries.8 Consequently, the rounding errors δi j in the spatial
domain for the trunc quantizer are wrapped Gaussians with non-
zero means, which has an effect on the accuracy of the LRT (not
shown in this paper) and, apparently, also on the CNN detectors.

8Also note that this effect of non-zero mean for ε (0)kl is mitigated for lower qualities –

the increased variance of ε (0)kl makes the wrapped Gaussian uniform.

Table 3: Testing accuracy for SQY-SRNet when both compS
and compW use the trunc quantizer. Embedded usingMiPOD
at 0.01 bpp.

QF decW
decS

imread float int convert PIL

100 imread .8894 .8641 .8918 .8664 .8897
PIL .8906 .8608 .8940 .8642 .8923

99 imread .9830 .9775 .9830 .9770 .9834
PIL .9842 .9777 .9824 .9767 .9833

95 imread ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1
PIL ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1

Table 4: Testing accuracy for SQY-SRNet trained on the
union of images initially compressed, compW, with round
(Matlab’s imwrite) and trunc at QF 100. SQY-SRNet is tested
on round and trunc images (compS) separately. Embedded
using MiPOD at 0.01 bpp.

compS decW
decS

imread float int convert PIL

round imread .9719 .9545 .9690 .9548 .9735
PIL .9676 .9487 .9674 .9503 .9695

trunc imread .8829 .8590 .8857 .8634 .8818
PIL .8738 .8452 .8762 .8478 .8705

Next, we investigated what happens when one of compS and
compW is round and the other is trunc. We found that SQY-SRNet
exhibits no loss of accuracy for mismatched quantizers at QF95
(≈ 1 test accuracy for all decS) but a significant loss for QF99 and
QF100 (near random guessing for all decS). As explained in the
paragraph above, this demonstrates the utilility of the PLT when
steganalyzing lower quality images compressed with quantizers not
seen during training. For QFs 99–100, however, the distribution of δ
is quantizer-dependent, which implies the SQ errors are quantizer-
dependent.

Since the JPEG quantizers can be distinguished quite accurately
withmachine-learning tools, we decided to address the performance
loss simply by training on images obtained using both quantizers.
As Table 4 portrays, training in this fashion resolves the prob-
lem with an unknown quantizer; the detection accuracies are now
comparable to those of the detectors trained and tested on images
obtained with matching quantizers (as shown in Tables 1 and 3).
Overall, training on the imread decompressor generalizes slightly
better than training on PIL.

9 ESTIMATING THE QUANTIZATION TABLE
Since the quantization table q is not provided in a decompressed
JPEG image, whether it is cover or stego, we must first first de-
termine that the image is a decompressed JPEG and also estimate
the quantization table so that the image can be analyzed with the
correct JCA detector. These two preliminary steps are well studied
by the forensics community [12, 33]. In particular, we refer the
reader to [33] for its intuitive, model-based approach and for its de-
tailed discussion on two unavoidable issues most quantization table

estimators face: 1) incorrectly estimating a divisor of the quantiza-
tion step and 2) the so-called “indeterminable steps.” In Section 9.1
we will, however, leverage our analysis from Section 4 to argue
that these issues, in fact, vanish when estimating q for the JCA.
Additionally, most model-based quantization table estimators are
unable to distinguish between QF100 and uncompressed images,
and are typically not tested on stego images. In Section 9.2, we
will discuss the practical issues of distinguishing between QF100
and uncompressed images, and we will also show that embedding
changes have a negligible effect on the estimation.

9.1 Estimating Q errors is easier
The exact quantization steps are not needed to apply the JCA be-
cause estimating the Q errors is an easier task compared to esti-
mating the exact quantization steps. Instead, we need only find a
table q̂ such that the estimated Q errors ε̂ ≜ err̂q(y) are close in
distribution to the true Q errors ε . In particular, it is enough to esti-
mate a divisor of the true quantization step, what we call “sufficient”
steps. As it happens, quantization step estimation methods such as
the one proposed in [33] will often select a divisor of the true step
when wrong, which tells us that steps are commonly sufficient in
practice.

Formally, suppose qkl is the true quantization step, and let fε̂kl
and fεkl denote the PDFs of the estimated Q error ε̂kl and true Q
error εkl , respectively. We say an estimated quantization step q̂kl
is sufficient if 1) q̂kl = qkl , or 2) qkl > q̂kl ≥ 2 and q̂kl divides qkl .

Theorem 1. If q̂kl is sufficient, then | fε̂kl (u) − fεkl (u)| ≤ C �

3.43 × 10−3 for all u ∈ R.

Informally, Theorem 1 gives a sufficient condition under which
fε̂kl (u) ≈ fεkl (u) (meaning “approximately equal”) within some
negligibly small uniform error C . A proof of Theorem 1 can be
found in the Appendix. Additionally, the proof will show that The-
orem 1 does not depend on the type of quantizer used for the initial
JPEG compression and will show that embedding changes have a
negligible effect on the estimation.

Next, we can overcome an issue that commonly occurs when the
true quantization step is large (which is usually the case for high
frequency modes / low quality factors). For large enough quanti-
zation steps, the quantized DCTs ỹ(0)kl of the uncompressed image
will all be 0. This will cause the non-quantized DCTs ykl of the
recompressed image to have a single cluster around 0. Specifically,
for a fixed mode k, l , if qkl ≥ 2 and if the non-quantized DCTs ykl
of the recompressed image are contained within the interval [−1, 1)
across all blocks, we say that the quantization step at mode k, l is
indeterminable. This indeterminable case is a point of failure for
many quantization step estimation methods including [33] since
they rely on finding the most likely integer spacing of clusters of
ykl of the recompressed image, which cannot be done if there is
only one cluster at 0. However, indeterminable steps do not pose
a problem for the JCA; for any chosen step q̂kl ≥ 2 we can cor-
rectly compute the Q error since errq̂kl (ykl) = ykl = errqkl (ykl)
for ykl ∈ [−1, 1).

Figure 4: The ratio of images in BOSSBOWS2 whose quality
factors were correctly estimated from covers (solid) and ste-
gos (dashed) embedded using MiPOD at 0.01 bpp.

9.2 Practical Considerations
In this paper, we make use of a simplified version of the estimator
proposed in [33]. In short, our version is a maximum likelihood es-
timator restricted to estimating standard quantization tables9 using
a uniform prior for the quantized DCTs ỹ(0)kl . We refer the reader
to [10] for implementation details of our simplified estimator. If the
estimated quality is not QF100, then we declare the image to be
JPEG compatible and feed it to the SQY-SRNet trained on the esti-
mated QF. However, many model-based estimators, including ours,
output tables with all ones if given either a QF100 decompressed
JPEGs or uncompressed image. Thus, if the estimated quality is
QF100, we run into an issue not addressed by [12, 33]. To solve
this issue for our estimator, we trained a version of SQY-SRNet to
disinguish between QF100 decompressed JPEG (cover) images and
uncompressed images from BOSSBOWS2 using the same hyper-
parameters from previous sections; this detector achieved a test
accuracy of ≈ 1.

Finally, we experimentally verify that embedding changes have
a negligible effect on the estimation accuracy. Figure 4 shows the
accuracy of estimating the correct QF from cover (solid line) and
stego (dashed line) images. The authors deem this accuracy to be
high enough to have a minimal effect on steganography detection
in practice.

10 PERFORMANCE IN REAL-LIFE
CONDITIONS

To demonstrate the usefulness and relevance of this work, we eval-
uated SQY-SRNet’s performance in real-life conditions (using real
stego tools) for one “easy” quality factor, QF95, and for QF99 and
100. We looked up stego tools from two sources: a github repos-
itory search and a Google search. Github contains open-source
tools with available source code predominantly written in python.
These tools have typically been created and are maintained by
amateurs or communities with interest in the field. The Google
search returned proprietary commercial tools which are expected
to be more secure. As mentioned in Section 1, the user could also
introduce a vulnerability by decompressing the image themselves
9Ideally, and for the most general case, each quantization step should be estimated sep-
arately for each DCTmode k , l since JPEG images can have non-standard quantization
tables.

before feeding the image to the tool. We do not consider this case
since it is infeasible to assess how likely this is going to happen.
A tool is considered only if it does the decompression. The list
of all stego tools together with additional details can be found at
http://dde.binghamton.edu/download/jca/.

To make our detectors applicable to a wider range of stego tools,
we opted to train SQY-SRNet, for each QF, on a rather diverse
stego source with a fixed payload 0.02 bpp using embedding simula-
tors. To create covers, we compress and decompress using Matlab’s
imwrite. To create a stego image, we first flip an unbiased three-
sided coin to determine whether we use embedding simulators for
optimally coded MiPOD, HILL, or non-adaptive LSB matching. If
the coin tells us to use LSBM, we flip an unbiased two-sided coin to
determine whether we embed in pseudo-randomly selected pixels
(with optimal ternary codes) or by rows / columns without coding.
By inspection, some tools used sequential embedding on the top
of the image or the bottom of the image, so we applied a random
D4 operation to the selection channel to account for these varia-
tions. All hyper-parameters for training are the same as the ones
in previous sections, except we do not use pair contraint, and the
net was seeded with weights from training on MiPOD.

10.1 Results
Out of 42 tools, we discovered that 19 of them output a decom-
pressed JPEG stego image when given a regular JPEG image as
input. In general, in order for a tool to be susceptible to JCA, the
tool must output the stego image in a raster format. That is, if the
output is a JPEG we automatically assume the tool is not suscep-
tible to JCA. We point out that all cover images supplied to the
tools were grayscale (they are from BOSSBOWS2). Out of the 19
tools, there were 15 that considered grayscale cover images as color
and distributed the payload across three copies of the Y channel,
outputting thus a color stego image. For these tools, we adjusted
the size of the embedded payload to be three times larger so that
the relative payload is still 0.02 bpp in each channel, and we stegan-
alyzed them by simply supplying the detector with the R channel.
Of course, this embedding will create suspicious ±1 differences
between color channels, so the Warden, in practice, could simply
check for these artifacts [19] before using the JCA.

For each of the 19 tools, we did the following for each qual-
ity QF ∈ {95, 99, 100}. Since the tools have to be used manually
through either a terminal or GUI, which is labor intensive, we se-
lected at random five uncompressed images from TST and JPEG
compressed them using Matlab’s imwrite with quality QF.10 Then,
we embedded a random message of relative length 0.02 bpp in each
cover presented to the tool as JPEG. Using our quantization table
estimator from Section 9, we determined each stego image’s quality
(from the R channel if the tool outputted a color image). We com-
puted the SQ error using the estimated table q̂. For images estimated
to be QF100, we additionally sent these images to our QF100 vs.
uncompressed detector (Section 9) to verify they are QF100. Finally,
the images and their SQ error were sent to the SQY-SRNet trained
on the estimated quality. Each SQY-SRNet’s decision threshold was
set to achieve a 10−3 false alarm rate on TST.

10Different images were selected for different qualities and tools.

For 15 of the 19 susceptible tools (different 15 than above), the
quantization table estimator and SQY-SRNets correctly identified
the quality factor and perfectly classified the images as stego (mean-
ing all 15 × 5 × 3 images were detected). For the tools with source
code available (a total of 12 tools), we double-checked the code to
see that JPEGs are decompressed, embedded, and saved to disk in
raster format without any processing in the spatial domain that
breaks JPEG compatibility.

The remaining four tools produced stego images whose quality
factors were difficult to determine—most of the images were clas-
sified as uncompressed. One of these tools can be easily detected,
since the embedding is done simply to the three least significant
bits, which introduces visible artifacts. The other tools either have
no source code available, or source code that is not well documented
and difficult to analyze.

11 CONCLUSIONS
This paper revisits the JPEG Compatibility Attack in light of the
most recent advancements in steganalysis as well as steganography.
The focus is on detection of modern content-adaptive embedding
schemes and high quality factors when previous state-of-the-art
methods experience computational complexity issues and loss of
accuracy. Close attention is paid to the robustness of the proposed
detectors to JPEG compressors and DCT coefficient quantizers.
To better understand the observed trends in accuracy of various
implementations of the JCA w.r.t. the quality factor and the effects
of different JPEG quantizers, the authors derived a likelihood ratio
test under mild modeling assumptions.

To summarize, the best detector was a SQY-SRNet, a two-channel
SRNet trained on the image and its SQ error. It exhibited a markedly
better accuracy than previous art especially for high JPEG qualities
and small payloads. Since the DCT quantizer used for the cover
JPEG image and the decompressor are not available to the Warden
to build the training datasets, this paper includes a comprehensive
study of the robustness of the SQY-SRNet w.r.t. these unknowns.
We found that training SQY-SRNet on images obtained using both
DCT quantizers and using Matlab’s imread for decompression gave
the best generalized results. This detector enjoys a similiar level of
accuracy as the clairvoyant detectors informed by and trained on
the right combination of cover JPEG quantizer and decompressor.

The paper is closed with a test of the JCA under realistic con-
ditions. A total of 15 steganographic tools available from public
repositories (out of 42 inspected) were found to be vulnerable to
the attack and were reliably detected with our detectors.

Our future effort will be directed towards extending the JCA to
color images, to make it robust to errors when estimating custom
quantization tables, and to study the JCA on a very diverse image
source such as Flickr where the development pipeline is unknown.

12 ACKNOWLEDGEMENTS
The work on this paper was supported by NSF grant No. 2028119.
Special thanks go to Jan Butora for helping start this work.

APPENDIX
In this section, we prove Theorem 1. The theorem is trivial to prove
under the condition q̂kl = qkl , so we assume qkl > q̂kl ≥ 2 and

http://dde.binghamton.edu/download/jca/

q̂kl divides qkl . From Eq. (10), the PDF of ykl can be expressed as

fykl (u) =
∑
n∈Z

P(ỹ
(0)
kl = nqkl)
√
2πskl

exp
(
−
(u − nqkl)

2

2skl

)
, (22)

where P(ỹ(0)kl = nqkl) is the prior probability
11 that y(0)kl had quan-

tized to nqkl . The density fε̂kl is obtained by wrapping fykl (22)
onto a circle of circumference q̂kl : fε̂kl (u) =

∑
m∈Z fykl (u +mq̂kl)

for u ∈ [−q̂kl /2, q̂kl /2) and fε̂kl (u) = 0 otherwise.
When |u | ≥ q̂kl /2, observe that fεkl (u) ≈ 0 = fε̂kl (u).

12 In
particular, | fε̂kl (u) − fεkl (u)| = fεkl (u) ≤ C by direct evaluation of
the maximum.13

For u ∈ [−q̂kl /2, q̂kl /2), observe that the Gaussian terms in fε̂kl
are offset by integer multiples of q̂kl because

mq̂kl − nqkℓ =mq̂kl − njq̂kl = (m − nj)q̂kl , (23)

for some j ∈ Z>0. By swapping the sums in fε̂kl , we can re-index
the sum overm according to Eq. (23) to produce

fε̂kl (u) =
∑
n∈Z

P(ỹ
(0)
kl = nqkl)
√
2πskl

∑
m∈Z

exp
(
−
(u +mq̂kl)

2

2skl

)
=

1
√
2πskl

∑
m∈Z

exp
(
−
(u +mq̂kl)

2

2skl

)
, (24)

for u ∈ [−q̂kl /2, q̂kl /2). The last line in Eq. (24) follows from∑
n∈Z P(ỹ

(0)
kl = nqkl) = 1. Observe that | fε̂kl (u) − fεkl (u)| is up-

per bounded by д(u; 0, skl , q̂kl) (1) without the n = 0 term which
has a maximum of C when u ∈ [−q̂kl /2, q̂kl /2). Thus, we get
fε̂kl (u) ≈ fεkl (u), proving Theorem 1 as desired.14 Observe that
Theorem 1 holds when either the round or the trunc quantizer is
used for the initial JPEG compression; the differences in quanti-
zation bins only affect the values of P(ỹ(0)kl = nqkl) and skl . Also
note that the theorem considered only cover images. When esti-
mating the steps from stego images, the variance skl is replaced
with skl + rkl , which has a negligible effect on the accuracy of the
Q error for the most relevant case of small payloads rkl ≪ 1.

REFERENCES
[1] P. Bas, T. Filler, and T. Pevný. Break our steganographic system – the ins and

outs of organizing BOSS. In T. Filler, T. Pevný, A. Ker, and S. Craver, editors,
Information Hiding, 13th International Conference, volume 6958 of Lecture Notes
in Computer Science, pages 59–70, Prague, Czech Republic, May 18–20, 2011.

[2] P. Bas and T. Furon. BOWS-2. http://bows2.ec-lille.fr, July 2007.
[3] M. Beneš, N. Hofer, and R. Böhme. Know your library: How the libjpeg ver-

sion influences compression and decompression results. In J. Butora, B. Tondi,
and C. Veilhauer, editors, The 10th ACM Workshop on Information Hiding and
Multimedia Security, Santa Barbara, CA, 2022. ACM Press.

[4] R. Böhme. Weighted stego-image steganalysis for JPEG covers. In K. Solanki,
K. Sullivan, and U. Madhow, editors, Information Hiding, 10th International Work-
shop, volume 5284 of Lecture Notes in Computer Science, pages 178–194, Santa
Barbara, CA, June 19–21, 2007. Springer-Verlag, New York.

[5] R. Böhme. Advanced Statistical Steganalysis. Springer-Verlag, Berlin Heidelberg,
2010.

11In practice, for each mode (k , l) we must estimate P(ỹ (0)
kl = nqkl) from the decom-

pressed JPEG itself.
12This is due to the fact that skl ≤ 1/12 and qkl > q̂kl ≥ 2.
13fεkl (u) is maximized when |u | = 1, q̂kl = 2, qkl = 4, skl = 1/12.
14д(u ; 0, skl , q̂kl) without the n = 0 term is maximized at |u | = 1, q̂kl = 2, skl =
1/12.

[6] M. Boroumand,M. Chen, and J. Fridrich. Deep residual network for steganalysis of
digital images. IEEE Transactions on Information Forensics and Security, 14(5):1181–
1193, May 2019.

[7] M. Boroumand and J. Fridrich. Synchronizing embedding changes in side-
informed steganography. In Proceedings IS&T, Electronic Imaging, Media Water-
marking, Security, and Forensics 2020, San Francisco, CA, January 26–30 2020.

[8] J. Butora and J. Fridrich. Reverse JPEG compatibility attack. IEEE Transactions
on Information Forensics and Security, 15:1444–1454, 2020.

[9] R. Cogranne. Selection-channel-aware reverse JPEG compatibility for highly
reliable steganalysis of JPEG images. In Proceedings IEEE, International Conference
on Acoustics, Speech, and Signal Processing, pages 2772–2776, Barcelona, Spain,
May 4–8, 2020.

[10] E. Dworetzky. Explaining and improving the JPEG compatibility attack with
statistical hypothesis testing and deep learning. Master’s thesis, Binghamton
University, Binghamton, NY, 2021.

[11] E. Dworetzky, E. Kaziakhmedov, and J. Fridrich. On comparing ad hoc detectors
with statistical hypothesis tests. In Y. Yousfi, C. Pasquini, and A. Bharati, editors,
The 11th ACMWorkshop on Information Hiding and Multimedia Security, Chicago,
IL, June 28–30, 2023. ACM Press.

[12] J. Fridrich, M. Goljan, and R. Du. Steganalysis based on JPEG compatibility. In
A. G. Tescher, editor, Special Session on Theoretical and Practical Issues in Digital
Watermarking and Data Hiding, SPIE Multimedia Systems and Applications IV,
volume 4518, pages 275–280, Denver, CO, August 20–24, 2001.

[13] L. Guo, J. Ni, and Y. Q. Shi. Uniform embedding for efficient JPEG steganography.
IEEE Transactions on Information Forensics and Security, 9(5):814–825, May 2014.

[14] V. Holub and J. Fridrich. Designing steganographic distortion using directional
filters. In Fourth IEEE InternationalWorkshop on Information Forensics and Security,
Tenerife, Spain, December 2–5, 2012.

[15] V. Holub and J. Fridrich. Low-complexity features for JPEG steganalysis using
undecimated DCT. IEEE Transactions on Information Forensics and Security,
10(2):219–228, February 2015.

[16] V. Holub, J. Fridrich, and T. Denemark. Universal distortion design for stegano-
graphy in an arbitrary domain. EURASIP Journal on Information Security, Special
Issue on Revised Selected Papers of the 1st ACM IH and MMS Workshop, 2014:1,
2014.

[17] X. Hu, J. Ni, W. Su, and J. Huang. Model-based image steganography using
asymmetric embedding scheme. Journal of Electronic Imaging, 27(4):1 – 7, 2018.

[18] F. Huang, W. Luo, J. Huang, and Y.-Q. Shi. Distortion function designing for
JPEG steganography with uncompressed side-image. In W. Puech, M. Chaumont,
J. Dittmann, and P. Campisi, editors, 1st ACM IH&MMSec. Workshop, Montpellier,
France, June 17–19, 2013.

[19] N. F. Johnson and S. Jajodia. Steganalysis of images created using current stega-
nography software. In D. Aucsmith, editor, Information Hiding, 2nd International
Workshop, volume 1525 of Lecture Notes in Computer Science, pages 273–289,
Portland, OR, April 14–17, 1998. Springer-Verlag, New York.

[20] P. E. Jupp. A Poincaré limit theorem for wrapped probability distributions
on compact symmetric spaces. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 95, pages 329–334. Cambridge University Press,
1984.

[21] S. M. Kay. Fundamentals of Statistical Signal Processing, Volume II: Detection
Theory, volume II. Upper Saddle River, NJ: Prentice Hall, 1998.

[22] A. D. Ker and R. Böhme. Revisiting weighted stego-image steganalysis. In
E. J. Delp, P. W. Wong, J. Dittmann, and N. D. Memon, editors, Proceedings
SPIE, Electronic Imaging, Security, Forensics, Steganography, and Watermarking of
Multimedia Contents X, volume 6819, pages 5 1–17, San Jose, CA, January 27–31,
2008.

[23] J. Kodovský and J. Fridrich. JPEG-compatibility steganalysis using block-
histogram of recompression artifacts. In M. Kirchner and D. Ghosal, editors,
Information Hiding, 14th International Conference, volume 7692 of Lecture Notes
in Computer Science, pages 78–93, Berkeley, California, May 15–18, 2012.

[24] G. Kurz, I. Gilitschenski, and U. D. Hanebeck. Efficient evaluation of the prob-
ability density function of a wrapped normal distribution. In 2014 Sensor Data
Fusion: Trends, Solutions, Applications (SDF), pages 1–5. IEEE, 2014.

[25] B. Li, M.Wang, and J. Huang. A new cost function for spatial image steganography.
In Proceedings IEEE, International Conference on Image Processing, ICIP, Paris,
France, October 27–30, 2014.

[26] B. Li, M. Wang, X. Li, S. Tan, and J. Huang. A strategy of clustering modification
directions in spatial image steganography. IEEE Transactions on Information
Forensics and Security, 10(9):1905–1917, September 2015.

[27] W. Luo, Y. Wang, and J. Huang. Security analysis on spatial ±1 steganography
for JPEG decompressed images. IEEE Signal Processing Letters, 18(1):39–42, 2011.

[28] K. V. Mardia and P. E. Jupp. Directional Statistics. Wiley Series in Probability and
Statistic. John Wiley & Sons, Inc., 1999.

[29] C. Pasquini and R. Böhme. Towards a theory of JPEG block convergence. In
2018 25th IEEE International Conference on Image Processing (ICIP), pages 550–554.
IEEE, 2018.

[30] V. Sedighi, R. Cogranne, and J. Fridrich. Content-adaptive steganography by
minimizing statistical detectability. IEEE Transactions on Information Forensics

http://bows2.ec-lille.fr

Table 5: Testing accuracy for SQY-SRNet. (De)compressed with Matlab’s imwrite.

Payload QF
(bpp) 90 91 92 93 94 95 96 97 98 99 100

M
iP
O
D 0.02 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 .9924 .9899

0.01 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 .9856 .9721
0.005 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 .9960 .9903 .9094 .8634
0.002 .9918 .9905 .9916 .9874 .9856 .9791 .9747 .9587 .9231 .7512 .6891

H
IL
L

0.02 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1
0.01 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 .9964 .9950
0.005 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 .9968 .9783 .9698
0.002 .9926 .9948 .9926 .9927 .9906 .9885 .9885 .9841 .9683 .8958 .8717

S-
U
N
I 0.02 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 .9970 .9959

0.01 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 .9934 .9918
0.005 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 .9968 .9650 .9498
0.002 .9934 .9923 .9910 .9921 .9908 .9895 .9831 .9721 .9603 .8511 .8109

W
O
W

0.02 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1
0.01 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 .9965 .9959
0.005 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 .9804 .9725
0.002 .9920 .9942 .9917 .9929 .9912 .9888 .9872 .9813 .9726 .8978 .8630

Table 6: Testing accuracy for RRH. (De)compressed with Matlab’s imwrite.

Payload QF
(bpp) 90 91 92 93 94 95 96 97 98 99 100

M
iP
O
D 0.02 ≈ 1 ≈ 1 ≈ 1 .9970 .9924 .9778 .9189 .8722 .9052 .9239 .9290

0.01 ≈ 1 ≈ 1 ≈ 1 ≈ 1 .9826 .9035 .7778 .7114 .7172 .7543 .7577
0.005 ≈ 1 ≈ 1 ≈ 1 ≈ 1 .9147 .7610 .6497 .6016 .5999 .6175 .6257
0.002 .9939 .9942 ≈ 1 .9519 .7247 .6157 .5597 .5370 .5342 .5390 .5438

H
IL
L

0.02 .9906 .9903 .9891 .9763 .9440 .9087 .8974 .9242 .9676 .9796 .9651
0.01 .9926 .9902 .9881 .9807 .9044 .8165 .7613 .7551 .8745 .8736 .8312
0.005 .9898 .9881 .9886 .9725 .8263 .7052 .6508 .6301 .7240 .7341 .6874
0.002 .9817 .9830 .9837 .9219 .6971 .5987 .5623 .5505 .5721 .5872 .5705

S-
U
N
I 0.02 ≈ 1 ≈ 1 ≈ 1 .9924 .9819 .9562 .9078 .8816 .9368 .9536 .9501

0.01 ≈ 1 ≈ 1 .9961 .9939 .9598 .8744 .7776 .7303 .7930 .8142 .7964
0.005 ≈ 1 ≈ 1 .9967 .9939 .8884 .7503 .6497 .6216 .6363 .6649 .6572
0.002 .9930 .9931 .9965 .9540 .7306 .6137 .5680 .5472 .5488 .5614 .5575

W
O
W

0.02 .9932 .9929 .9911 .9754 .9448 .9127 .8919 .9210 .9665 .9787 .9677
0.01 .9931 .9911 .9893 .9766 .9136 .8248 .7709 .7547 .8608 .8756 .8353
0.005 .9905 .9898 .9899 .9766 .8440 .7208 .6526 .6268 .7070 .7260 .6873
0.002 .9840 .9881 .9868 .9354 .7112 .6104 .5668 .5511 .5621 .5852 .5699

and Security, 11(2):221–234, 2016.
[31] L. N. Smith and N. Topin. Super-convergence: Very fast training of neural

networks using large learning rates, 2018.
[32] A. Sripad and D. Snyder. A necessary and sufficient condition for quantization

errors to be uniform and white. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 25(5):442–448, 1977.

[33] Thanh H. Thai, R. Cogranne, F. Retraint, and Thi-Ngoc-Canh Doan. JPEG quan-
tization step estimation and its applications to digital image forensics. IEEE
Transactions on Information Forensics and Security, 12(1):123–133, 2017.

[34] G. Xu. Deep convolutional neural network to detect J-UNIWARD. In M. Stamm,
M. Kirchner, and S. Voloshynovskiy, editors, The 5th ACM Workshop on Informa-
tion Hiding and Multimedia Security, Philadelphia, PA, June 20–22, 2017.

[35] J. Ye, J. Ni, and Y. Yi. Deep learning hierarchical representations for image
steganalysis. IEEE Transactions on Information Forensics and Security, 12(11):2545–
2557, November 2017.

[36] M. Yedroudj, F. Comby, and M. Chaumont. Yedroudj-net: An efficient CNN for
spatial steganalysis. In IEEE ICASSP, pages 2092–2096, Alberta, Canada, April
15–20, 2018.

[37] Y. Yousfi and J. Fridrich. An intriguing struggle of CNNs in JPEG steganalysis
and the one-hot solution. IEEE Signal Processing Letters, 27:830–834, 2020.

[38] J. Zeng, S. Tan, B. Li, and J. Huang. Large-scale JPEG image steganalysis using
hybrid deep-learning framework. IEEE Transactions on Information Forensics and
Security, 13(5):1200–1214, May 2018.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Directional statistics

	3 Pipeline
	4 Pipeline analysis
	4.1 Rounding errors in the spatial domain
	4.2 Cover images
	4.3 Stego images

	5 Statistical Hypothesis Detector
	5.1 Likelihood ratio test
	5.2 Block elimination

	6 Machine Learning Detectors
	6.1 SRNet
	6.2 RRH

	7 Experiments
	7.1 Methodology
	7.2 Performance w.r.t quality

	8 Robustness to JPEG Compressors
	8.1 Types of mismatch
	8.2 Mismatching the decompressor
	8.3 Mismatching the quantizer

	9 Estimating the Quantization Table
	9.1 Estimating Q errors is easier
	9.2 Practical Considerations

	10 Performance in real-life conditions
	10.1 Results

	11 Conclusions
	12 Acknowledgements
	References

