Invertible Authentication

Jiri Fridrich*a, Miroslav Goljanb, Rui Dub

aCenter for Intelligent Systems, bDepartment of Electrical Engineering,

SUNY Binghamton, Binghamton, NY 13902-6000

ABSTRACT

In this paper, we present two new methods for authentication of digital images using invertible watermarking. While virtually all watermarking schemes introduce some small amount of non-invertible distortion in the image, the new methods are invertible in the sense that, if the image is deemed authentic, the distortion due to authentication can be removed to obtain the original image data. Two techniques are proposed: one is based on robust spatial additive watermarks combined with modulo addition and the second one on lossless compression and encryption of bit-planes. Both techniques provide cryptographic strength in verifying the image integrity in the sense that the probability of making a modification to the image that will not be detected can be directly related to a secure cryptographic element, such as a hash function. The second technique can be generalized to other data types than bitmap images. As an example, a lossless authentication method for JPEG files is presented and some results discussed. In the paper, we also explain that invertible authentication can only be achieved at the expense of not being able to authenticate every possible image. However, it is argued that all images that occur in practice can be authenticated. The techniques provide new information assurance tools for integrity protection of sensitive imagery, such as medical images or images viewed under non-standard conditions when usual criteria for visibility do not apply.

Keywords: Digital watermarking, steganography, invertible, lossless authentication, fragile watermarks, hash, encryption, tamper detection, image integrity

1. INTRODUCTION AND PROBLEM STATEMENT

In today's world, digital images and video are gradually replacing their classical analog counterparts. This is quite understandable because digital formats are easy to edit, modify, and exploit. Digital images and videos can be readily shared via computer networks and conveniently processed for queries in databases. Also, digital storage does not age or degrade with usage. On the other hand, thanks to powerful editing programs, it is very easy even for an amateur to maliciously modify digital media and create "perfect" forgeries. It is usually much more complicated to tamper with analog tapes and images. Tools that help us establish the authenticity and integrity of digital media are thus very essential and can prove vital whenever questions are raised about the origin of an image and its integrity.

The visual redundancy of typical images makes it possible to embed a weak imperceptible signal in the image making it capable of authenticating itself without accessing the original or other auxiliary data derived from the original. The advantage of having the authentication code embedded in the image rather than appended to it is obvious. Lossless format conversion, such as changing the format from PGM to BMP, leads to a different representation of the image data but does not change the visual appearance of the image. Also, if the authentication information is lumped and localized in the image, one can localize the modifications as well as verify the content integrity of image fragments after cropping. Another advantage of fragile watermarks is that authentication based on invisible watermarking is less obvious.

Authentication based on watermarking cannot replace classical cryptographic authentication protocols that protect communication channels. Cryptographic authentication protects the communication link making sure that nobody can impersonate the sender and the data being sent has not been tampered with. This is typically achieved by attaching a hash of the image encrypted with the private key of the sender/author and encrypting the result with the public key of the recipient. Watermarking cannot provide equivalent satisfactory properties for this scenario in which subjects exchange data using the public-key encryption infrastructure. This is intuitively clear because the authenticated image is usually perceptually equivalent to the original, and hence an attacker can simply overwrite the image with his watermark and the resulting image will appear to be authenticated by the attacker. Although this problem can be alleviated to some extent by embedding in the image the sender's ID in a robust manner, the security this mechanism provides is nowhere close to what can be obtained using cryptographic authentication. The authentication watermark can, however, be useful in those cases when the set of authentication keys is well defined and controlled such as keys wired in a digital camera. Authentication watermarks are best utilized as secondary image assurance tools that can come in handy if an origin and/or integrity of an image comes into question.

Cryptographically secure fragile watermarks10,14(16 have been proposed as a means to verify image integrity without encrypting the image. Fragile watermarks typically depend on the hash of the image or an image block and are thus capable of detecting every change that occurred to the image. It can be shown that without the secret key, the probability of a modification that will not be detected can be related to the cryptographic element present in the scheme, such as a hash or a check-sum. Another advantage of authentication watermarks is their potential ability to localize the changes and, in some cases, provide information about the distortion11 or even reconstruct tampered/damaged areas in the image1,5,6. Those and similar techniques belong to the category of semi-fragile watermarks that allow authentication "with a degree". The goal of this soft authentication is to distinguish between malicious operations, such as feature adding/removal from non-malicious changes that do not modify the essential features in the image (slight filtering, high quality lossy compression, etc.). In this paper, we limit ourselves to fragile authentication watermarking built upon secure cryptographic elements. Such schemes are designed to detect every possible change that occurred to the image with very high probability.

One possible drawback of authentication based on watermarking is the fact that the authenticated image will inevitably be distorted by some small amount of noise due to the authentication itself. In virtually all previously proposed authentication watermarking schemes, this distortion cannot be completely removed even when the image is deemed authentic. Although the distortion is often quite small, it may be unacceptable for medical or legal imagery or images with a high strategic importance in certain military applications. In this paper, we analyze the conditions under which it is possible to "undo" the changes introduced by authentication if the image is verified as authentic. We present some new concepts and techniques that make invertible authentication of typical images possible. Finally, we describe two watermarking techniques that embed Message Authentication Code (MAC) in images in an invertible way so that anyone who possesses the authentication key can revert to the exact copy of the original image before authentication occurred.

In Section 2, we discuss some fundamental limitations of invertible authentication and present some heuristic arguments that will help us with development of invertible schemes later. In Section 3, we describe invertible authentication based on additive robust watermarking schemes that utilize invertible modulo addition. A completely different authentication technique based on lossless compression of bit-planes is presented in Section 4. This technique is further generalized to other data types, such as JPEG images, in Section 5. The paper is concluded in Section 6, where we also discuss ideas for future research.

2. INVERTIBLE AUTHENTICATION (FUNDAMENTAL LIMITATIONS

There are several different sources of non-invertible distortion that typically occur during watermarking. Techniques in which information is replaced (discarded), such as in the Least Significant Bit (LSB) embedding either directly in the colors or transform coefficients, are obviously lossy. The discarded information is irreversibly replaced with the message. In techniques that use quantization, information is also lost because multiple values are possibly rounded to one quantized value. Another source of information loss in watermarking is rounding of quantities due to their limited range. This includes rounding errors due to truncation to integers and rounding at the boundary grayscale values of 0 and 255. This last issue applies even to additive watermarks in the spatial domain that would otherwise be invertible.

Invertible authentication is not possible if we insist that all possible images, including "random" images, be authenticable. This can be explained as follows. Let G denote the set of grayscale images formed by all ordered M(N-tuples of integers from the set {0, …, 255}. The authentication process is described with a mapping FK: G (G and it depends on a secret key K. The set AK = FK(G) is the set of all images authenticated with the key K. Since we do not want the authenticated image to contain any disturbing artifacts, we require that the original image I and the authenticated image FK(I) be perceptually "close". One obvious necessary requirement of a secure authentication scheme is that the probability that an arbitrary image is deemed authenticated with K by pure chance should be very small. This implies that the cardinality of AK must be significantly smaller that that of G: |AK| << |G|. And this should be true for all keys K. This simple argument indicates that the mapping FK cannot be one-to-one, but, in fact, must be many-to-one with the cardinality of FK(1(I), I(AK that is very high. For example, in the Wong's scheme16, the cardinality of FK(1(I) is at least 2M(N where M and N are the image dimensions. This is because in Wong's scheme the LSBs of the original image are erased and replaced with the XOR of the hash of the 7 Most Significant Bits (MSBs) and a binary logo. Consequently, all images differing only in their LSBs will authenticate to the same image.

The previous paragraph seems to suggest that invertible authentication is not possible. This would essentially be true if we insisted that all images in G be authenticable. However, the set of all images that occur "in the real world" is significantly smaller than G. Typical images are highly correlated and form a very small subset of G. So, it makes sense to ask a question if it is possible to design an invertible authentication scheme for typical images at the expense of not being able to authenticate every possible image in G. The answer is positive and we elaborate on this topic in the next two sections.

3. INVERTIBLE AUTHENTICATION USING ROBUST WATERMARKS

The first publication on invertible authentication the authors are aware of is the patent by Honsinger et al.10 owned by The Eastman Kodak Company. We briefly outline the main idea behind their technique and generalize their approach. We also present some general design comments and discuss the performance, properties, and limitations of invertible schemes that utilize modulo addition and a robust spatial additive watermark.

It was explained in the introduction that the main reason why virtually all watermarking techniques cannot be completely reversed is the loss of information due to discarded (replaced) information, quantization, and integer rounding at the boundaries of the grayscale range (at zero and 255 gray levels). There is little hope that an invertible watermarking scheme could be constructed from schemes in which information is replaced or quantized. On the other hand, a non-adaptive spatial additive watermark is almost invertible because the watermark can be exactly subtracted from most pixels with the exception of pixels truncated due to over and underflow. If we were somehow able to guarantee that no truncation occurs, we should be able to subtract the watermark pattern from the watermarked image and revert to the original data. If the watermark payload was the hash of the original image, we could simply check if the extracted hash matches the hash calculated for the image after subtracting the watermark pattern. This idea forms the basis of the first invertible authentication method based on robust additive watermark in the spatial domain:

Algorithm for invertible authentication using spatial robust additive watermarks

1. Let I(G be the original image to be authenticated. Calculate its hash H(I).

2. Choose an additive, non-adaptive robust watermarking technique and generate a watermark pattern W from a secret key K, so that the payload of W is H(I). Note that we require that the watermark pattern W be a function of the key K and the payload H(I) only, W = W(K, H(I)).

3. Use a special "invertible addition" (to add the watermark pattern W to I to create the authenticated image Iw = I ((W ((is the watermark strength).

Integrity verification

1. Extract the watermark bit-string H' (payload) from Iw (read the watermark).

2. Generate the watermark pattern W' from the key K and the extracted bit-string H': W' = W(K, H').

3. Using the inverse operation, subtract W' from Iw to obtain I' = I ((W'.

4. Compare the hash of I', H(I'), with the extracted payload H'. If they match, the image is authentic and I' is the original unwatermarked image. If they do not match, the image is deemed non-authentic.

3.1. Invertible Addition

The key element of this method is the invertible addition "(". As explained above, simple addition and truncation at the boundaries (at 0 and 255) is not invertible because it is impossible to distinguish between the cases when, for example, the grayscale 255 was obtained as 254+1 or due to an overflow and subsequent truncation. Honsinger et al.10 proposed addition modulo 256 as an invertible operation. While this operation is indeed invertible, it may introduce a large error into the authenticated image when a grayscale value close to 255 is flipped to a grayscale close to zero, or a value close to zero is mapped to a value close to 255. In other words, the authenticated image may contain some "flipped" pixels (black to white and white to black). The visual impact of this resembles a salt and pepper noise and its visibility and extent depends on the number of saturated colors in the original image I and the watermark strength (. Even though one could easily give examples of images for which the artifacts will be very disturbing, typical images do not contain that many saturated colors and the artifacts due to pixel flipping are typically not that serious. Also, one should keep in mind that if the image is not modified (i.e., if it is authentic), one can invert the authentication and obtain the original image without any distortion.

The addition modulo 256 is a special case of a more general invertible addition. We can take any permutation P of the integers {0, 1, 2, …, 255} and define an invertible addition as i(k = Pk(i) for all grayscales i and k. The invertible addition from the previous paragraph can be represented using the following permutation: 0 (1, 1 (2, …, 254 (255, 255 (0. One can try to minimize the visual distortion due to flipped pixels by using permutations with shorter cycles. For example, we can cycle the grayscales in 16 cycles of length 16 rather than one cycle of length 256: 0 (1, 1 (2, …, 15 (0, 16 (17, 17 (18, …, 31 (16, …. This will guarantee that the maximal disturbance due to authentication will never be larger than 15 gray scales with the average distortion of 8. The formula for this invertible addition is

i(k = C (i/C(+mod(i+k,C) ,

where (x(stands for the integer part of x and C = 16 is the cycle length. The invertible subtraction is defined as

i(k = i(((k) .

3.2. Watermarking Technique

The choice of the watermarking technique has a big influence on the overall performance of the authentication algorithm. First, the capacity of the technique must be at least equal to the length of the hash H(I). Second, because we add the watermark pattern W using the invertible addition rather than the "truncated addition", as it is done in virtually all watermarking techniques, the watermarking algorithm must be robust with respect to "pixel flipping". The flipped pixels can be considered as a special case of a correlated salt-and-pepper noise. They will mostly influence high spatial frequencies in the image. Therefore, watermarking techniques that are robust with respect to adding small amount of salt-and-pepper noise are good candidates for application in the proposed invertible authentication scheme. Honsinger et al.10, use their spatial watermarking algorithm based on random phase spreading. This algorithm provides sufficient capacity and is extremely robust to a wide range of distortions8. According to the authors, their invertible authentication technique was successfully tested on a large database of test images9.

We note that the watermarking technique does not have to be a spatial method but could utilize image transformations as an intermediate step as well. In this paper, we have decided to test the authentication method with a spread-spectrum, frequency-based robust watermarking algorithm7 in order to explain possible problems that can be encountered and strategies for their solutions. The only requirement is that it should be additive and the watermark pattern W must be a function of the key and the payload only (shaping the watermark pattern using a perceptual mask would introduce additional error into the scheme that may prevent us from being able to authenticate some images). The watermarking method starts with calculating the DCT transform of the whole image and arranging the DCT coefficients in a zig-zag pattern. Then, the middle 30% of the DCT coefficients Dk are modulated by a Gaussian signal Sk with zero mean and unit standard deviation by simply adding both signals

D'k = Dk + (Sk , k = 1, …, Nm ,

where D'k denotes the modulated DCT coefficients, (is an image independent watermark strength, and Nm is the number of modified coefficients. The watermarked image is obtained by performing the inverse DCT using the modulated coefficients D'k. In order to use the technique in our context, it was rewritten in a matrix form to the spatial domain

X' = X (DCT(1((S) ,

Where X is the original image, X' is the watermarked image, and S is the Gaussian sequence Sk in the matrix form synthesized so that it carries all hash bits. Similar to the approach proposed by Ruanaidh7, we represent the hash bit-string using M=25 six-bit symbols si, 1 (si (26. For each symbol si, a sequence ((i) of pseudo-random numbers of length Nm+26 uniformly distributed in [(1,1] is generated. Each symbol s is represented using the segment ((i) =
[image: image1.wmf],

)

(

i

s

x

…,
[image: image2.wmf])

(

1

i

N

s

m

-

+

x

of consecutive Nm pseudo-random numbers. A new sequence of pseudo-random numbers is used for each symbol. The secret key determines the seed for the PRNG. The hash bit-string is then represented as a summation

[image: image3.wmf]å

=

=

M

i

i

M

S

1

)

(

3

h

.

The spread spectrum signal S is approximately Gaussian with zero mean and unit standard deviation.

The detection of the hash proceeds by first transforming the authenticated image X' using a DCT and extracting the middle Nm DCT coefficients. The secret key is used to generate M pseudo-random sequences of length Nm+26 needed for coding the symbols si. For each sequence, all 26 segments of length Nm are correlated with the middle Nm DCT coefficients. The largest value of the correlation determines the encoded symbol si. We point out that this detection method provides significantly more robustness when compared to a simple correlation of DCT coefficients with the spread spectrum signal and thresholding with a fixed threshold. Since relative values of correlation are compared rather than absolute values, the hash can be extracted even after the image has been severely distorted.

We observed that a low amplitude watermark with 0.8 (((1, which corresponds to a maximal spatial watermark amplitude of 2, gave us actually better results than stronger watermarks. This is because a weak watermark will cause fewer flipped pixels thus increasing the chances that an image will be authenticable. We first performed tests on the grayscale test image "Lenna" with 512(512 pixels. We used the addition modulo 256. The watermarked image had PSNR of 54.1dB and there were no flipped pixels in the image due to modulo addition. As our second experiment, we chose a 512(512 grayscale image of the Moon with a large area of pixels saturated at gray level 0 (see Figure 1). The PSNR of the watermarked image was 13.7dB due to 11273 flipped pixels that can be seen as white dots on a black background in Figure 2. To minimize the effect of flipped pixels on a successful extraction of the hash, we found it necessary to use a preprocessing step before extracting the payload from the authenticated image. Most of the flipped pixels can be easily detected and their values corrected for by subtracting/adding the period of the modulo addition before the watermark extraction occurs. We note that the resulting preprocessed image may have a larger dynamic range than 0(255. This preprocessing step significantly increases the reliability of the verification procedure, or, equivalently, more images from the set G of all images are authenticable. Of course, once the payload has been extracted, the watermark pattern W should be subtracted from the authenticated image and not from the preprocessed image.

The authors found it rather difficult to formally analyze this proposed invertible authentication technique in an attempt to define the set of images that will be authenticable. It appears that the only way to determine whether or not an image is authenticable is to run the authentication and then verify if the distortion due to invertible addition enables successful integrity verification. As pointed out above, the reliability of this process can be significantly increased by pre-processing the image under investigation to minimize the influence of the flipped pixels.

We want to point out that it is not necessary for the watermark to be robust against any other distortion than the distortion due to invertible addition. The authors believe that a special watermarking technique with robustness targeted to artifacts due to invertible addition can be designed. We anticipate that for such a technique, the set of authenticable images will be easier to define using a more exact mathematical approach. Study of this problem will be part of our future effort.

Finally, we note that whenever the construction of the watermark pattern W(K, H) from the key and the hash utilizes floating point operations instead of just integer operations, there is a non-zero probability, albeit extremely small, that even an image without saturated colors will not authenticate properly if the verification program is run on a computer with different floating point precision. This is because in very rare cases it may happen that accumulation of errors of the order of the machine precision may give us a slightly different watermark W on different computers even though the watermark payload was extracted correctly.

[image: image4.jpg]

Figure 1 The original 512(512 grayscale image "Moon" with a large area of pixels with grayscales zero.
[image: image5.jpg]

Figure 2 Authenticated image "Moon" with 11273 black pixels flipped to white pixels due to modulo 256 addition.

3.3. Security Considerations

Any small random change to the authenticated image will be detected with a high probability because the chances of obtaining a match between the calculated image hash and the extracted hash are equal to finding a collision for the hash.

Because a robust watermarking method is used, even if the authenticated image is tampered, it may be possible to recover the payload, the hash H(I), correctly. However, when the watermark pattern W(K, H(I)) is subtracted from the authenticated (tampered) image, the calculated image hash will not match the extracted hash and thus the method will not determine the image as authentic.

4. INVERTIBLE AUTHENTICATION USING LOSSLESS BIT-PLANE COMPRESSION

The problem of invertible image authentication by embedding a hash can be interpreted as adding additional information to the image in an invertible manner without increasing the image size. Because natural images are highly correlated it should be possible to insert the hash by increasing the image entropy without causing irreversible damage. At the same time, the embedding must provide security comparable to cryptographic authentication. In this section, we propose to combine lossless compression with encryption to achieve this goal. By losslessly compressing the image (or its feature), we can make some space where the image hash could be inserted. This needs to be done without introducing a large distortion to the image. Even though the distortion can be completely removed, it is clearly desirable to preserve as much of the visual content of the image as possible. We propose to use the lowest bit-plane that, after lossless compression, provides enough space for the image hash. Unless all bit-planes in the original image are noisy, which would correspond to a completely noisy image, there will be some bit-planes exhibiting strong correlations. Such bit-planes will be compressible in a lossless manner. At the same time, we hope that randomizing one of those bit-planes will not introduce severe artifacts into the image.

4.1. Invertible Authentication Using Lossless Compression

In this paper, we use the JBIG lossless compression scheme12 for compressing the bit-planes. The algorithm always starts with inspecting the 5th LSB plane. For color images, all three color-channels are compressed separately. We continue by calculating the redundancy for each channel:

Redundancy = Number of pixels (Compressed data size (bit) .

For channels that can’t be compressed (their redundancy is not positive), we set their redundancy to zero. Such channels will not be modified during authentication. If the sum of redundancies for all three channels is greater than or equal to 128, we go to the next lower bit-plane (the 4th LSB plane). If the sum is less than 128, we go to the next higher bit-plane (the 6th LSB plane). This process is repeated until we find a bit-plane for which we cannot go lower. For such a bit-plane, the sum of redundancies is larger than or equal to 128 and the redundancy of the next lower bit-plane is less than 128. This is the lowest bit-plane that provides enough space for lossless embedding of the image hash and it will be called the key bit-plane. To minimize the distortion introduced by authentication, we use this key bit-plane for hash embedding.

The authentication process continues with calculating the 128-bit image hash using the hash function MD5. Starting from the channel with the largest redundancy, we concatenate the hash bits to the compressed channel data so that the length of the compressed data with the length of concatenated hash bits equals to the image size. This is repeated for each channel in the order of decreasing redundancy until all hash bits have been concatenated with the compressed data.

The key bit-plane now consists of the compressed stream and the concatenated hash. To prevent somebody from manipulating the image and replacing the hash, the bit-plane should be encrypted to obtain a secure scheme. Public or symmetric encryption could be used at this point. The encrypted bit-stream is embedded in the corresponding channel(s) of the key bit-plane. Consequently, the authenticated image will have a randomized key bit-plane and thus it will contain some noise. In our implementation, we decided to not use classical encryption engines, such as IDEA or DES. These algorithms have a fixed encryption block size, and, depending on the image dimensions, we would have to pad the compressed bit-plane concatenated with the hash in order to apply the encryption. In the worst case, this padding would cost us additional 63 bits per channel (if the block size is 64 bits), which might force us to use higher bit-plane for authentication and thus further increase the distortion. Instead, we opted for a special symmetric encryption scheme based on two-dimensional chaotic maps2. This scheme fits our needs because its block size is variable and equal to the image size and no padding is needed. The principle of this scheme is briefly described in Appendix A.

The integrity verification proceeds in the inverse order. First, we determine the key bit-plane that was used in the authentication process. Note that the redundancy of the key bit-plane can be both negative and positive. If all three channels are used for hash embedding, the redundancy will be negative. If, however, only one channel was used for hash embedding, the redundancy may still be positive. In either case, the redundancy of the next lower bit-plane below the key bit-plane must always be negative. Based on this observation, in the integrity verification process, we calculate the redundancies of the bit-planes and take the highest bit-plane i with negative redundancy (the LSB plane has i = 1). The key bit-plane is either the i-th bit-plane or the i+1st bit-plane. Both are valid candidates for the key bit-plane used in the authentication. We try both bit-planes to verify the image. For an authentic image, one of them will give us a positive integrity check. If none of them leads to successful integrity verification, the image is considered non-authentic.

After we obtain the data from the key bit-plane, we perform decryption and the decrypted data of each channel is decompressed with the JBIG method. In our work, we used the JBIG implementation from ImageMagick13. For channels that are not modified during embedding, the JBIG decompression process will return an error because there is a fixed 20-byte header used by the JBIG method. In this header, there are 12 bytes that are derived from the image (4 bytes for width, 4 bytes for height, and 4 bytes related to the compressed data size). The remaining 8 bytes are fixed parameters or options used in JBIG. Thus, the probability of considering the data of an unmodified channel as a JBIG compressed data is at most (1/2)64. From the JBIG decompression process, we know the redundancy for each channel and we can concatenate the extracted hash bits together in the correct order.

Finally, we put the decompressed data back to its corresponding bit-plane and channels and calculate the hash of the recovered image. If the calculated hash matches the hash extracted from the key bit-plane, the image is deemed authentic, otherwise it is not.

We note that the performance of the method can be slightly improved by shortening the JBIG header only to information that cannot be fixed or read from the image itself. The only parameter that can not be obtained from the host image is the size of the compressed data. Thus, the JBIG header can be shortened to only 4 bytes. In this way, the possibility of embedding the image hash to lower bit-planes is increased and the distortion introduced by authentication will on average become smaller.

The test image "Moon" shown in Figure 1 is one of the best candidates for this authentication method because its LSB plane has large uniform areas of pixels with grayscale 0. Thus, the key bit-plane for the Moon image is the LSB plane and the distortion due to authentication is 51.2dB. Most high-quality images can be authenticated within the lowest three bit-planes and the distortion is not too visible. However, noisy images or video captures may require the 4th or the 5th plane, which makes the artifacts very visible.

Below, we include a simple pseudo-code for grayscale images:

Algorithm for invertible authentication using lossless bit-plane compression

1. For the original image I, identify the key bit-plane as the lowest bit-plane with redundancy greater than or equal to 128.

2. Losslessly compress the key bit-plane denoting the compressed bit-stream as C.

3. Append the hash H(I) of the original image to C, padding with random bits if necessary, to form the final bit-stream B of length M(N: B = C & H(I) & random bits.

4. Replace the key bit-plane of I with the encrypted bit-stream EK(B), where E is an encryption scheme and K is a secret key for the encryption.

Integrity verification

1. Identify the two candidates for the key bit-plane.

2. Decrypt and decompress the key bit-plane. Extract the hash of the original image I and the original bit-plane.

3. Replace the key bit-plane with the decrypted uncompressed bit-plane and calculate the hash of the image.

4. If the calculated hash matches the extracted hash for one of the two candidate key bit-planes, the image is deemed authentic, otherwise it is not.

4.2. Security Considerations

Any change made to the key bit-plane of the authenticated image will change the decrypted bit-plane and therefore the extracted hash. The chances of obtaining a match are very small and can be directly related to obtaining a collision for the hash. Changes made to other bit-planes will also cause a mismatch because the calculated hash will not match the extracted one. Again, the probability of obtaining a match is comparable to finding a collision for the hash. We conclude that, when it comes to detecting modifications in the image, the security provided by the proposed fragile watermarking scheme is equivalent to the security of cryptographic authentication based on attaching a secure hash to the image.

5. AUTHENTICATION OF JPEG FILES

The idea behind the second invertible authentication technique is actually quite general and can be extended to other objects besides bit-map images. Let us assume that we have an object X represented in a discrete form using bits. For example, X could be a JPEG file, a complex multimedia object, an audio file, a digitized hologram, a representation of a 3D structure, or any other digital object that needs to be authenticated. Let us further assume that it is possible to identify a subset E (X that has a structure and that can be randomized without changing the essential properties of X or its semantic meaning. The subset E needs to have enough structure to allow lossless compression by at least 128 bits (the hash of X). One can then authenticate X in an invertible manner by replacing the subset E with an encrypted version of its compressed form concatenated with the hash H(X).

We note that if the set E is easily compressible, we do not need to work with the whole set E but only with a smaller portion of it that would give us enough space after lossless compression. We illustrate this general authentication principle on the example of authentication of JPEG files.

JPEG compression starts with dividing the image into disjoint blocks of 8(8 pixels. For each block, the discrete cosine transform (DCT) is calculated, producing 64 DCT coefficients. Let us denote the (i,j)-th DCT coefficient of the k-th block as dk(i,j), 0 (i, j (64, k = 1, …, B, where B is the total number of blocks in the image. In each block, all 64 coefficients are further quantized to integers Dk(i,j) with a JPEG quantization matrix corresponding to a chosen quality factor

[image: image6.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

)

,

(

)

,

(

_

)

,

(

j

i

Q

j

i

d

round

integer

j

i

D

k

k

 .

The quantized coefficients are arranged in a zig-zag manner and compressed using the Huffman coder. The resulting compressed stream together with a header forms the final JPEG file.

The largest DCT coefficients occur for the lowest frequencies (small i and j). Due to properties of typical images and due to quantization, DCT coefficients corresponding to higher frequencies have a large number of zeros or small integers, such as 1's or (1's. For example, for the classical grayscale test image 'Lenna' with 256(256 pixels, the DCT coefficient (5,5) is zero in 94.14% of all blocks. In 2.66% cases it is a 1, and in 2.81% cases it is equal to (1, with less than 1% of 2's and (2's. Thus, the sequence Dk(5,5) forms a subset E that is easily compressible with a simple Huffman or arithmetic coder. Actually, if we embed message bits (the hash) into the LSBs of those coefficients, we only need to compress the original LSBs of the sequence Dk(5,5) instead of the whole sequence. We can further improve the efficiency of the algorithm if we define the LSB of negative integers Dk < 0 as LSB(Dk) = 1 ((|Dk| mod 2). Thus, LSB((1)=LSB((3)=0, and LSB((2)=LSB((4)=1, etc. Because DCT coefficients Dk have Gaussian distribution with zero mean, this simple measure will increase the bias between zeros and ones in the LSB bit-stream of original DCT coefficients.

DCT coefficients Dk(i,j) corresponding to higher-frequencies will produce a set E with larger bias between zeros and ones, but because the quantization factor Q(i,j) is also higher for such coefficients, the distortion in each modified block will also be higher. To obtain the best results, one should use different DCT coefficients for different JPEG quality factors to minimize the overall distortion and avoid introducing easily detectable artifacts.

Below, we give a pseudo-code for lossless authentication of grayscale JPEG files.

Algorithm for invertible authentication of JPEG files

1. Based on the JPEG quality factor, determine the set of L authentication pairs (i1,j1), (i2,j2), …, (iL,jL), 0 (il, jl (64, corresponding to middle frequencies.

2. Read the JPEG file and use Huffman decompressor to obtain the values of quantized DCT coefficients, Dk(i,j), 0 (i, j (64, k = 1, …, B, where B is the total number of blocks in the image.

3. Calculate the hash H of the Huffman decompressed stream Dk(i,j).

4. Seed a PRNG with a secret key and follow a random non-intersecting walk through the set E={D1(i1,j1), …, DB(i1,j1), D1(i2,j2), …, DB(i2,j2), …, D1(iL,jL), …, DB(iL,jL)}. There are L(B elements in the set E.

5. While following the random walk, run the context-free lossless arithmetic compression algorithm for the least significant bits of the coefficients from E. Check for the difference between the length of the compressed bit-stream C and the number of processed coefficients. Once there is enough space to insert the hash H, stop running the algorithm. Denote the set of visited coefficients as E1, E1 (E.

6. Concatenate the compressed bit-stream C and the hash H and insert the resulting bit-stream into the least significant bits of the coefficients from E1. Huffman compress all DCT coefficients Dk(i,j) including the modified ones and store the authenticated image on a disk.

Integrity verification:

1. Based on the JPEG quality factor, determine the set of L authentication pairs (i1,j1), (i2,j2), …, (iL,jL), 0 (il, jl (64.

2. Read the JPEG file and use Huffman decompressor to obtain the values of quantized DCT coefficients, Dk(i,j), 0 (i, j (64, k = 1, …, B.

3. Seed a PRNG with a secret key and follow a random non-intersecting walk through the set E={D1(i1,j1), …, DB(i1,j1), D1(i2,j2), …, DB(i2,j2), …, D1(iL,jL), …, DB(iL,jL)}.

4. While following the random walk, run the context-free lossless arithmetic decompression algorithm for the least significant bits of the coefficients from E. Once the length of the decompressed bit-stream reaches B+|H| (the number of 8(8 blocks in the image plus the hash length), stop the procedure.

5. Replace the LSBs of all visited coefficients with the decompressed bit-stream and calculate the hash H of the resulting stream of all quantized DCT coefficients Dk(i,j), 0 (i, j (64, k = 1, …, B.

6. Extract the hash H' from the decompressed bit-stream and compare with H. If they agree, the JPEG file is authentic and the original JPEG image is obtained. If H(H', the image is deemed non-authentic.

The selection of the L authentication coefficients can be adjusted according to the quality factor to minimize the distortion and other artifacts. For example, using L=3 coefficients (5,5), (4,6), and (6,3) in a random fashion will contribute to the overall security of the scheme because the statistical artifacts due to lossless authentication will be more difficult to detect.

For color JPEG images, we have found that using the chrominance instead of the luminance always introduced much less visible distortion into the image.

Table 1 below shows the invertible distortion measured using the PSNR. For simplicity, in our experiments we used one fixed DCT coefficient (5,5) and six 512(512 test images (five grayscales and one color image). The JPEG images were obtained by saving raw bitmaps as JPEGs with four different quality factors in PaintShop Pro 4.12. As expected, the distortion increases with the compression ratio.

Test image

(512(512)
Distortion (dB)

JPEG 90%
JPEG 85%
JPEG 75%
JPEG 50%

'Lenna'
57.96
54.68
49.63
44.05

'Lenna' (color)
55.97
53.11
49.01
43.54

'Airfield'
53.92
52.98
50.51
43.97

'Bridge'
54.57
51.60
49.34
44.07

'Peppers'
57.78
54.11
50.52
43.89

'Mandrill'
53.04
51.02
47.78
43.51

Table 1 Distortion for lossless JPEG authentication for several test images and different JPEG quality factors.
6. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed two new invertible authentication techniques for digital images based on fragile watermarks. The fragile watermarks have cryptographic strength and are global in the sense that they can detect every modification made to the image with probability equivalent to finding a collision for a cryptographically secure hash function. Although the watermarking techniques introduce a small amount of distortion to the image, this distortion can be completely removed (inverted) if the image is deemed authentic. The invertible authentication is only possible at the expense of not being able to authenticate every possible image. On the other hand, it is argued in the paper that all typical images can be authenticated.

The first technique embeds the hash of the whole image as a payload for a robust watermark. Any watermarking technique that can be used as a non-adaptive additive technique in the spatial domain can be used. To enable a complete removal of the distortion, the operation of addition is replaced with a modified addition based on modulo arithmetic. This operation actually introduces some potentially large distortion (flipped colors of pixels resembling the salt-and-pepper noise) in the authenticated image. In fact, this is the only distortion with respect to which the watermarking technique needs to be robust. To minimize the distortion in the authenticated image, a whole range of invertible addition operators has been proposed. Special preprocessing that eliminates the influence of flipped pixels is also recommended for the integrity verification in order to maximize the set of authenticable images.

It is rather difficult to characterize the set of all images that can be authenticated using this method. Images that contain large areas of saturated colors, such as astronomical images (see Figure 1), are likely to cause problems because the number of flipped pixels may be too large for a reliable extraction of the watermark. On the other hand, because the only distortion with respect to which the watermark must be robust is the distortion introduced due to the invertible addition (pixel flipping), the authors believe that a special technique tailored to this application could be developed. For such a technique, the flipped pixels would not pose a serious problem, and the set of authenticable images would be sufficiently large. Another possibility would be to embed the watermark into cyclical variables, such as the hue.

The second method for invertible authentication based on lossless compression of bit-planes and encryption is much more transparent for analysis. Images that cannot be authenticated must contain noise in all eight bit-planes, which essentially means that they must look like noise. One can say with confidence that every image that one can take with a digital camera will be authenticable. For this second technique, images with large areas of saturated colors are actually good images and can often be authenticated in the LSB plane. The disadvantage of this method is that for some noisy images we may have to use higher bit-planes and the distortion due to authentication can become very visible.

The second authentication method can be generalized to other data types than images. As an example, a lossless authentication method for JPEG images is given. Instead of a bit-plane, a subset of quantized middle frequency DCT coefficients is used to embed the compressed data and the hash. Our future work will focus on lossless authentication for MPEG files and further improvement and generalization of the proposed methods.

Both methods can be localized to blocks rather than applied to the whole image. To be able to detect swapping of blocks among different authenticated images, one would have to concatenate the image index to the hash. In the first method, the size of the block is limited by the minimal necessary robustness required for watermark extraction. Depending on the watermarking method, we may be able to afford as small as 64(64 or 128(128 pixel blocks. For the second method, if too small a block is used, one will be forced to use higher bit-planes and increase the distortion to an unacceptable level.

APPENDIX A

The following pseudo-code is used to encrypt a rectangular array of integers gij in the interval [0, 2L (1]:

 For k=1 to 10

Permutation pgt1(i,j),t2(i,j) = (gij + i(j) mod 2L

Diffusion odd iteration gij = (pgij + G[pgij(1 mod 2, pgij(2 mod 2, ..., pgij(8 mod 2]) mod 2L

 even iteration gij = (pgij + G[pgij+1 mod 2, pgij+2 mod 2, ..., pgij+8 mod 2]) mod 2L
 End loop.

The array gij is the input data for encryption and it is also the final output of encrypted data. The function G is a permutation of integers {0, 1, ..., 255} generated from a secret key. In our implementation above, the argument of G is actually represented in a binary form (8 bits). The arrays t1 and t2 are called transfer matrices and are derived from a discretized chaotic map using the same secret key.

The following pseudo-code is used for the decryption (the array pgij denotes both the input and the output bit-stream):

 For k=10 to 1

Diffusion odd iteration gij = (pgij (G[gij(1 mod 2, gij(2 mod 2, ..., gij(8 mod 2]) mod 2L

 even iteration
 gij = (pgij (G[gij+1 mod 2, gij+2 mod 2, ..., gij+8 mod 2]) mod 2L

Permutation pgij = (gt1(i,j),t2(i,j) (i(j) mod 2L
 End loop

More details on the encryption scheme and its analysis can be found in the work by Fridrich2(4.

ACKNOWLEGMENTS

The work on this paper was supported by Air Force Research Laboratory, Air Force Material Command, USAF, under a grant number F30602-00-1-0502. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation there on. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of Air Force Research Laboratory, or the U. S. Government.

REFERENCES

1. S.-F. Chang and C.-Y. Lin, "Semi-fragile watermarking for authenticating JPEG visual content", Proc. SPIE, Security and Watermarking of Multimedia Contents, San Jose, California, pp. 140(151, January 2000.

2. J. Fridrich, “Symmetric ciphers based on two-dimensional chaotic maps”, Int. J. Bifurcation and Chaos, 8(6), pp. 1259(1284, June 1998.

3. J. Fridrich, “Secure image ciphering based on chaos”, Final report for Grant #F30602-96-1-0047 for Air Force Research Laboratory, NY, March 1997.

4. J. Fridrich, "Techniques for secure image processing", Final Report for Grant # F30602-98-C-0009 sponsored by the Air Force Research Laboratory, Rome, NY, October 1999.

5. J. Fridrich and M. Goljan, "Protection of digital images using self-embedding", Symposium on Content Security and Data Hiding in Digital Media, New Jersey Institute of Technology, May 1999.

6. J. Fridrich and M. Goljan, "Images with self-correcting capabilities", ICIP'99, Kobe, Japan, October 1999.

7. A. Herrigel, J. Ó Ruanaidh, H. Petersen, S. Pereira, and T. Pun, “Secure copyright protection techniques for digital images,” Proc. of the 2nd Int. Information Hiding Workshop, Portland, Oregon, 1998.

8. C. W. Honsinger, "A robust data hiding technique based on convolution with a randomized phase carrier", Proc. of PICS'00, Portland, Oregon, March 2000.

9. C. W. Honsinger, "Personal communication", September 2000.

10. C. W. Honsinger, P. Jones, M. Rabbani, and J. C. Stoffel, "Lossless recovery of an original image containing embedded data", US Patent application, Docket No: 77102/E(D, 1999.

11. D. Kundur and D. Hatzinakos, "Towards a telltale watermarking technique for tamper proofing", Proc. ICIP, Chicago, Illinois, October 1998.

12. K. Sayood, Introduction to Data Compression, Morgan Kaufmann, pp. 87(94.

13. Software ImageMagick, http://www.wizards.dupont.com/cristy/www/perl.html.

14. S. Walton, “Information authentication for a slippery new age”, Dr. Dobbs Journal 20 (4), pp. 18–26, April 1995.

15. R. B. Wolfgang and E. J. Delp, "Fragile watermarking using the VW2D watermark", Proc. SPIE, Security and Watermarking of Multimedia Contents, San Jose, California, pp. 204(213, January 1999.

16. P. W. Wong, "A watermark for image integrity and ownership verification", Proc. IS&T PIC, Portland, Oregon, 1998.

17. B. Zhu, M. D. Swanson, and A. Tewfik, “Transparent robust authentication and distortion measurement technique for images”, preprint, 1997.

* Correspondence: Email: � HYPERLINK mailto:fridrich@binghamton.edu; ��fridrich@binghamton.edu;� WWW: � HYPERLINK http://www.ssie.binghamton.edu/fridrich; ��http://www.ssie.binghamton.edu/fridrich;� Telephone: 607 777 2577; Fax: 607 777 2577

_975741173.unknown

_1031131105.unknown

_1037524402.unknown

_975741115.unknown

