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ABSTRACT

In this paper, we investigate the effect of pretraining CNNs on Ima-
geNet on their performance when refined for steganalysis of digital
images. In many cases, it seems that just ’seeing’ a large number
of images helps with the convergence of the network during the
refinement no matter what the pretraining task is. To achieve the
best performance, the pretraining task should be related to steganal-
ysis, even if it is done on a completely mismatched cover and stego
datasets. Furthermore, the pretraining does not need to be carried
out for very long and can be done with limited computational re-
sources. An additional advantage of the pretraining is that it is done
on color images and can later be applied for steganalysis of color
and grayscale images while still having on-par or better perfor-
mance than detectors trained specifically for a given source. The
refining process is also much faster than training the network from
scratch. The most surprising part of the paper is that networks
pretrained on JPEG images are a good starting point for spatial
domain steganalysis as well.
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1 INTRODUCTION

Steganography is the art of hiding information in innocuously look-
ing media called covers, such as digital images. Steganalysis on the
other hand aims to detect evidence that steganography took place.
The most popular choice of steganalyst’s detector nowadays is a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IH&MMSec 21, June 22-25, 2021, Virtual Event, Belgium.

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8295-3/21/06...$15.00
https://doi.org/10.1145/3437880.3460395

convolutional neural network (CNN). Recent advances [6, 7, 29] in
steganalysis showed that pretraining neural networks on seemingly
irrelevant tasks, such as object recognition, and only refining on
steganalysis in a downstream dataset is surprisingly beneficial for
a range of neural network architectures. This idea of training a
network on one task and refining its parameters on a downstream
(target) task is typically referred to as transfer learning [4], and was
utilized in many fields with great success [20, 31]. Recently, [14]
shows the effect of pretraining on artificially generated images
rather than natural images. In [19], the authors study transfer learn-
ing for steganalysis by pretraining on LSB matching. This inspired
us to study whether the pretraining task matters at all or if one
could simply pretrain network detectors on arbitrary tasks, pro-
vided a large number of images are presented to the network during
training.

Pretraining can be thought of as a different way of initializing the
network weights. Large computer vision models as well as models
used for steganalysis have millions of parameters. Pretraining the
model on some classification problem involving natural images or
at least images interpretable by humans endows the model with
filters capable of extracting the basic elements forming natural
images, such as edges, textures, periodic patterns, etc. Naturally,
such filters are relevant for steganalysis because the stego signal is
essentially a noise modulated by content. Especially in the JPEG do-
main, the stego signal contains more low-frequency patterns. Thus,
when refining the model on a steganalysis task, the model parame-
ters already occupy a rather small subset of the high-dimensional
parameter space (the subset of the parameters that are relevant
for analyzing natural images), which makes their refinement for a
different classification task much faster as long as the task involves
again natural images.

Proper initialization of parameters can play a major role in
training, especially on difficult tasks, such as steganalysis of small
payloads. With randomly initialized parameters, networks trained
from scratch typically struggle with convergence. This is why most
CNNess for steganalysis are trained with the so-called pair constraint
(PC) [3, 26, 27], which forces a cover image and its stego version
into the same minibatch. While this indeed helps with convergence,
it actually cripples the network’s performance in the end. This
is because providing pairs of images from different classes that
are almost identical might negatively affect Batch Normalization
layers. In [29], the authors refined the SRNet[3] without the PC,
which significantly boosted its performance. Furthermore, models
pretrained on an object recognition task on the ImageNet were suc-
cessfully refined for steganalysis [6, 7, 29] without the PC. Lastly,
in many situations it is beneficial to pretrain CNNs on images em-
bedded with larger payloads before training on images with a small
payload [19, 22, 28].
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In the next section, we study three types of pretraining tasks,
treating them as different model initializations for refining on a
downstream task, which in our case is steganalysis. In Section 3,
we describe the datasets and detectors used for pretraining and the
downstream tasks. Section 4 covers the results of our experiments.
Conclusion is given in Section 5.

2 PRETRAINING TASKS

In this section, we describe three very different classification tasks
for pretraining on ImageNet. All three tasks were trained on color
images, which means that the networks trained this way have
three-channel filters in the first layer. We can use this later to
train on grayscale images as well by simply copying the luminance
representation of the image into all three RGB channels. With this
strategy, only the very last fully connected (FC) layer will have to
be initialized with random weights. Note that we would not be able
to do it the other way around - to first pretrain on grayscale images
and later refine on color images as this would require reinitialization
of the filters in the very first layer of the network, which could
negatively impact the training.

IN. The goal of the ImageNet object recognition task is to predict
one of the 1,000 possible object classes in the ImageNet database [9].

FIN. J-UNIWARD ImageNet steganalysis task uses ImageNet
images as cover images. To generate stego images, we embed only
in the luminance channel of the covers with J-UNIWARD [13] with
a random payload uniformly distributed in the range [0.4, 0.6] bits
per non-zero AC DCT coefficient of the luminance channel (bpn-
zac). We did not embed into color because our goal was to later
use this pretraining on grayscale images as well. This prevents the
network to specialize on detecting distortion in the chrominance
channels. We believe that exploiting color dependencies later on
the downstream task should still be enough. The range of payloads
was chosen purely heuristically as 0.4 bpnzac is typically used as a
good starting point to train networks from scratch with training on
smaller payloads carried out via curriculum training [3, 22]. This
again can be thought of as a specific initialization of weights for
steganalysis of small payloads. Furthermore, the larger payloads
will make the models easier to converge, while additionally diversi-
fying the payload at the same time. We believe the diversification
of payload could help with detection on the downstream dataset
with different payloads and/or steganographic algorithms.

QIN. Quantization table ImageNet aims to predict the luminance
quantization table as a 64-dimensional vector. While this is a silly
task because the quantization table can be read from the JPEG
header, the main point of training a model for this task is just
parameter initialization when training on some non-obvious task.

3 EXPERIMENTAL SETUP

In this section, we first describe the datasets and the training hyper-
parameters used for the three pretraining tasks. Then, the datasets
and the hyperparameters for the downstream steganalysis tasks
are detailed.

Figure 1: Quality factor distribution in the ImageNet dataset.
The histogram is in log-scale.

3.1 Pretraining datasets

Each of the three pretraining tasks uses images from the ImageNet
database. There are, however, some task-specific modifications of
the images. The original ImageNet consists of over one million
color images of varying sizes. The images are JPEG compressed
with a variety of quality factors whose distribution is shown in
Figure 1. The vast majority of the images are compressed with
quality factor 96 (note the logarithmic scale). By inspecting DCT
coeflicient histograms, we also found strong evidence of multiple
compression in some of these images. Therefore, we believe that
the majority of these images were actually compressed two or more
times with the last compression quality of 96.

For the IN object recognition task, we used training and valida-
tion sets of 1, 221, 405 and 40, 000 images, respectively. The images
during training were augmented with torchvision’s RandomRe-
sizedCrop' function with default parameters and size 224 x 224 and
random horizontal flip. The validation images were first rescaled
into squares and then resized to 224 x 224.

The JIN and QIN pretraining tasks use the same dataset generated
by cropping ImageNet images to 256 x 256 pixels. This required us to
remove a portion of the images because some of them were already
smaller than the target size. We also removed grayscale images. The
images were adaptively cropped to avoid singular content (details
are provided below). After cropping, we end up with 858, 357 images
in the training set and 38, 000 images in the validation set. We did
not use a test set, since we only report validation performance
on the pretraining task. All cropped images were embedded with
J-UNIWARD with random payload as described in Section 2. Both
the JIN and QIN tasks used cover and J-UNIWARD stego images.
While these datasets are based on the ImageNet, the images we
generated are not specifically related to the ImageNet and the same
approach can be applied to any dataset.

3.1.1  Smart cropping. For a given luminance channel represented
with a DCT matrix of size (M, N), for the (i, j)-th 8 X 8 block,
i,je{l,...,M/8} x{1,...,N/8}, we define the block energy Bj;;
as the number of DCT coefficients C;Cllj ), k,1€{1,...,8} satisfying
> T:By = 5

; l:0[|C§<ilj)| > T]. We then selected a 256 X 256

! RandomResizedCrop
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pretraining
Model IN JIN QIN
SRNet 0.8524 0.7571 0.7571
BO  0.9325* 0.7071 N\A

Table 1: The best validation accuracy on different pretrain-
ing tasks. Top5 accuracy is used for IN. Average accuracy
of correct prediction is used for JIN and QIN. JIN for BO is
IN+JIN.

N J-UNI (0.4) SI-UNI (0.6)

Model Pretraining 75 95 75 95
N\A 0.0754 0.1895 0.1974 0.2636
SRNet JIN 0.0573 0.1704 0.1751 0.2326
IN 0.0817 0.2150 0.2047 0.2681
QIN 0.0906 0.2103 0.2319 0.3454
BO IN+JIN 0.0870 0.2518 0.2242 0.3005
IN 0.1122 0.5000 0.2462 0.3624

Table 2: Pg of J-UNIWARD at 0.4 bpnzac and SI-UNIWARD
at 0.6 bpnzac. Underlined values indicate that the training
would not start converging without the PC.

crop from the image that maximizes the energy Z?lj:() Bujsti,m/s+js

where m, n are the starting indices of the crop. This was imple-

mented using a convolution between the matrix? [|C§<llj )| > T] and
a sliding window of size 256 X 256 filled with ones. Because a con-
volution of such scale would be computationally demanding, it was
done in the Fourier domain using Matlab’s implementation of 2-D
Fast Fourier Transform f#2 and its inverse version ifft2, where we
computed elementwise multiplication instead of convolution (the
sliding window was appropriately padded). To avoid disrupting the
JPEG 8 x 8 block structure, we enforce the cropping to contain only
whole 8 x 8 blocks, meaning that the top left corner corresponds to
a DC mode of some block. If there were several crops of the image
with the same maximal energy, we simply selected the first such
block (in a row-by-row order). After visually inspecting several
images for different values of T, T = 5 was selected as the smallest
value that avoids singular or purely noise content.

3.2 Pretraining schedules

The detector we used in most of our experiments is the SRNet [3].
We used the EfficientNet-B0 [18] only for a subset of experiments
with JIN to briefly verify the generalization abilities of the pretrain-
ing strategies. In fact, we were not able to make B0 converge on
JIN with randomly initialized weights, so we trained it on JIN with
weights already pretrained on IN. For every pretraining task, we
only need to modify the FC layer of our model because the steganal-
ysis models work with a different number of classes. During every
pretraining task, the images fed to the network were loaded into the
RGB representation with OpenCV library and rounded to integers
to avoid issues with manual chrominance channels upsampling. All
trainings were carried out with automatic mixed precision and Dy
augmentations.

2The square brackets denote the Iverson bracket.

3The code used to generate cropped images is available here

4The validation split used to obtain this value contains images that the model was
trained on because we did not have access to the data split used for training the CNN.

3.2.1 JIN. Because in JIN the model predict only two cover/stego
classes, the FC layer has only two output neurons. The loss func-
tion was binary cross entropy loss as it is the standard loss for
binary classification problems. We used AdaMax optimizer with
eps value 107* and weight decay 2 x 107, The learning schedule
was OneCycle schedule with maximum learning rate (LR) 1073 at
epoch 3, division factor 25, and final division factor 10. We tested
batch sizes (BS) 64 and 128 with the former performing slightly
better on the pretraining task. Hence, we used BS 64 for evaluation
of this method. Because the training without the pair constraint
would not converge from scratch, we used the PC (32 cover-stego
pairs) for the first 10 epochs to allow the network to converge. We
continued training without the PC for 50 more epochs, totaling 60
epochs of training. The best checkpoint in terms of the validation
accuracy on the pretraining task was achieved after 57 epochs.

B0 was trained with AdamW optimizer with weight decay 1073
with other hyperparameters kept unchanged. The best checkpoint
was achieved after 58 epochs.

3.2.2  QIN. Pretraining on QIN was done with the same hyperpa-
rameters as on JIN. The only exception is that we never used the PC
because it does not make sense in this setting. Thus, the training
was carried out for 60 epochs without the PC. We did, however,
train it on the same dataset as JIN (including the stego images). The
reason being that the steganalyst can always generate stego images
and include them in the pretraining task in the same way she uses
cover images. Because there are 64 DCT modes and, consequently,
values in the quantization table, the FC layer outputs 64 values. For
the loss function, we used the average MSE over all quantization
steps, minimizing the distance between the (rounded) predicted
and the true quantization steps.

3.2.3 IN. Pretraining on object recognition requires quite a few
modifications as opposed to the other two tasks under investigation.
Using all images from the ImageNet datasets, the FC layer has
to have 1,000 output neurons, and we employed the multi-class
cross-entropy loss function. Instead of AdaMax, we used the SGD
optimizer with eps value 1077 and weight decay 107>. OneCycle
scheduler was used here too but with maximum LR 0.5 at epoch 5
with the other parameters of the scheduler kept the same. Because
alarger BS is usually used for object recognition tasks on ImageNet,
we used BS 256. Finally, because the training set is roughly twice
smaller than in the other two tasks (there are no stego images), we
increased the number of epochs to 100.

Instead of pretraining the BO model on IN, we simply loaded the
trained weights available in the pytorch package.’

3.3 Downstream datasets

To verify that the pretraining is successful for steganalysis of both
color and grayscale images, we verify the proposed pretraining
tasks with steganalysis in two downstream datasets.

The first is a typical database used for benchmarking stegano-
graphy - a union of BOSSbase 1.01 [1] and BOWS2 [2] datasets,
both of which contain 10, 000 grayscale images resized to 256 X 256
using Matlab’s imresize. The detectors were trained on all BOWS2
images and randomly selected 4, 000 BOSSbase images. A total of

Shttps://github.com/lukemelas/EfficientNet-PyTorch
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1,000 BOSSbase were used for validation and the remaining 5, 000
for testing. With this database, we benchmark on JPEG and spatial
domain steganography. For the JPEG domain, we include in our
experiments two quality factors 75 and 95. We used J-UNIWARD at
0.4 and 0.2 bpnzac and its side-informed version SI-UNIWARD [13]
at 0.6 bpnzac. In the spatial domain, we used MiPOD [24] and
HILL [15] with 0.4 bits per pixel (bpp).

The second dataset is the ALASKA2 dataset [7] used in the recent
Kaggle competition.® It consists of color images compressed with
three quality factors 75, 90, and 95. For every quality, there are
25,000 images of size 512 X 512. As in the Kaggle competition, we
used stego images generated using UERD [11], J-UNIWARD, and
J-MiPOD [8] with the payload spreading strategy across images
and color channels as explained in [7].

3.4 Downstream schedules

While refining on the pretraining task, regardless of the downstream
dataset, the SRNet was trained with the same hyperparameters that
were used during JIN pretraining. Pretrained SRNets were always
trained without the PC for 100 epochs unless stated otherwise, while
the SRNet with random initial weights was trained with the PC for
300 epochs first and then refined for 100 more epochs without the
PC. In some cases, when even the pretrained network would not
converge, we added 100 epochs with the PC first. This shows that
not all pretraining strategies are equally good starting points for
the refinement.

To speed up the training of B0, we used a BS 96 with all other
hyperparameters kept as in JIN pretraining. This network was also
trained with 100 epochs without the PC. Similarly to SRNet, in
some cases the training would not start, in which case the same
solution with the PC as above was applied.

4 RESULTS

First, we are going to compare the pretraining strategies on JPEG
domain steganography with J-UNIWARD and the side-informed
version SI-UNIWARD. To confirm that the results are not specific
to J-UNIWARD, which was also used during JIN pretraining, we
additionally report the results when detecting steganography in
the spatial domain. It seems a bit surprising to use pretraining on
JPEG images for spatial-domain steganalysis but, as shown in this
paper, the pretraining does work well in this case, too.

For completeness, we include the best validation performance on
the pretraining tasks in Table 1. For IN, we measure the performance
with Top5 accuracy. For JIN, we used accuracy, and for QIN we also
report the average accuracy of correctly predicting the quantization
steps when rounding the network output to integers.

4.1 JPEG domain

During training in the JPEG domain, the images were decompressed
without rounding to integers. To validate that the pretraining is not
skewed toward the dominant quality factor 96 (see Figure 1), we
test on two quality factors 75 and 95. Table 2 shows that to detect J-
UNIWARD at 0.4 bpnzac, every pretraining used allowed us to train
the networks without the PC while achieving a decent performance.
One exception was observed for IN-BO at QF 95, which we were

Chttps://www.kaggle.com/c/alaska2-image-steganalysis

J-UNI (0.2)

Pretraining 75 05
N\A (0.4)  0.2076  0.3433
JIN 0.1754 0.3294
IN 0.2059 0.3679
QIN 0.2260 0.3701

Table 3: Pr of SRNet on J-UNIWARD at 0.2 bpnzac. Under-
lined values indicate that the training would not start con-
verging without the PC. The network trained from scratch
was refined from a larger payload of 0.4 bpnzac via payload
curriculum training,.

not able to train even with the PC. The networks pretrained on
IN would not converge with SI-UNIWARD at 0.6 bpnzac, while
those pretrained on QIN and JIN would. Even though QIN does not
require the PC to train, we see a clear improvement of JIN over
QIN pretraining. The overall best performance is achieved with JIN
pretraining.

To further validate that JIN pretraining does not allow us to train
only on payload 0.4 bpnzac and larger, we include the performance
on J-UNIWARD at 0.2 bpnzac in Table 3 and on ALASKA 2 compe-
tition setting in Table 4. On 0.2 bpnzac J-UNIWARD, we can see a
clear benefit of JIN pretraining over IN or QIN, as it is the only one
not requiring the PC to converge. Moreover, it provides the best
detection out of the three pretraining tasks. The network trained
from scratch on 0.4 bpnzac also converges without the PC, however,
JIN performs better even in this case.

In ALASKA 2 setting, the quantity used for measuring the per-
formance is the weighted area under the curve (WAUC) [7]. We
do not see much of a difference in performance between IN and
JIN for both SRNet and B0. We think this might be due to fact that
the training set is sufficiently large and the network architecture
cannot get better anymore, a behavior that was already observed
in [23]. Nevertheless, one interesting observation remains. Both
models were trained on all quality factors without the PC without
any need to tweak the training schedule. While this is not surprising
for BO [29], it drastically simplifies the training of the SRNet across
multiple quality factors [30]. As reported in [29], when training
the SRNet from scratch, it had to be trained first on QF 75 with the
PC to allow convergence, then refined without the PC, and finally
trained via curriculum learning for the other two qualities.

The last experiment we carried out in both the JPEG and spatial
domains investigates how much pretraining is actually needed. The
top part of Figure 2 shows the detection error Pg of the SRNet on
a downstream task as a function of the number of epochs trained
on a pretraining task. Note that for the three downstream tasks:
J-UNIWARD at QFs 75 and 95 with 0.4 bpnzac and MiPOD 0.4
bpp, it is enough to pretrain in JIN setting for about 10 epochs.
While this is surprising, recall that during those 10 epochs the
network is exposed to 10 X 2 X 858, 357 (roughly 17 million) images.
Additional pretraining does not provide any significant boost. IN
pretraining seems to require more than 20 epochs of pretraining for
J-UNIWARD at QF 95. We want to mention at this point that the JIN
pretrained model converges even with one pretrained epoch, most
likely because the pretraining is done with the PC. In the bottom
part of Figure 2, we show the detection error Pg with respect to
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Model Pretraining 75 UE;I;D 95 75 J_UNI;();/ARD 95 75 J_M;P(;OD 95 Mixture
SRNet JIN 0.9336 0.9521 0.9444 0.8675 0.8853 0.8894 0.9750 0.9761 0.8572  0.9219
IN 0.9349 0.9505 0.9369 0.8710 0.8828 0.8851 0.9776 0.9761 0.8595  0.9213
BO IN+JIN 0.9517 0.9620 0.9500 0.8862 0.8893 0.8949 0.9783 0.9777 0.8625  0.9298
IN 0.9479 0.9607 0.9486 0.8817 0.8793 0.8836 0.9827 0.9747 0.8546  0.9258
Table 4: wAUC on ALASKA 2 setting.
Model Pretraining MiPOD HILL 0.5 @AAAFA-————— A 9
N\A 0.1554  0.1508 | o
JIN 0.1396  0.1295 \
SRNet IN 0.1839  0.1676 0.4 ! E 7Ii ——
QIN 0.1752 0.1651 '. D JUNI o
50 IN+JIN 02255 0.1971 03l JUNI-
IN 0.2736  0.2357
&
Table 5: Detection error P; on HILL and MiPOD with 0.4 bpp.
Underlined values indicate that the training would not start 0.2
converging without the PC.
0.1
relative accuracy on the pretraining task. We can asses that it is
enough to achieve 80—90% of attainable accuracy on the pretraining
task in order to have a good initialization of weights for steganalysis. L ‘
012345 10 *
4.2 Spatial domain Epochs pretrained
The biggest surprise of this work is not only the fact that the pre- 05 ===~ TETTETAER |
training on JPEG images allows refining the network to detect 04l ' \\\ |
spatial domain steganography but the fact that we can actually ’ | AN
achieve a better detection on uncompressed images embedded with 03] \ N .
MiPOD and HILL with 0.4 bpp, as seen in Table 5. Additionally, all £ \ AN
the pretraining strategies allowed the SRNet to train without the 0.2 - P P N
PC, which is puzzling as some of these models were struggling with .\‘\.‘\0
J-UNIWARD at QF 95 — we expected JPEG steganography to be 01 L ____. A Oatgrgog A |
somewhat easier to train on with pretraining done on JPEG images |

mostly compressed with QF 96. There is also a significant boost in
performance for the JIN pretrained B0 model.

Since we experimented with a more complex dataset in the JPEG
domain (ALASKA 2), we decided to test the pretraining effect on a
diversified stego source in the spatial domain too - the same source
previously used in [5]. The BOSSbase1.01+BOWS2 dataset was
embedded with seven algorithms: HILL, WOW [12], S-UNIWARD,
MiPOD, non-adaptive and optimally coded LSB matching, Edge-
Adaptive (EA) [17], and HUGO [21], all with 0.4 bpp. We then
trained the models with the PC because in [5] the performance was
measured as the missed-detection error for a fixed false alarm rate
(the false alarm 6.44% was used in [5], which we kept in this work
too). It was experimentally verified that while training with the
PC does not affect a robust measure, such as wAUC, the error at a
fixed low false alarm can be dramatically different. Table 6 shows
the missed-detection error for the seven algorithms included in
the training as well as the wAUC of the detectors. To verify the
generalization ability to unseen stego algorithms, we further tested
the detectors on pentary MVG [25], MG [10], CMD-HILL [16] with
payload 0.4 bpp, and HILL and MiPOD with 0.3 bpp, none of which
was included in the training. Once again, a very clear benefit of JIN
pretraining is observed for every algorithm whether or not it was
used during training.

! !
0.7 0.8
Relative accuracy on pretraining task

L
0.6

Figure 2: SRNet’s detection error Pp at 0.4 bpnzac on BOSS-
base1.01+BOWS2. Top: Pg vs. the number of pretrained
epochs; IN was pretrained for twice as many epochs because
its training set is roughly twice smaller. The superscript *
corresponds to the best checkpoint on the pretraining task,
which is 57 for JIN and 98 for IN. Bottom: P as a function
of the relative accuracy w.r.t. the best checkpoint on the pre-
training task.

5 CONCLUSIONS

Pretraining of neural networks can be thought of as a non-random
initialization of network’s parameters. We study different methods
of pretraining on a large ImageNet dataset as an initialization for
steganalysis. The pretrained models were successfully refined for
steganalysis of JPEG images and also for uncompressed images. By
studying pretraining on object recognition (1000 classes), on estima-
tion of the quantization table, and on J-UNIWARD, we discovered
that all three tasks help with convergence when refining for ste-
ganalysis. Pretraining on the steganalysis task, however, provided
the best overall results. Moreover, steganalysis-based pretraining



Pretraining
N/A JIN IN

HILL 0.2678 0.2442 0.2868
WOW 0.1526  0.1306 0.1636
S-UNI 0.1646 0.1382 0.1812
MiPOD 0.2736  0.2500 0.3034
LSBM 0.0468 0.0510 0.0494

EA 0.1028 0.0816 0.1066
HUGO 0.2376  0.2324 0.2560

wAUC 0.9700 0.9761 0.9689
MVG 0.2924 0.2666 0.3208

MG 0.1696 0.1414 0.1774

CMD-HILL 0.4614 0.4244 0.4904
HILL (0.3) 0.3796  0.3538 0.4074
MiPOD (0.3) 0.4004 0.3764 0.4356

Table 6: Missed detection error rate at false alarm 0.0644 of
payload 0.4 bpp. Algorithms in bold were not included in the
training. Every model trained with the PC.

always achieves a similar or better performance as detectors trained
from scratch on the downstream steganalysis dataset while simpli-
fying the training procedure in diversified stego and cover sources
for both grayscale and color images, side-informed schemes, and
for small payloads. Pretraining on a steganographic task has an
additional benefit of using only two (or several for multiple stego
algorithms) classes as opposed to 1000 classes for the ImageNet
object recognition task. This allows the pretraining to be carried
out with a fairly small mini-batch size, avoiding the need for dis-
tributing the training over several GPUs. The pair constraint, which
is specific to steganalysis, seems to be unnecessary with a proper
initialization (pretraining) of the network parameters.

Future directions include studying the effect of the size of the
pretraining/downstream dataset, unifying the detection of stegano-
graphy in JPEG and spatial domain, pretraining on a large dataset of
never compressed images, and investigating the effect of refinement
on different parts of the neural network.
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