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Abstract
Feature-based steganalysis has been an integral tool for

detecting the presence of steganography in communication
channels for a long time. In this paper, we explore the
possibility to utilize powerful optimization algorithms avail-
able in convolutional neural network packages to optimize
the design of rich features. To this end, we implemented a
new layer that simulates the formation of histograms from
truncated and quantized noise residuals computed by convo-
lution. Our goal is to show the potential to compactify and
further optimize existing features, such as the projection
spatial rich model (PSRM).

Motivation
In steganography, the main goal is to communicate

secretly through an overt channel. Steganalysis, on the
other hand tries to detect the presence of steganography.
For a long time, detection relied on classifiers trained in
a supervised fashion on examples of cover and stego im-
ages [3]. To detect content-adaptive schemes, researchers
hand crafted various high-dimensional feature representa-
tions (rich models). Such features are typically formed
from noise residuals extracted from the input image by
convolutions with high-pass linear filters (kernels). The
array of residuals would then be represented either with
co-occurrence matrices (empirical joint densities) [19, 12, 2]
or via histograms of projections on random directions [6].
Due to the inherent complexity of digital images, the de-
sign of suitable kernels has been based entirely on heuris-
tics. While there were attempts to optimize the kernels
by parametrizing them and determining the parameters
by minimizing the classifier detection error using, e.g., the
Nelder–Mead algorithm [5], the complexity of evaluating
the objective function (training a classifier on thousands
of images and evaluating its performance using, e.g., the
minimal total error probability PE) makes such approaches
non-scalable and unable to optimize a sufficient number of
kernels to build a rich model. The main flaw is the need for
a constant feedback from the classifier, which is very time
consuming due to the complexity of training with high-
dimensional features on thousands of images.

The main advantage of Convolutional Neural Net-
works (CNNs) is their ability to optimize the feature ex-
traction and classification steps simultaneously and thus
close the loop between feature extraction and classification.
Such networks are not only capable of learning the best de-
cision boundary between different classes but also the best
representation of each data class that would improve their
separability. Originally developed for numerous computer

vision problems, these networks were recently adapted for
steganalysis [16, 14, 13, 17, 18]. Since in a typical computer
vision problem, CNNs are used to learn patterns or objects,
in steganalysis the signal of interest is hidden within the
noise component of the image. In order to deal with this
issue, in one of the early works in this direction Qian et
al. [14] proposed to adjust the network design by using one
of the successfully hand-designed high-pass kernels in the
Spatial Rich Model (SRM) [3] as the first (fixed) convolu-
tional layer in the network. The main reason behind this
step is to suppress most of each image content and thus
force the network to “pay attention” to high-frequency de-
tails.

A closer look at the CNN structure reveals a similarity
with feature-based steganalysis. The convolutional layers
play the role of residual extraction while activation and
pooling layers mimick truncation and quantization. Vari-
ous researches tried to improve the performance of CNNs
for steganalysis using insights acquired from feature-based
steganalysis. In one of the most recent works in this di-
rection, Xu et al. [17] proposed a novel CNN architecture
capable of approaching the performance of feature-based
steganalysis. In their five-layer CNN, after initial high-pass
filtering and the first convolutional layer, they proposed to
take the absolute value (ABS) of the feature maps (resid-
uals) as the activation function followed by a hyperbolic
tangent (TanH) in order to preserve the sign symmetry of
the residuals in a process similar to computing SRM resid-
uals. Additionally, by using 1×1 convolutional kernels in
the last three layers, the authors forced the network to col-
lect the local statistics from the feature maps in a pixel by
pixel fashion.

Inspired by similarities between conventional feature-
based and CNN detectors, in this paper we investigate the
possibility to use existing infrastructure behind CNNs to
optimize the design of kernels (linear pixel predictors) in
feature-based steganalysis. The replacement of the objec-
tive function in the form of some scalar classifier perfor-
mance criterion by the loss function in a CNN, powerful
gradient descend algorithms could be used for the opti-
mization task provided there was a way to form histograms
within a CNN. Thus, as our first step, we implemented a
histogram layer for the Caffe CNN package. We use mean-
shifted Gaussian functions as the building blocks of this
layer to obtain a proper back-flow of gradients through the
layer and to facilitate learning of the parameters behind
this layer. As a proof of concept, in this paper we use this
layer to model individual submodels of the PSRM [6]. In-
stead of forming co-occurrences of neighboring quantized



residual samples, PSRM projects unquantized residual val-
ues on random directions, which are subsequently quan-
tized and represented using histograms as steganalysis fea-
tures. In PSRM, each SRM kernel is projected on 55 ran-
dom two-dimensional kernels and their rotated and mir-
rored versions. The higher detection rate of this feature
set is the result of a large number of projections, which
comes at a high computational cost. This problem can
render this powerful feature set unusable for applications
with limited time and computational power [10]. Modeling
these submodels within the CNN framework with the his-
togram layer enables us to reduce the high dimensionality
of this feature set by replacing random kernels with fewer
optimized kernels. Our study also hints at the possibility
to extract more information in the final layers of CNNs to
pave the way for better network designs.

In the next section, we introduce the histogram layer
and discuss its design and internal building blocks. In
Section “Experimental setup,” we simulate PSRM mod-
els within the CNN framework using the histogram layer
and outline the training procedure. The proposed his-
togram layer is tested in Section “Analyzing results,” where
we compare the detection results of our CNN model with
PSRM submodels and discuss the results. The paper is
summarized in the last section.

Histogram layer
To capture the local statistics of feature maps us-

ing histograms without any information loss we need to
use step functions centered on each histogram bin. While
shifted step functions are the best choice to compute inde-
pendent histogram bins, they are unusable within a CNN
framework because their derivative is zero everywhere ex-
cept for the edges. This prevents the back flow of gradi-
ents through the layer and the back-propagation algorithm
stops working. In contrast, a Gaussian kernel seems to be a
good candidate to form histogram bins. Unlike the sharp
edges of a step function, its smooth slopes will create a
fine path for gradients to flow backwards through each his-
togram bin towards previous layers. A Gaussian activation
function has the form

g(x) = e−
(x−µ)2

σ2 (1)

where µ is the center of the histogram bin and σ con-
trols the tradeoff between the accuracy of each binning
operation (and the overlap between adjacent bins) and the
flow of gradients through the layer. In our experiments,
we fixed σ = 0.6 to obtain a close match between the ex-
act histogram and a histogram computed using a Gaus-
sian activation function. Fig. 1 shows the structure of
an 8-bin histogram function using Gaussian activations.
The value of µ for each kernel is chosen from the set
µ∈ {−3.5,−2.5, . . . ,2.5,3.5}. The tails of the Gaussian ker-
nels on the sides are replaced with a constant value of 1 in
order to simulate the residual truncation done in feature-
based steganalysis. To compute the value of the histogram
bin B(k) centered at µ= µk for an M ×N activation map
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Figure 1. Structure of an 8-bin histogram using mean-shifted Gaussian
kernels.

X, all of its elements xij must pass through the corre-
sponding Gaussian activation and get normalized:

B(k) = 1
MN

M∑
i=1

N∑
j=1

e−
(xij−µk)2

σ2 . (2)

Using 2, each feature map X will be represented by
K histogram bins B(k), k = 1,2, . . . ,K, where K is the
number of histogram bins. We set the value of K = 8 in our
experiments to match PSRM histograms. All computed
histograms from each feature map will be concatenated as
a vector and passed to the last fully connected layers of the
CNN for classification.

During back propagation, the gradient of the loss func-
tion L with respect to each element of the feature maps xij

will be computed using the following equation,

∂L

∂xij
= 1
MN

K∑
k=1

−2(xij −µk)
σ2 e−

(xij−µk)2

σ2 ∂L

∂B(k) (3)

where ∂L
∂B(k) is the gradient of the loss function with re-

spect to each histogram bin B(k). Clearly, the gradient
will be zero when xij > µk in the rightmost kernels and
when xij < µk in the leftmost kernels depicted in Fig. 1
with brown color on the sides.

Our histogram layer is using C++ and CUDA in both
CPU and GPU versions within Caffe [9] framework and
optimized for memory usage and speed.

Experimental setup
To evaluate the performance of our proposed his-

togram layer, we model one of the most effective submodels
of PSRM using the histogram layer within a CNN frame-
work. Fig. 2 depicts the general block diagram of this
powerful feature set.

In the first stage, the PSRM computes the residuals
with two-dimensional convolutions between the input im-
age and all SRM kernels. For simplicity, in this study we
will only focus on one of the most effective SRM kernels
shown in Fig. 3 called ’SQUARE5x5’ also known as the
KV kernel. The goal of this residual extraction step is to
suppress the content while preserving the stego noise. In
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Figure 2. Block diagram of PSRM sub-models. The size of the random projection kernels is randomly chosen from the set M,N ∈ {1,2,3, ...,L = 8}.

the second step, the extracted residuals are projected on
K random M ×N kernels. Each random kernel will be
generated from a zero mean unit variance Gaussian distri-
bution, N (0, 1), and the projection kernel’s dimensionality
is randomly chosen from the set M,N ∈ {1,2,3, ...,L= 8}.
Next, each residual goes through the absolute value func-
tion and, after quantization, 4-bin histograms will collect
local statistics of each projected residual. These histograms
will form feature vectors that will determine whether the
input image is cover or stego. During the projection step,
if the random size of the projection kernels allow, each
residual will also get projected onto mirrored and rotated
versions of the kernels and all of the resulting projected
values will contribute to the corresponding histogram bins
of each particular kernel. This can potentially increase the
number of projections of each SRM residual up to 4K. Fi-
nally, due to high dimensionality of the computed feature
sets, the FLD-ensemble classifier [11] will be used to form
the decision boundary between cover and stego classes to
assess the performance of the computed features.
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Figure 3. Matrix form of the KV kernel from the SRM (left) and its
normalized plot (right).

Having the convolutions as standard modules in a
CNN framework, we can easily model the first two blocks
of the PSRM diagram, computing residual and projections,
within this framework. Fig. 4 illustrates different sections
of our modeled version of PSRM submodels.

Since the focus of this study is only the KV kernel,
in the first layer we use a single 5× 5 convolution kernel
and initialize the weights with the KV kernel and a zero
bias. To prevent the learning process to change the filter
parameters, the learning rate multiplicative coefficient of
this layer for both kernel weights and bias is set to zero.

In the next layer, we learn K different convolution ker-
nels of size M ×M randomly initialized using a Gaussian
distribution N (0, 0.01). In order to be consistent with the
PSRM setup, we initialize the bias term of the kernels to
zero and also set their learning rate multiplicative coeffi-
cient to zero. The original version of the PSRM uses up
to K = 55 projection kernels per each SRM residual and
allows the size of each kernel to be random from {1, . . . ,L},
L= 8. For a fair comparison between both approaches, we
thus set the total number of PSRM kernels to K = 32, the
maximum number of kernels trained in our CNN model.

Also, due to limitation of having to have odd numbers for
kernel sizes in convolution modules of the CNN, we set
L = 7 and fixed the CNN kernel’s dimension at M = 7.
It is worth noting that while PSRM enjoys having more
diverse kernel size dimension from the set {1, . . . ,7}, the
CNN model is limited to training kernels of the same di-
mension set at 7×7. We study the effect of this limitation
on the kernel size in more detail in the “analyzing results”
section.

To increase the diversity of the trained kernels, we al-
low the network to learn asymmetric kernels by not passing
the projected residuals through the absolute value func-
tion and directly collecting statistics using our proposed
histogram layer with 8 bins. This can be interpreted as
an unfolded version of the absolute value and a four-bin
histogram in the PSRM. Finally, to close the training loop
we use a two-layer neural network as our classifier on top
of the collected histograms. The first fully connected layer
has 10 and the last layer has 2 neurons representing the
cover and stego classes. All neurons are initialized ran-
domly using N (0, 0.01) and the biases are set to a constant
value of 0.2. We use the ReLU non-linearity in between the
two classifier layers to allow for a decision boundary with
more degrees of freedom. All neurons’ weights and biases
are getting updates during training with biases using twice
the network’s learning rate in general.

The Caffe framework is used to implement the CNN.
We use Stochastic Gradient Descent (SGD) to minimize
the loss function with mini batch size set to 64, momen-
tum 0.98, and weight decay 0.0005. All trained weights in
the network are regularized during training using the same
rate. The learning rate is changed adaptively from 0.01 to
0.0001 during 2000 epochs of training. Using a step func-
tion, every 50 epochs we multiply the initial learning rate
by 0.9. To find more general solutions during the learning
process, we shuffle the training set after each epoch while
preserving the pairs of cover and stego images inside each
batch. All models are developed and trained using Tesla
K80 and TITAN X GPUs from NVIDIA.

All experiments were carried out on BOSSbase 1.01 [1].
We used S-UNIWARD [8] as our embedding algorithm with
relative payload fixed at α= 0.4 bpp (bits per pixel). The
FLD-ensemble classifier was used for classification of the
extracted features. The ensemble by default minimizes
the total classification error probability under equal priors
PE = minPFA

1
2 (PFA +PMD), where PFA and PMD are the

false-alarm and missed-detection probabilities. We evalu-
ate the security by computing PE measured on the testing
set over a single random 5000/5000 database split. The
same split is also used to train and test the CNN.
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Figure 4. Block diagram of Modeled PSRM sub-model within CNN framework. The dimensionality of the trained projection kernels is set to M = 7 in our
experiments.
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Figure 5. The 32 trained PSRM kernels using a CNN with the histogram layer.

Analyzing results
In our first experiment, we trained 32 projection ker-

nels using the above version of the PSRM modeled within
the CNN framework. Fig. 5 depicts various trained kernels
using this model. The detection error of the trained model
on the test set is PE = 27%.

In the next step, in order to asses the performance of
the trained filters using our CNN model within the PSRM
framework, we carve out the filters of the trained model,
plug them into the PSRM, and use them instead of random
kernels. In order to visualize the contribution of each kernel
to total testing error, after extracting all features from the
test set, we start steganalyzing only the features resulting
from the first kernel (four histogram bins) in the beginning
and then gradually add the features from the remaining
kernels one by one inside our feature pool and repeat the
steganalysis until we exhaust all available features. Since
the dimensionality of the features from projections of only
KV is small and since we want to study the effect of adding
features from each kernel, we force the dimensionality of
each subspace (dsub) in the ensemble classifier to be equal
the total size of the feature vector in each step.

Fig. 6 contrasts the performance of the trained 32 ker-
nels with the random kernels using two different setups. In
PSRM, random kernels are allowed to have a variable di-
mensionM×N from the set {1, . . . ,7} whereas in the CNN
all random kernels’ dimensions are fixed to 7× 7, which
makes the test condition fair with respect to the trained
kernels.

The first interesting result that we can see from this di-
agram is the fact that the test performance of the trained
filters within the PSRM model using the ensemble clas-
sifier is almost the same as the test performance of the

filters within the CNN framework using the neural net-
work classifier. This verifies the correctness of our model.
We also see the importance of diversity among kernels’ di-
mensions. The difference between the final performance of
variable-size and fixed-size random kernels is almost 1.5%.
The trained kernels beat the performance of the random
kernels within the PSRM setup up to the 17th kernel. Be-
yond that, however, random kernels become consistently
≈ 1.5% better up to the last one. Equalizing the exper-
imental setup, the trained kernels beat the random ones
almost constantly up to the last kernel by a narrow mar-
gin, and in the end the random kernels perform slightly
better.

Even though the performance of the trained kernels
under equal testing conditions is slightly better than the
random kernels, one would expect the difference between
the performance of the trained and random kernels to be
larger due to a more intelligent design. This made us re-
visit the structure of the PSRM and analyze it in more
detail. During the process of projection and binning of the
computed residuals, in order to have a better population
of histogram bins, the PSRM not only uses each random
kernel itself but also its rotated and mirrored versions for
collecting local statistics. This can potentially increase the
number of projection kernels by a factor of four using ran-
dom kernels and collect more powerful statistics from the
projections. However, for the trained kernels the situation
is slightly different. Since during the training process all
images have passed through a fixed KV filter in the first
layer, the network’s solution space for the trained kernels
is limited. In other words, the SGD is seeing the solution
space “through the eyes” of the fixed KV filter in the begin-
ning and that can possibly prevent it from finding a better



solution, hindering thus to some degree the training pro-
cess. Inspecting the trained kernels in Fig. 5, we can easily
see traces of the symmetry and the general checkerboard
structure of the KV filter in most of the trained filters.
This will work against the trained filters during the per-
formance comparison with random kernels as rotating and
mirroring these kernels will not extract new information
from the residuals than the original version of the kernel.
We explored the correctness of this hypothesis in our sec-
ond experiment in which we only used the main kernels
for projection and binning without adding the information
from mirrored and rotated versions inside the correspond-
ing histogram bins. Fig. 7 summarizes the result of this
experiment.

We can clearly see that while this change does not no-
ticeably impact the performance of the 32 trained kernels,
it increases the test error of the random kernels by a con-
siderable margin of 1.5%. At this point, the effectiveness
of the training process becomes more evident.

We also trained three more models with fewer train-
ing kernels of 16, 8, and 4. Both models trained with 16
and 8 kernles can still achieve better test accuracy than 32
random kernels. Being able to achieve a close performance
with fewer filters hints at a possible redundancy in the
trained filters and thus a space for improving the training
strategy.

Conclusions and future work
Convolutional Neural Networks are slowly but surely

finding their way into different areas of signal processing
by solving difficult problems with brute-forcing the solu-
tion space in an intelligent way. Recently, steganalysts
have shown interest in these networks and their structure
and tried to take advantage of having a closed loop between
feature extraction and classification modules of CNNs for
steganalysis. Closing this loop enables steganalyst for the
first time to use the training data for designing effective and
robust feature extraction kernels. Due to the difference be-
tween the nature of the signal of interest in steganalysis and
computer vision, researchers have tried to make the CNN
network structure resemble conventional feature-based ste-
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Figure 6. Comparing the performance of the trained kernels versus random
ones within the PSRM and the CNN experimental setup conditions.
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Figure 7. Comparing the performance of the trained kernels from four
different sizes {4,8,16,32} versus random ones within our CNN experimen-
tal setup conditions while using only the main kernels for projections and
histogram binning.

ganalysis in order to make them effective for this task. To
the best knowledge of the authors, all CNN architectures
proposed for steganalysis tasks so far have used elements of
hand design, such as fixed convolution kernels in the first
layer. We can also find traces of mimicking other mod-
ules in conventional steganalysis upon further inspection
of these networks.

In this study, in order to bring these two designs even
closer to each other we modeled one of the central con-
cepts of feature-based steganalysis, the histograms, within
a CNN framework in a way that allows proper training
of the convolutional kernels in the first layers of the net-
work. Using the proposed histogram layer, we modeled one
of the most powerful feature sets for steganalysis, PSRM,
within a CNN framework and showed that under an exper-
imental setup similar to our model we are able to reduce
the number of projection kernels by up to a factor of 4
by using optimized trained filters instead of random ones.
This suggests that there it may be possible to significantly
reduce the high dimensionality of the PSRM using a set
of properly trained kernels while preserving its detection
performance and simple design. Our work has not reached
state-of-the-art performance due to some limitations in our
modeling but it clearly is a proof of concept.

In our future work, we plan to enhance our model de-
sign and allow the histogram layer to learn the µ and σ pa-
rameters of the Gaussian functions during the training pro-
cess from the data. This would enable us to optimize resid-
ual quantization and binning and also possibly bring use-
ful insights for feature-based steganalysis. The histogram
layer can also be used to model other feature sets formed as
histograms of noise residuals obtained using convolutions,
such as the DCTR [4], GFR [15], and PHARM [7]. Addi-
tionally, the istogram layer could be implanted in deeper
networks before the fully connected “classifier layers” to
see if using this interesting element from conventional ste-
ganalysis could bring further improvements. Finally, the
histogram layer could also be used to form co-occurrences
from feature maps in order to collect alternative higher-



order statistics.
The histogram layer and the config files for the

CNNs used in this paper are available from http://dde.
binghamton.edu/download/.
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