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ABSTRACT
Explicit non-linear transformations of existing steganalysis
features are shown to boost their ability to detect steganog-
raphy in combination with existing simple classifiers, such
as the FLD-ensemble. The non-linear transformations are
learned from a small number of cover features using Nys-
tröm approximation on pilot vectors obtained with kernel-
ized PCA. The best performance is achieved with the expo-
nential form of the Hellinger kernel, which improves the de-
tection accuracy by up to 2–3% for spatial-domain content-
adaptive steganography. Since the non-linear map depends
only on the cover source and its learning has a low com-
putational complexity, the proposed approach is a practical
and low cost method for boosting the accuracy of existing
detectors built as binary classifiers. The map can also be
used to significantly reduce the feature dimensionality (by
up to factor of ten) without performance loss with respect
to the non-transformed features.
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1. INTRODUCTION
Steganalysis of modern content adaptive steganography [17,

21, 26] requires detectors built as classifiers trained on cover
and stego objects represented with rich media models [12,
18, 4, 3, 33, 10, 9]. The prohibitive complexity of train-
ing a non-linear classifier in high dimensional feature spaces
and on large training sets gave rise to alternative machine
learning approaches with lower complexity, such as the FLD-
ensemble classifier [25], its linear version [5], regularized
linear discriminants [6], and the Online Average Ensem-
ble Perceptron [27]. This works well when the classes of
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cover and stego features are approximately linearly separa-
ble, which seems to be the case in the JPEG domain with
features built from co-occurrences of quantized DCT coef-
ficients [23] because of the linear relationship between the
features and the embedding domain. In contrast, steganal-
ysis of spatial-domain steganography with co-occurrences of
quantized noise residuals benefits from using non-linear clas-
sifiers, such as kernelized support vector machines (SVMs).
The creators of the popular spatial rich model (SRM) [12] re-
port that a Gaussian SVM trained on carefully selected sub-
models of the SRM of total dimension 3,300 outperformed
the entire 12,753-dimensional SRMQ1 model with the FLD-
ensemble classifier (Table II in [12]). Low dimensional vari-
able quantization co-occurrences coupled with a Gaussian
SVM were also recently shown to match the performance of
the entire SRM with the ensemble classifier [3].1 Thus, there
appears to be an untapped potential to improve steganalysis
detectors with non-linear classifiers applied to rich feature
sets. What hampers their use in practice is the unfeasibly
high computational complexity associated with their train-
ing – the complexity of training a kernelized SVM in the pri-
mal or dual formulation is O(max{M,D} × min{M,D}2),
where M is the number of training examples and D the
feature dimension [2].
A kernelized SVM is essentially a linear classifier on fea-

tures embedded in an infinite dimensional Hilbert space [30].
The classifier can be built thanks to the so-called kernel
trick because the training and detector evaluation only re-
quire dot products in such space, which can be evaluated
using the kernel. The transformation that maps the origi-
nal features is only implicit in the sense that one does not
explicitly work with the mapped features. In an alterna-
tive approach explored in this paper, the features are trans-
formed using an explicit non-linear mapping to improve the
classes separability with a hyperplane. Recently, efficient
methods have been developed [34, 28] for learning such a
non-linear transformation from a portion of the training set.
The advantage of this approach is that the classification it-
self is achieved using a low complexity classifier while the
non-linear mapping becomes a mere feature preprocessing.
This methodology has found applications, e.g., in object re-
trieval [1] and digital forensics. In [7], the authors report
that applying the square root non-linearity to features in
the form of a three-dimensional co-occurrence of the third-

1Note that, according to [5] and [6], the non-linearity in the
FLD-ensemble is not essential and almost identical perfor-
mance can be achieved with linear classifiers.
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order noise residual lead to a substantial improvement of
their digital image forgery detector.
In this paper, we follow the methodology proposed in [28]

and learn the feature map using kernelized PCA coupled
with Nyström approximation. For building the map, we ex-
plore the Hellinger, linear, chi-square, and Jensen–Shannon
kernels and their exponential forms. Based on experiments
with individual submodels of the SRM, we identify kernels
that provide the biggest detection boost and investigate how
the boost depends on the dimensionality of mapped features
and the size of the training set. The approach is then scaled
to high dimensional feature vectors by learning the mapping
separately for each submodel. Experiments with four mod-
ern spatial-domain steganographic algorithms on standard
databases of grayscale and color images indicate that the
detection accuracy can be improved by 2–4% depending on
the payload and embedding scheme.
In the next section, we introduce the main idea behind the

explicit feature map. In Section 3, we list the kernels used
in this study and explain the kernel PCA for learning the
transform. A set of initial experiments on two submodels of
the SRM is used to gain insight into which kernels are the
best performers and assess the boost obtained from them as
a function of the dimensionality of the transformed features
and the training set size. The procedure for determining the
feature map is extended to high-dimensional rich models in
Section 5, where we also discuss the results of all experi-
ments with four modern steganographic algorithms and the
maxSRMd2 and SCRMQ1 (Spatio-Color Rich Model with
q = 1) features. A summary of the paper appears in Sec-
tion 6

2. INTRODUCING THE MAIN IDEA
The problem of steganalysis is binary classification – the

Warden monitoring the traffic between Alice and Bob needs
to decide whether they exchange information in an overt or
covert manner. A useful tool (but not the only one [22])
for the Warden is a detector that can be applied to indi-
vidual images and provides a binary answer of whether or
not a given image contains a secret message. The current
paper deals with the problem of building a detector of this
type that is as accurate as possible using existing features
and classifiers by non-linearly transforming the features as
a preprocessing step.
Let us start with a given feature representation, such as

the SRM [12]. Assuming the Warden has access to Ntrn
cover images, she embeds them with a specific steganographic
method to create a set of Ntrn corresponding stego images.
Then, the cover and stego images are represented with fea-
tures built as concatenations of histograms or co-occurrences
(which are high dimensional histograms): x(k) ∈ RD+ , k =
1, . . . , Ntrn, for covers and y(k) ∈ RD+ for stego images, where
D is the feature dimensionality and R+ is the set of non-
negative real numbers. As the next step, a binary classifier
is trained to distinguish between cover and stego features.
One of the best choices for the classifier is kernelized SVM
with a positive semi-definite kernel k : RD+×RD+ → R+. One
can think of such an SVM as a linear classifier in a space of
features transformed into a Hilbert space H, ϕ : RD+ → H,
endowed with dot product 〈·, ·〉 : H×H → R+ for which

〈ϕ(x), ϕ(y)〉 = k(x,y) for all x,y ∈ RD+ . (1)

The main principle behind SVMs stems from the fact that
the transformation ϕ is only implicit in the sense that when
building the SVM classifier or evaluating the detector, one
does not need to work directly with ϕ(x) ∈ H and only
needs to evaluate dots product via the kernel (1).
As pointed out in the introduction, kernelized SVMs out-

perform linear classifiers (and the FLD-ensemble) in many
typical setups in steganalysis of spatial-domain steganogra-
phy. Their drawback is a high training complexity, which
is why the community resorted to simpler machine learning
paradigms. In this paper, we explore an alternative ap-
proach, which employs an explicit transform ϕ : RD+ → RE
that approximates a given kernel in combination with a sim-
ple classifier in RE trained on features ϕ(x(k)) and ϕ(y(k)),
k = 1, . . . , Ntrn. To classify a feature z ∈ RD+ , the classifier
is presented with ϕ(z). The mapping ϕ will be learned from
a portion of the training set as shown in the next section.

3. LEARNING THE TRANSFORM
In this section, we first introduce several kernels that will

be investigated in this paper. Then, we show that the prob-
lem of finding a mapping that approximates the kernel with
dot products of transformed features coincides with ker-
nelized principal component analysis (kPCA). The general
mapping of the feature space is realized using Nyström ap-
proximation.

3.1 Kernels
A kernel is a symmetric positive semi-definite2 mapping

k : RD+ × RD+ → R+ that, loosely speaking, measures the
similarity between two features. Let us assume that vec-
tors x,y ∈ RD+ are L2-normalized, meaning that ‖x‖2

2 =
‖y‖2

2 =
∑D

i=1 x
2
i = 1. Their square Euclidean distance can

be written as:

‖x− y‖2
2 = 2 (1− k(x,y)) , (2)

where we introduced k(x,y) =
∑D

i=1 xiyi. The reader rec-
ognizes k(x,y) as the classical dot product, which, due to
the normalization, coincides with the cosine of the angle be-
tween x and y.
Generalizing this idea, the following are popular choices

for kernels in machine vision [28, 34]:

1. Linear kernel k(x,y) =
∑D

i=1 xiyi with x and y L2-
normalized;

2. Hellinger kernel (also called Bhattacharyya kernel)
k(x,y) =

∑D

i=1
√
xiyi with x and y L1-normalized;

3. Chi-square kernel k(x,y) =
∑D

i=1
2xiyi
xi+yi

with x and y
L1-normalized;

4. Jensen–Shannon kernel k(x,y) = 1
2
∑D

i=1 xi log xi+yi
xi

+
yi log xi+yi

yi
with x and y L1-normalized.

Whenever a term in the chi-square and the Jensen–Shannon
kernel is not defined (due to division by zero or log of zero),
the term is set to zero, which coincides with the limit from
2Kernel k is positive semi-definite if for any n and any
u(1), . . . ,u(n) ∈ RD, the n × n matrix Kij = k(u(i),u(j))
is positive semi-definite.



the right. Also note that with the specified normalization,
0 ≤ k(x,y) ≤ 1 for all x,y ∈ RD+ and for all kernels. The
Hellinger kernel corresponds to the linear kernel on square-
rooted features.
It can be easily proved that for a symmetric positive semi-

definite kernel k and γ > 0,

eγ(k(x,y)−1) (3)

is also symmetric positive semi-definite and bounded 0 ≤
eγ(k(x,y)−1) ≤ 1. Thus, the above four kernels have their ex-
ponential counterparts, which we name with the preposition
’exp’, such as exp-Hellinger, etc.

3.2 Finding the transformation
The task of finding a transform such that the dot products

of two transformed vectors coincide with the kernel evalu-
ated on them can be formulated as follows. Given M ≥ D
vectors x(1), . . . ,x(M) ∈ RD+ for training the map ϕ, find
vectors φ(x(i)) ∈ RM so that for all i, j ∈ {1, . . . ,M}:

k(x(i),x(j)) ≈ φ(x(i)) · φ(x(j)). (4)

This can be solved by the following optimization problem.
Denoting the ath coordinate of φ(x) ∈ RM with φa(x), 1 ≤
a ≤M , minimize

M∑
i,j=1

(
k(x(i),x(j))− φ(x(i)) · φ(x(j))

)2
(5)

subject to
M∑
i=1

φa(x(i))φb(x(i)) = 0 for all 0 ≤ a 6= b ≤M. (6)

The constraint (6) expresses our desire that the descrip-
tion in the M dimensional space be non-redundant – we
essentially require each pair of coordinates a, b of the trans-
formed feature vectors be uncorrelated.
Using the method of Lagrange multipliers, it is easily es-

tablished that φa , (φa(x(1)), . . . , φa(x(M)))′ ∈ RM are
eigen-vectors of the kernel matrix K = (Kij) ∈ RM×M+ ,
Kij = k(x(i),x(j)):

Kφa = λ2
aφa, 1 ≤ a ≤M, (7)

where λ2
a are the corresponding eigenvalues sorted from the

largest to the smallest. We note that λa = ‖φa‖2.
The mapping ϕ : RD+ → RE is defined using the so-called

Nyström approximation. For any z ∈ RD+ ,

ϕa(z) = 1
λ2
a

K(z, ·)φa, 1 ≤ a ≤ E, (8)

where

K(z, ·) =
(
k(z,x(1)), . . . , k(z,x(M))

)
. (9)

Note that in building ϕ, we retain the first E coordinates
a corresponding to the largest eigenvalues λ2

a. When E = D,
the feature transform preserves the feature dimensionality.
The Hellinger kernel corresponds to the linear kernel on

L1-normalized features that have been square-rooted ele-
mentwise. This is the only non-linear kernel for which the
explicit map ϕ adopts a simple closed-form expression – the

square root executed elementwise. Because of this simplifi-
cation, the feature preprocessing is very cheap and the com-
plexity is essentially negligible in comparison to the classifier
training. This is why in our experiments, we include results
obtained with square-rooted features. They should always
be very close to the results obtained with the transform
learned for the Hellinger kernel. Square-rooting features has
been reported in computer vision [1] and digital forensics [7]
as a way to improve detection accuracy with a heuristic jus-
tification that the non-linear transformation evens out the
differences between the individual features (histogram bins).
We furthermore note that it is possible to use only cover

features for the map training rather than cover-stego fea-
ture pairs because the kernel is continuous and the features
of cover and stego images are close and would not provide
good constraints for learning the map. We verified this ex-
perimentally but do not report the details of these findings
in this paper.

3.3 Complexity considerations
The complexity of learning the map includes the time

needed to form the matrix K, which is O(DM2) and the cost
of solving the eigenvector problem (7), which isO(M3) if im-
plemented, e.g., using the Cholesky decomposition. Thus,
the total complexity is O(DM2 + M3). Fortunately, these
computations only need to be executed once for a given cover
source because the map is trained on cover images only. Of
course, this makes the map independent of the embedding
payload and the steganographic scheme. The cost of trans-
forming a new feature is part of the training as well as testing
and is O(MD) to evaluate (9) and then O(ME) to compute
all E coordinates of ϕ(z) (8).

4. INITIAL EXPERIMENTS
To get a feeling for the ability of explicit maps to boost

steganalysis and to assess the influence of various param-
eters, such as E, the number of retained coordinates in
the map, and M , the number of images for training the
map, in this section we experiment with S-UNIWARD [21]
and HILL [26] and their detection with two submodels of
the SRM: the four-dimensional co-occurrence matrix of the
’SQUARE 3x3’ submodel (also sometimes called “KB resid-
ual”) and the ’minmax22h’ submodel for the first-order resid-
ual. Both feature sets were computed with the quantization
step q = 1 and symmetrized as in SRM, which means that
the KB residual co-occurrence had dimensionality 169 while
the ’minmax22h’ submodel had dimensionality of 101 after
removing from it elements that are always equal to zero (see
Section 4.1).
The experiments in this section were conducted on BOSS-

base 1.01 [11] containing 10,000 512×512 8-bit grayscale im-
ages. After randomly splitting the database into two disjoint
parts of equal size (5,000 images), the feature transforma-
tion ϕ : RD+ → RE was learned on M randomly selected
images from the training set. The FLD-ensemble was then
trained and tested on the transformed features. This was
repeated ten times while evaluating the empirical security
using the minimal total error under equal priors achieved
on the testing set:

PE = min
PFA

1
2(PFA + PMD), (10)



where PFA and PMD are the probabilities of false alarm and
missed detection. The symbol PE is the average PE over
the ten splits. The statistical spread is reported using the
mean absolute deviation. The constant γ in exponential
kernels (3) was chosen as the reciprocal of the mean of the
non-exponential kernel over all training pairs:

γ = 1
1
M2

∑M

i,j=1 k(x(i),x(j))
. (11)

4.1 Removing zero features
Before explaining the results of all experiments in this

section, we make one note. Exactly 224 elements of the
325-dimensional ’minmax22h’ submodel of SRM are zero
in both cover and stego images. This is due to the na-
ture of the residuals used in this submodel and the scan
direction for forming the co-occurrence.3 For example, the
’minmax22v’ submodel does not have any zeros. Besides
’minmax22h’, there are two other submodel types in the
SRM with elements that are identically equal to zero no
matter what the input image is. They are ’minmax34h’
and ’minmax41’. The zeros occur for first-order differences
and third-order differences. Because first-order differences
are quantized only with q = 1 and q = 2, there are to-
tal 2 × 3 first-order submodels and 3 × 3 third-order sub-
models (because third-order residuals are quantized with
three quantization steps), each effectively containing only
325 − 224 = 101 non-zero elements instead of 325. These
zeros need to be removed before learning the transforma-
tion because Matlab eigenvector solver may otherwise return
negative eigenvalues and complex-valued eigen-vectors due
to finite machine precision. We note that after removing the
zero elements from the SRM feature vector, its dimension-
ality becomes 34,671−15×224 = 31,311. The dimensional-
ity of the SRMQ1 decreases from 12,753 to 11,409 (6×224
fewer).
Because the selection-channel-aware version of the SRM

called maxSRMd2 [10] uses a different scan for forming co-
occurrences, the so-called ’d2’ scan,4 the number of non-
zero elements in the above-mentioned submodels is different.
For quantization q = 2 the ’minmax22h’, ’minmax34h’, and
’minmax41’ submodels for the first and third order residuals
have dimensionality 190. For q = 1 and q = 1.5, their
dimensionality is 120. This gives the maxSRMd2 feature
set a dimensionality of 32,016.
Finally, we note that this peculiarity largely escaped the

attention of the community because the ensemble classifier
first prunes the cover and stego features and automatically
removes zero elements from both cover and stego features
before building the classifier. In our case, however, because
we learn the transformation ϕ before applying the ensemble,
we remove such zero features prior to learning ϕ.

3Anecdotal evidence exists among researchers that the SRM
feature contains many zeros but, according to the best
knowledge of the authors, this issue has never been inves-
tigated in detail. In this paper, we merely state the true
dimensionality of the affected submodels without providing
any further analysis in order not to digress from the main
topic of this paper.
4The ’d2’ scan involves residuals rij , ri,j+1, ri+1,j+2, ri+1,j+3
and three more horizontally and vertically flipped versions.

E\M 10 20 50 100 169 350 500 1000
10 .4260 .4262 .4260 .4259 .4268 .4259 .4260 .4263
20 - .3893 .3893 .3899 .3894 .3887 .3899 .3894
50 - - .3142 .3145 .3144 .3135 .3144 .3136
100 - - - .2885 .2882 .2879 .2886 .2879
169 - - - - .2754 .2757 .2757 .2752
350 - - - - - .2707 .2683 .2695
500 - - - - - - .2662 .2653
1000 - - - - - - - .2739

Table 1: PE for KB residual (D = 169) with S-
UNIWARD at 0.4 bpp when training the map
ϕ with exp-Hellinger kernel on M randomly se-
lected images and retaining E dimensions, M,E ∈
{10, 20, 50, 100, 169, 350, 500, 1000}. The statistical
spread in the form of sample standard deviation
ranges between 0.0012 and 0.0039. The values be-
low the main diagonal are not achievable because
E ≤M .

4.2 Boosting submodels
As our first experiment, we investigated the effect of the

parametersM and E on detection error PE. For brevity, we
only report the result with the KB residual and S-UNIWARD
at 0.4 bpp with the exponential Hellinger kernel for the non-
linear map ϕ. Table 1 shows the detection error for different
combinations of E and M . There appears to be a benefit in
retaining more coordinates E than the original feature di-
mensionality D. With M = 500 training images, retaining
E = 500 coordinates rather than D = 169 leads to about
1% improvement. There does not seem to be any benefit
in using more images for training or retaining more than
500 coordinates. We note that our goal was to boost the
detection accuracy without increasing the feature dimen-
sionality. Inspecting the row in Table 1 corresponding to
E = D = 169, the number of training images does not have
a major effect on detection accuracy as long as M ≥ D.
Table 2 shows the results for all kernels introduced in Sec-

tion 2 with two submodels and two steganographic tech-
niques at payload 0.4 bpp for M = 500 and E = 500.
The first row of the table is the performance obtained using
the original features as they appear in SRM. The second
row shows the results with simply square-rooting the fea-
tures. The third row contains detection errors obtained us-
ing Gaussian SVM, again averaged over ten 50/50 database
splits.
As noted in the previous section, the square rooted fea-

tures correspond to the Hellinger kernel when using the
known explicit map instead of the Nyström approximation.
It is comforting to discover that these results match those
obtained using Nyström approximation with this kernel (row
four) as they should. Inspecting the remaining rows, it is
very clear that the exponential kernels are superior to the
non-exponential ones and they also have quite similar perfor-
mance. The boost they provide w.r.t. the original features
(row 1) is up to 3.5% for the ’minmax22h’ submodel for
S-UNIWARD. Also, it is quite apparent that simply square-
rooting the features (Hellinger kernel) is far from the best
option. For the KB residual, explicit maps with exponen-
tial kernels match the result obtained using G-SVM. For
the ’minmax22h’ residual, the G-SVM outperforms explicit
maps by about 1%. Because of the larger complexity asso-
ciated with the chi-square and Jensen–Shannon kernels, we
selected the exponential Hellinger kernel for all experiments
with rich models in the next section.



Kernel minmax22h (S-UNI) KB (S-UNI) KB (HILL)
1 Original 0.3293±0.0030 0.2933±0.0028 0.3281±0.0027
2 Square root 0.3150±0.0032 0.2812±0.0028 0.3228±0.0020
3 G-SVM 0.2841±0.0018 0.2618±0.0023 0.3026±0.0016
4 Hellinger 0.3252±0.0038 0.2827±0.0035 0.3242±0.0024
5 Exp-Hellinger 0.2984±0.0030 0.2626±0.0024 0.3026±0.0030
6 Linear 0.3317±0.0030 0.2837±0.0029 0.3378±0.0028
7 Exp-linear 0.3052±0.0030 0.2603±0.0029 0.3030±0.0039
8 Chi-square 0.3063±0.0030 0.2685±0.0035 0.3106±0.0035
9 Exp-chi-square 0.2991±0.0023 0.2619±0.0024 0.3045±0.0019
10 JS 0.3076±0.0039 0.2696±0.0033 0.3103±0.0026
11 Exp-JS 0.2950±0.0023 0.2611±0.0022 0.3017±0.0016

Table 2: PE for various kernels for S-UNIWARD
and HILL at 0.4 bpp for KB co-occurrence (dim
169) and ’minmax22h’ (dim 101) submodel of the
SRM. The abbreviation ’JS’ stands for the Jensen–
Shannon kernel.

5. EXTENSION TO RICH MODELS
The purpose of this section to extend the proposed ap-

proach to high-dimensional rich models. Since the complex-
ity of training the non-linear map is O(DM2 + M3), see
Section 3.3, it would not be feasible to train the map for
the entire rich feature vector. Instead, we learn the map
for each submodel of the rich model separately. Further-
more, in order not to increase the feature dimensionality,
we keep the number of retained coordinates E = D. We do
so despite the benefit of using E > D (see Table 1) because,
when richified, we did not see any benefit of inflating the
dimensionality of the entire feature vector.5
Given a set of Ntrn cover images and the same amount of

the corresponding stego images for training the entire detec-
tor, we randomly reservedM < Ntrn cover images for train-
ing the maps for all submodels. The classifier is next trained
on all Ntrn images, including the images used for training
the map. Including the M images for classifier training is
unlikely to lead to over training because the map training
is not informed about the stego class. Moreover, we deter-
mined experimentally that as few as M = 350 cover images
are sufficient for the map training, which is only a small part
of the training set (Ntrn = 5, 000 for datasets derived from
BOSSbase 1.01). Finally, we did carry out comparative tests
in which we only trained on Ntrn−M images, which resulted
in similar detection errors within their statistical spread.
We note that the map ϕ has the following data structures

as its parameters:6 1) the set of M cover features x(i), i =
1, . . . ,M , which is anM×D dimensional array, 2) the set of
E eigen-vectors φa, a = 1, . . . , E, stored as an E ×D array.
In our experiments, we tested four state-of-the-art stegano-

graphic methods embedding in the spatial domain: WOW [17],
S-UNIWARD [21], HILL [26], and MiPOD [31]. For each
payload, a separate binary classifier implemented with the
FLD-ensemble [25] was trained on the original features and
on the transformed features. For each split of the database
into a training and testing set, the map ϕ was retrained on
a different subset of the training set. The empirical security
was measured as the total detection error PE (10) averaged
5Experiments on selected payloads with the tested stego al-
gorithms with E = 500 retained coordinates for each sub-
model resulted in statistically insignificant deviations from
E = D (not shown in this paper).
6For simplicity, we assume that the M training examples
were selected as the first M features from the training set.

over ten 50/50 database splits. In all experiments, we used
E = D. Based on the experiments with individual submod-
els in the previous section, we tested only one kernel, the
exponential Hellinger. We remind that each feature vector
was L1-normalized.
We first report the results for the maxSRMd2 feature

set [10] on BOSSbase 1.01. Table 3 shows PE as a function
of payload for the original maxSRMd2, its square rooted
version, and the transformed version using exp-Hellinger on
BOSSbase 1.01. To better contrast the improvement in de-
tection, in Figure 1 we show the difference between the de-
tection error of the original features, P (orig)

E , and the er-
ror obtained using square-rooting, P (sqrt)

E , and with exp-
Hellinger, P (exp−H)

E . The difference is expressed in percents
(multiplied by 100). The results indicate that a consistent
detection boost is obtained across all four embedding algo-
rithms. The biggest boost was obtained for WOW and the
smallest for MiPOD and HILL. The square rooting is not
as effective as the transform obtained with the exponential
Hellinger kernel.
At this point, we note that when applying the non-linear

map to the SRM feature set we observed a gain that was
very similar to that of the maxSRMd2 set, which is why
we do not report these results here. In Section 5.1 below,
we comment on other rich feature sets currently used in
steganalysis.
As our second batch of experiments, we used the Spatio-

Color Rich Model with q = 1 (SCRMQ1) [14] feature set
of dimensionality 18,157. It is a merger of the SRMQ1,
which is a subset of the SRM and the Color Rich Model
(CRM) formed by three-dimensional co-occurrences of resid-
uals across three color channels. The image source was the
same as in [14], a color version of BOSSbase prepared as fol-
lows. Starting with the full-resolution raw images, we con-
verted them using the same script that was used for creating
the BOSSbase with the following modifications. The output
of ’ufraw’ (ver. 0.18 with ’dcraw’ ver. 9.06) was changed to
the color ppm format instead of the pgm grayscale. Also,
all calls of ’convert’ used ppm for the output as well as for
resizing so that the smaller image dimension was 512 and
for central cropping to 512× 512. As in the original script,
the resizing algorithm uses the Lanczos kernel. We thus ob-
tained 10,000 true color 512×512 ppm images. This version
of color BOSSbase will be called ’BOSSbaseColor’.
The above four steganographic algorithm were applied by

color channels and the same relative payload was embedded
in each channel. The complete results are listed in Table 4.
The non-linear map boosts detection to a different degree
depending on the steganographic method and payload. The
largest gain of almost 4% is observed for WOW.

5.1 Application to other rich feature sets
In this section, we comment on our experience with apply-

ing non-linear maps to other types of rich models. Modern
embedding algorithms for JPEG images (J-UNIWARD [21]
and UED [15, 16]) are currently best detected with phase-
aware rich models [19, 20] formed by histograms of noise
residuals split by their location with respect to the location
of the 8 × 8 pixel grid used for compression. In particu-
lar, the so-called Gabor Filter Residuals (GFR) [32] made
aware of the selection channel [8] appear among the best.
Experiments with this feature set on selected payloads on J-



Payload (bits per pixel)
S-UNI 0.05 0.1 0.2 0.3 0.4 0.5

maxSRMd2 0.4168±0.0024 0.3652±0.0008 0.2919±0.0023 0.2374±0.0023 0.1917±0.0042 0.1569±0.0035
Square root 0.4177±0.0033 0.3588±0.0025 0.2851±0.0034 0.2276±0.0021 0.1785±0.0033 0.1433±0.0026
exp-Hellinger 0.4178±0.0020 0.3608±0.0033 0.2803±0.0027 0.2181±0.0028 0.1720±0.0020 0.1348±0.0025

HILL
maxSRMd2 0.4246±0.0040 0.3742±0.0022 0.3105±0.0033 0.2580±0.0033 0.2196±0.0039 0.1815±0.0033
Square root 0.4188±0.0030 0.3669±0.0032 0.3007±0.0025 0.2512±0.0036 0.2116±0.0026 0.1736±0.0030
exp-Hellinger 0.4191±0.0022 0.3653±0.0024 0.2974±0.0028 0.2451±0.0024 0.2004±0.0019 0.1649±0.0031

MiPOD
maxSRMd2 0.4427±0.0026 0.3949±0.0031 0.3246±0.0034 0.2709±0.0027 0.2272±0.0037 0.1865±0.0029
Square root 0.4401±0.0028 0.3926±0.0047 0.3185±0.0022 0.2635±0.0027 0.2209±0.0036 0.1818±0.0022
exp-Hellinger 0.4426±0.0032 0.3911±0.0038 0.3148±0.0026 0.2568±0.0024 0.2104±0.0028 0.1720±0.0031

WOW
maxSRMd2 0.3574±0.0024 0.2984±0.0020 0.2331±0.0018 0.1907±0.0028 0.1559±0.0024 0.1279±0.0030
Square root 0.3492±0.0021 0.2854±0.0033 0.2140±0.0031 0.1702±0.0026 0.1375±0.0020 0.1118±0.0033
exp-Hellinger 0.3470±0.0024 0.2820±0.0024 0.2094±0.0025 0.1645±0.0031 0.1310±0.0028 0.1068±0.0032

Table 3: Detection error PE for four steganographic schemes and five payloads in bpp on BOSSbase 1.01
with FLD-ensemble trained with maxSRMd2 features, their square rooted form, and transformed using
exponential Hellinger kernel (by submodels).
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Payload (bpp per channel)
S-UNI 0.05 0.1 0.2 0.3 0.4 0.5

SCRMQ1 0.4549±0.0022 0.3939±0.0026 0.2977±0.0027 0.2216±0.0016 0.1710±0.0032 0.1306±0.0038
Square root 0.4499±0.0028 0.3853±0.0029 0.2885±0.0023 0.2154±0.0017 0.1630±0.0027 0.1230±0.0032
exp-Hellinger 0.4487±0.0047 0.3789±0.0031 0.2761±0.0037 0.2016±0.0017 0.1461±0.0033 0.1067±0.0028

HILL
SCRMQ1 0.4699±0.0024 0.4227±0.0029 0.3288±0.0022 0.2528±0.0017 0.1967±0.0024 0.1558±0.0043
Square root 0.4586±0.0035 0.4021±0.0031 0.3130±0.0022 0.2416±0.0036 0.1896±0.0025 0.1497±0.0022
exp-Hellinger 0.4520±0.0032 0.3904±0.0044 0.2927±0.0026 0.2212±0.0031 0.1724±0.0027 0.1332±0.0022

MiPOD
SCRMQ1 0.4557±0.0029 0.4034±0.0029 0.3081±0.0031 0.2397±0.0042 0.1872±0.0045 0.1476±0.0026
Square root 0.4477±0.0022 0.3904±0.0021 0.3006±0.0018 0.2317±0.0028 0.1812±0.0029 0.1439±0.0030
exp-Hellinger 0.4485±0.0031 0.3802±0.0032 0.2839±0.0014 0.2133±0.0034 0.1633±0.0040 0.1253±0.0034

WOW
SCRMQ1 0.4507±0.0009 0.3975±0.0033 0.2997±0.0033 0.2283±0.0021 0.1793±0.0046 0.1365±0.0036
Square root 0.4367±0.0040 0.3700±0.0042 0.2750±0.0029 0.2092±0.0021 0.1641±0.0011 0.1263±0.0027
exp-Hellinger 0.4296±0.0033 0.3600±0.0029 0.2618±0.0020 0.1936±0.0022 0.1468±0.0019 0.1129±0.0018

Table 4: Detection error PE for four steganographic schemes and five payloads in bits per pixel per color
channel on color version of BOSSbase with FLD-ensemble trained with SCRMQ1 features, their square rooted
form, and transformed using exponential Hellinger kernel (by submodels).

UNIWARD, however, indicated no benefit of square-rooting
the GFR features (this is equivalent to using the Hellinger
kernel). Also, we did not observe any boost when applying
a non-linear transformation to the projection SRM (PSRM)
[18]. The PSRM as well as the phase-aware features share
one aspect that is different from rich models such as SRM,
maxSRMd2, and SCRMQ1. The former are computed as
first-order statistics (histograms) rater than high-dimensional
co-occurrences. Histograms are generally much better pop-
ulated than co-occurrences and the differences among the
populations of individual bins are much smaller. Features
formed as collections of well-populated histograms do not
seem to benefit from non-linear transformation investigated
in this paper.
There exist co-occurrence based rich models for the JPEG

domain, such as JRM [24] and CC-C300 [23] formed by many
two-dimensional co-occurrences from DCT coefficients and
their differences. However, as reported in these papers, the
decision boundary between cover and stego features within
these representations is almost linear because of the direct
relationship between the embedding domain and the domain
in which the steganalysis representation is built. Accord-
ing to our experiments with the JRM on J-UNIWARD and
nsF5 [13], square-rooting the features before classification
with the FLD-ensemble has no effect on detection accuracy.

5.2 Rich model compactification
In this section, we study whether the transform ϕ is a

useful tool for compactifying the rich model by simply re-
taining fewer coordinates in each transformed submodel.
Compactification of rich models is a topic that has already
been addressed in [12], where a greedy forward feature se-
lection method has been applied to SRM submodels. It
has also been investigated within the context of unsuper-
vised detectors, where high-dimensional models could not
be applied [29]. We stress that retaining a smaller subset of
transformed dimensions is similar in spirit to applying a reg-
ular PCA to cover features and, as such, has obvious limita-

tions because of the absence of feedback from the embedding
scheme. Thus, it is unlikely to provide compactification ra-
tios similar to approaches that consider both cover and stego
features, such as calibrated least squares (CLS) [29]. On the
other hand, the compactification only depends on the cover
source, which makes the approach potentially useful for un-
supervised universal steganalysis.
As can be seen from Table 1, for an individual SRM sub-

model the detection error increases quite rapidly with the
decreased number of retained coordinates. On the other
hand, differences in the performance of individual submod-
els usually do not scale directly to the rich model as it is
likely that the submodels “compensate for each other weak-
nesses.” Thus, the entire rich model may still perform rather
well when compacted. Figure 2 confirms this hypothesis,
showing the detection error PE as a function of the number
of retained coordinates. Even when retaining only 10% of
the coordinates, E = 0.1 × D, there still appears to be a
small gain in detection accuracy w.r.t. the original maxS-
RMd2 feature.

6. CONCLUSION
Supervised detectors of steganography are currently built

using classifiers trained on high-dimensional rich models.
The excessive training complexity associated with large train-
ing sets and high-dimensional features forced steganalysts
to adopt simple(r) machine learning paradigms, such as the
popular FLD-ensemble and its linearized versions, poten-
tially thus losing on detection accuracy that could be ob-
tained with more powerful non-linear classifiers, such as ker-
nelized support vector machines. In this paper, we investi-
gate the possibility to boost steganalysis with simple classi-
fiers by non-linearly transforming the features. The trans-
formation is learned on a small set of cover features with
the constraint that the dot products of mapped features ap-
proximate the output of a specific kernel, a task equivalent
to kernelized PCA. The feature transformation can be in-
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Figure 2: Detection error PE as a function of the rel-
ative number of retained coordinates, E/D. Tested
payload 0.4 bpp, exp-Hellinger kernel.

terpreted as a different way of measuring distances in the
feature space. Retaining only a subset of transformed co-
ordinates corresponding to the largest eigenvalues, the gen-
eral version of the transformation is obtained using Nyström
approximation. The approach is scaled up to the full spa-
tial rich model by learning the transformation separately for
each submodel in order to keep the computational complex-
ity low.
Exponential forms of the linear, Hellinger (Bhattacharyya),

chi-square, and Jensen–Shannon kernels provide similar per-
formance and substantially improve upon the original (non-
transformed) form of the features. A consistent gain be-
tween 2–4% was observed for the selection-channel-aware
maxSRMd2 features as well as the Spatio-Color Rich Model
for steganalysis of color images. The detection improvement
varies across steganographic methods and payloads. Learn-
ing the transformation is a relatively low-cost task that only
needs to be executed once for a given cover source. In par-
ticular, the transformation does not depend on the stegano-
graphic method and the payload. By retaining fewer di-
mensions in each SRM submodel, it is possible to compact-
ify the rich descriptor by a factor of 10 without losing the
detection performance of the original (non-transformed) fea-
ture vector. This could be useful for unsupervised universal
steganalysis detectors.
We wish to point out that the non-linear transformation

seems effective only for features built as high-dimensional
co-occurrences, such as the SRM, maxSRM, and SCRMQ1.
In particular, it does not bring any improvement for “dense”
features built as histograms spanning a few bins, such as
JPEG-phase-aware features [32, 20, 19] and the projection
spatial rich model [18]. We hypothesize that it is because
the populations of co-occurrence bins are typically highly
imbalanced while the bins in histograms are more evenly
populated, making the effect of the non-linearity negligible.
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