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ABSTRACT 
 

In this paper, we propose a new method for estimation of the number of embedding changes for non-adaptive ±k 
embedding in images. By modeling the cover image and the stego noise as additive mixture of random processes, the 
stego message is estimated from the stego image using a denoising filter in the wavelet domain. The stego message 
estimate is further analyzed using ML/MAP estimators to identify the pixels that were modified during embedding. For 
non-adaptive ±k  embedding, the density of embedding changes is estimated from selected segments of the stego image. 
It is shown that for images with a low level of noise (e.g., for decompressed JPEG images) this approach can detect and 
estimate the number of embedding changes even for small values of k , such as k=2, and in some cases even for k=1. 
 

1. INTRODUCTION 
 
Steganography is the art of invisible communication. Its purpose is to hide the very presence of communication by 
embedding messages into innocuous-looking cover objects. Each steganographic communication system consists of an 
embedding algorithm and an extraction algorithm. To accommodate a secret message in a digital image, the original 
cover image is slightly modified by the embedding algorithm. As a result, the stego image is obtained. The most 
important requirement for a steganographic system is undetectability: stego images should be statistically 
indistinguishable from cover images. In other words, there should be no artifacts in the stego image that could be 
detected by an attacker with probability better than random guessing, given the full knowledge of the embedding 
algorithm, including the statistical properties of the source of cover images, except for the stego key (Kerckhoffs’ 
principle). For a more exact treatment of the concept of steganographic security, the reader is referred elsewhere1,2,3 . 
 
By far the most popular and frequently used steganographic method is the Least Significant Bit embedding (LSB). It 
works by embedding message bits as the LSBs of randomly selected pixels. The pixel selection is usually determined by 
a secret stego key shared by the communicating parties. Today, a fairly large portion of steganographic programs 
(http://www.stegoarchive.com) available for download on the Internet use this  technique (Steganos II, S-Tools 4.0, 
Steghide 0.3, Contraband Hell Edition, Wb Stego 3.5, Encrypt Pic 1.3, StegoDos, Wnstorm, Invisible Secrets Pro, and 
many others). The popularity of the LSB embedding is most likely due to its simplicity as well as the [false] belief that 
modifications of LSBs in randomly selected pixels are undetectable because of the noise commonly present in natural-
scene digital images. However, flipping the bits of the LSB plane is a very unusual operation that does not occur 
naturally. The even pixel values are either unmodified or increased by one, while odd values are either decreased by one 
or left unchanged. This imbalance in the embedding distortion was recently utilized to mount successful attacks4,5,6,7. The 
current state-of-the-art in detection of LSB embedding is represented by RS analysis 7, Sample Pairs analysis6, and their 
improved versions8,9 . These methods can detect stego images with an extremely high reliability as well as accurately 
estimate the number of changes due to embedding.  
 
A better approach than manipulating bit planes is embedding by adding noise of specific properties. The early example 
of this approach is the work of Marvel10, Alturki11, and Sharp12. Recently, Stochastic Modulation13 was proposed, in 
which the act of embedding is realized by superimposing noise with an arbitrary (user-selected) probability distribution. 
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This method attempts to mask the act of embedding as adding a device noise of specific properties. A special case of this 
method is the so-called ±k  embedding that is investigated in this paper. In ±k  embedding, some pixel values are left 
unchanged, while others are either increased or decreased by k . The modifications can be either content independent or 
adapted to the image content. 
 
The ±k  embedding for k=1 is a trivial generalization of LSB embedding. Instead of flipping the LSB, the sender 
increases or decreases the pixel value by one to match its LSB with the message bit. This seemingly innocent 
modification of the LSB embedding is significantly harder to detect because the pixel values are no longer paired. As a 
result, none of the existing attacks on LSB embedding can be adapted to attack ±1 embedding. 
 
One of the first papers on detection of embedding by noise adding is the paper by Harmsen14, where the detection relies 
on the fact that adding noise to the cover image smoothes out its histogram. This method seems to work reasonably well 
for images that have low level of high frequency noise, such as decompressed JPEG images. It is not clear, however, if 
one can find a universal threshold distinguishing cover and stego images for a sufficiently wide class of images and 
whether the method can reliably estimate the number of embedding modifications, which is an important piece of 
knowledge for the steganalyst. Also, the method is much less reliable for grayscale images. 
 
A different method for detection of steganography based on noise adding was proposed by Westfeld15. Noise adding 
creates many (up to 26) neighbors for each color present in the cover image. In decompressed JPEG images and images 
with a low level of noise, each color typically has no more than 10–15 neighboring colors. In ±1 embedding, however, 
the number of neighbors increases quite significantly even for low embedding rates. Thus, by counting the number of 
neighbors for each unique color in the image, one can detect the presence of ±1 steganography. This method cannot be 
used for grayscale images and it is not known if it can estimate the number of embedding changes. Also, images with a 
large noise component, such as scans of photographs or certain resampled images often form false positives.  
 
In this paper, we propose a method for estimation of the number of embedding changes for non-adaptive ±k  embedding 
in color or grayscale images. The method consists of a sequence of estimation procedures that use spatial and wavelet 
domains representations of the cover and stego images to estimate the length of a message embedded using ±k 
steganography. In Section 2, we describe the new approach and then in Section 3 we experimentally evaluate its 
performance. In the last section, we discuss the limitations of the proposed approach and conclude the paper. 
 

2. PROPOSED METHOD 
 
A grayscale n×m image will be represented with a two-dimensional array of integers xij, xij∈{0, …, 255}, i∈{1, …, n}, 
j∈{1, …, m}. A true color 24 n×m bit image will be represented as three grayscale n×m images rij, gij, bij. The distortion 
due to non-adaptive ±k  embedding is modeled as an additive i.i.d. noise signal η with the following Probability Density 
Function (PDF) with p∈[0,1] 

                         P(η = 0) = 1–p/2                               (1) 
                          P(η = k) = P(η = –k) = p/4 . 
 
 
 
 
 
 
 
 

 
Table 1. PM1 embedding operation. 

 
For k=1, for example, (1) corresponds to embedding a random binary bit-stream of length pmn in randomly selected 
pixels using the embedding rule from Table 1. 
 
 

To embed bit b, modify x to Pixel value x 
 b=0 b=1 
2i,  0 < i < 255 2i 2i+1 or 2i–1 
2i+1, 0 < i < 255 2i or 2i+2 2i+1 
0 0 1 
255 254 255 



2.1 Problem analysis  
From the signal processing point of view, steganography can be considered as adding a certain type of noise s to the 
cover image x thus obtaining the stego image y=x+s. Because of the undetectability requirement, stego message 
embedding is performed with a low stego message/cover image ratio. In this paper, the amplitude of s is equal to k . 
Communication theory considers steganography as data transmission through a noisy channel corrupted by the cover 
image16. The character of non-adaptive ±k embedding allows us to consider the stego image as a set of parallel 
communication channels (Fig. 1) and perform independent estimation of the stego message in each channel16. 
 

                      
 
 

Fig. 1. Stego image as set of parallel communication channels. 
 
2.2 General structure of the proposed method 
Taking into account the specifics of ±k  embedding, especially for small k  (e.g., k=1, …, 3), we note that direct stego 
message estimation ŝ  from the mixture y  is a complicated problem. The general structure of the proposed stego message 
estimation method is shown in Fig. 2, where xxe ˆ−=  is the error of the cover image estimation. 
 
 
 
 
 
 
 
 

Fig. 2. Structure of proposed method. 
 

The proposed method solves this problem in 3 stages. In the first stage, we estimate the cover image from the stego 
image. Because of the low level of distortion caused by ±k  embedding (or a high cover image SNR), it can be done with 
high accuracy. Using the estimate x̂ , estimation of the stego message s+e from the mixture is performed in the second 
stage, capitalizing on the fact that the previous removing of the cover image substantially improves the stego message 
SNR. The third stage consists of the estimation of the stego message length p. A potential advantage of this approach is 
the possibility that not only length, but also estimates for the location and sign of the embedding changes are obtained. 
Due to absence of a priori knowledge about p, the Maximum Likelihood (ML) is used for estimation of the stego 
message length. Grid search approach was applied to find maximum of likelihood function consists of the ratio of the 
estimated stego message length to its assumed value. 
 
Due to absence of a priori knowledge about p, we first use the Maximum Likelihood (ML) for estimation of the stego 
message length and then later propose another approach using the MAP estimator. 
 
2.3 Cover image estimation 
Separation of the cover image and the stego message from the stego image y and the following stego message length 
estimation require appropriate stochastic models. Although we have the model of the stego message (Table 1), good 
stochastic models  for real images in the spatial domain do not exist. To solve this problem, we transform the stego image 
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to another domain using a linear transform that has good energy compactification and decorrelation properties (the 
linearity makes the transformed stego image also an additive mixture of random processes). All these properties are 
needed to obtain a good separation between the cover image and the stego message. For this purpose, the wavelet 
transform is commonly used. Thus, the first stage of the proposed approach can be considered as wavelet domain stego 
image denoising. 
 
In this text, we use capital letters to denote wavelet transforms of lower case symbols (e.g., X=W(x) and Y=W(y), where 
W is the wavelet transform). Initially, we modeled the histograms  of subband coefficients using the stationary 
Generalized Gaussian Distribution (GGD) 17,18,19. However, because of the complex nature of real images, the stationary 
assumption of this description was not accurate enough. Also the GGD does not allow obtaining a closed form solution 
for the denoising problem. Consequently, we turned our attention to non-stationary models20 and replaced the stationary 
GGD model with a non-stationary Gaussian Distribution (GD), N(0,CX), where CX is the cover image covariance matrix 
that has to be estimated from the stego image. 
 
In Fig. 3, we show the block-diagram of the cover image estimation. The ML20 or Maximum A Posteriori (MAP) 
estimation21,22 were applied to estimate the parameters of the cover image model. 
 
  
 
 
 
  
 
 
 
 
 

 
Fig. 3. Block diagram of cover image estimation method. 

 
The wavelet domain cover image estimation is performed according  
 

( ) ( )( )ˆ argmax XY X
X

X P Y X P X
∈ℜ

= ,                      (2) 

 
where ( )Y XP Y X  is the likelihood function and ( )XP X  denotes the cover image model. 

 
For large message length, in the wavelet domain the stego message can be represented with a stationary GD model, 

( )2,0 SN σ  (Fig. 4, a). 
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Fig. 4. Histograms of H2 subband coefficients for stego message realizations with p=0.2 (a) and p=0.05 (b).  
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The advantage of this model, considering the non-stationary GD cover image model, is the existence of a closed form 
solution for the cover image estimator because it reduces to the Wiener filter (Fig. 5, a) 
 

( ) ( ) ( )( ) ( )jiYjiCjiCjiX SXX ,,ˆ,ˆ,ˆ 12 −
+= σ ,                       (3) 

 

where ˆ
XC  is the estimated cover image covariance matrix. 

 
However, with decreasing stego message length, the non-Gaussian character of the histogram becomes apparent 
(Fig. 4, b). Therefore, a more general, stationary GGD model, ( )GGD 0, ,S Sα β , was used in this paper. The estimation 

of the GGD model parameters was done using the ML approach. Because a closed form solution does not exist for this 
case, a numerical method for the cover image estimation was adopted. 
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Fig. 5. MAP estimator of GD random process from GD+GD mixture (a);  
MAP estimator of GD random process from GD+GGD mixture (b).  

 
In Fig. 5, we show dependence of cover image from stego image, where cover image was described by non-stationary 
GD model and stego message was presented by stationary GD (Fig. 5,a) or stationary GGD (Fig. 5,b) models. The four 
curves correspond to four different values of the parameter σ for the GD model and β for the GGD model of the stego 
message. Fig. 5, a shows that estimation of cover image from GD+GD mixture is linear, whereas dependences in Fig. 5,b 
have strongly nonlinear character. The parameter β for the stego message is typically in the range [1.4, 2.3]. 
 
In contrast to the classical wavelet domain denoising approach where the parameters of the noise model can be estimated 
directly from the wavelet representation of the noisy image19, in the case of ±k  embedding steganography this is rather 
hard to do because of the small stego message SNR. Our analysis shows that the parameters of subband coefficients 
distribution are robust with respect to different realizations of the stego message. For 1000 stego message realizations 
with varying p∈[0,1], the normalized standard deviation of the estimation error was less than 3–5% of the parameter 
values. This suggests the possibility to use pre-calculated parameters of the wavelet domain stego message model. 
 
The type of the wavelet transform also plays an important role in the cover image estimation. We illustrate this point on 
the denoising problem (which is the removal of additive white Gaussian noise) with two wavelet transformations – the 
decimated and undecimated orthogonal wavelet transforms (Db8)23. For testing, a mixture of the 512×512 grayscale 
“Lena” image and AWGN N (0,100) noise (PSNR=28.13dB) was taken. 
 

 Methods Performance PSNR (original, denoised) 
1 Orthogonal WT (Db8) (ML) 20 34.38 dB 
2 Undecimated orthogonal WT (Db8) (ML)  35.02 dB 

 
Table 2. Performance of denoising methods. 
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We see from Table 2 that the redundancy of wavelet domain data representation in Method 2 gives a gain of 
approximately 0.65 dB. However, Method 2 also increases the computational complexity by the factor of 3.75.  
 
2.4 Stego message estimation 
After estimating the cover image, the stego message estimate is obtained as follows 
 

esxsxxys +=−+=−= ˆˆˆ .                         (4) 
 
 
 
 
 
 
 
 
 

Fig. 6. Stego message model: 3-PAM with non-uniform symbol probability (a) and stego message estimator (b). 
 

The error of the cover image estimation e is caused by the stochastic behavior of the estimated stego message and usage 
of the averaged precalculated parameters for the stego message model. Taking into account non-stationary behavior of 
the cover image, e can be described as a non-stationary GD process. In this case, the stego message estimation 
transforms into the 3-PAM (Pulse Amplitude Modulation) communication problem with a non-uniform probability of 
symbols (Fig. 6, a). 
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Fig. 7. Probability of error vs. stego message SNR for ML (a) and MAP (b) estimators. 

 
The estimation of the stego message will be performed in a pixel-wise manner. The assumption about equal probability 
of each symbol allows applying the ML stego message estimator with the threshold T=k /2 (Fig. 6, b). Fig. 7, a) shows 
the probability of an error in stego message symbol estimation as a function of the stego message SNR. The fact that the 
ML estimator does not use any information about the error of the cover image estimation increases the probability of 
incorrect symbol estimation. This drawback can be overcome by replacing the ML estimator with a MAP stego message 
estimator. The MAP estimator can incorporate the non-stationary GD model for e and the a priori value of p. The MAP 
estimator will have the same shape as in Fig. 6, b) but the threshold T is calculated for each pixel separately 
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where σe is the standard deviation of e. Fig. 7, b) shows the error probability for the MAP estimator for different values 
of the stego message length p. The comparison of both estimators shows that for the same stego message SNR, the MAP 
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estimator gives a lower probability of error. Also, for the MAP estimator the probability of error decreases with 
increasing embedding rate. 
 
2.5 Stego message length estimation 
Having obtained the estimate for the message, we can now estimate the parameter p – the message length. Taking into 
account the highly non-stationary character of the cover image and the correlation between the stego message SNR and 
the accuracy of the stego message estimation, we expect the stego message signal to be estimated with different accuracy 
depending on the stego message SNR in various stego image regions. This fact will have impact on the accuracy of the 
estimation of the global stego message parameter p. Fortunately, for non-adaptive ±k  embedding, this impact can be 
reduced by estimating the parameter p only in those regions in the stego image that have a relatively high stego message 
SNR and extrapolating the results to the whole stego image. The division of the stego image into regions with different 
stego message SNR can be done using common segmentation methods. In this paper, we used stego image segmentation 
based on the local variation24.  
 

3. EXPERIMENTAL RESULTS 
 

To test the proposed stego message length estimation method, a series of experiments were performed. First, we used 10 
512×512 grayscale images (decompressed JPEGs with quality factor QF=90%) and 6 stego message length estimation 
methods for ±1, ±3 embedding and p=0, 0.25, 0.5, 0.75, 1.0. Table 3, b shows the mean and standard deviation of the 
stego message estimate. 
 

# Method description 
1 Orthogonal WT (Db8) (non-stationary GD cover image model + stationary GD stego message model) 

ML stego message estimator  
2 Orthogonal WT (Db8) (non-stationary GD cover image model + stationary GD stego message model) 

MAP stego message estimator 
3 Undecimated orthogonal WT (Db8) (non-stationary GD cover image model + stationary GD stego message model) 

ML stego message estimator 
4 Undecimated orthogonal WT (Db8) (non-stationary GD cover image model + stationary GD stego message model) 

MAP stego message estimator 
5 Undecimated orthogonal WT (Db8) (non-stationary GD cover image model + stationary GGD stego message model) 

ML stego message estimator 
6 Undecimated orthogonal WT (Db8) (non-stationary GD cover image model + stationary GGD stego message model) 

MAP stego message estimator 
 

Table 3, a. Description of stego message length estimation methods. 
 

  Method # 1 Method # 2 Method # 3 Method # 4 Method # 5 Method # 6 
 p µ σ µ σ µ σ µ σ µ σ µ σ 

k=
±1

 

0.00 
0.25 
0.50 
0.75 
1.00 

0.432 
0.542 
0.624 
0.702 
0.706 

0.1724 
0.1772 
0.1792 
0.1916 
0.1925 

0.430 
0.544 
0.614 
0.702 
0.706 

0.1713 
0.1771 
0.1793 
0.1916 
0.1925 

0.080 
0.388 
0.522 
0.570 
0.642 

0.1265 
0.1968 
0.2004 
0.2133 
0.2246 

0.080 
0.388 
0.518 
0.570 
0.646 

0.1265 
0.1968 
0.2005 
0.2133 
0.2259 

0.362 
0.396 
0.638 
0.720 
0.814 

0.1752 
0.1651 
0.1421 
0.1423 
0.1536 

0.366 
0.400 
0.632 
0.716 
0.810 

0.1771 
0.1661 
0.1426 
0.1406 
0.1502 

k=
±3

 

0.00 
0.25 
0.50 
0.75 
1.00 

0.118 
0.434 
0.596 
0.748 
0.884 

0.1322 
0.1164 
0.1127 
0.0775 
0.0379 

0.118 
0.426 
0.588 
0.734 
0.882 

0.1322 
0.1157 
0.1117 
0.0833 
0.0370 

0 
0.414 
0.532 
0.736 
0.872 

0 
0.0966 
0.0687 
0.0449 
0.0495 

0 
0.416 
0.530 
0.730 
0.860 

0 
0.0974 
0.0698 
0.0450 
0.0558 

0 
0.290 
0.618 
0.782 
0.896 

0 
0.1228 
0.1035 
0.0656 
0.0382 

0 
0.268 
0.610 
0.792 
0.922 

0 
0.1134 
0.0976 
0.0538 
0.0354 

 
Table 3, b. Results of stego message length estimation. 

 
We can see from Table 3 that the undecimated wavelet transform (Method 1 vs. Method 3) gives a more accurate 
estimation of stego message length, especially for low embedding rates, which is compatible with the results from Table 



2. Second, the usage of MAP estimator did not lead to any significant improvement in comparison with ML estimation 
(Method 1 vs. Method 2, Method 3 vs. Method 4, and Method 5 vs. Method 6). This is caused by our inability to 
suppress the error term e introduced by imperfect estimation of the cover image (low stego message SNR). Third, the 
advantage of a more precise GGD stego message model (Method 5 vs. Method 3) was negatively influenced by the 
absence of a closed form solution for the GGD model parameters estimation (it was realized using an ML estimator) and 
for the estimation of the cover image from the stego image (the numerical solution is ill-conditionined). Fourth, the 
necessity to test our method on a large number of images imposes an upper limit on the acceptable computational 
complexity of the proposed methods. While replacing the decimated wavelet decomposition with undecimated increases 
the complexity by the factor of 3.75 (for a 5 level decomposition), it improves the estimation of low embedding rates. 
For practical implementations, we recommend to use only stochastic approaches with closed form solutions. Out of the 
six considered methods, Method 3 and 4 can be considered as the best candidates considering the 
accuracy/computational complexity trade off. Also, for k=±3 and given image database the undecimated decomposition 
based methods (Methods 3–6) perfectly separate all stego images from cover images. 
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Fig. 8. The ratio pp̂  for different cover image formats and stego message embedding amplitude:  

a) BMP; b) JPEG (QF=90%); c) JPEG (QF=75%) for k=±2, and d) BMP; e) JPEG (QF=90%); f) JPEG (QF=75%) for k=±3. 
 
To investigate the impact of the cover image format on the accuracy of stego message length estimation, we used three 
versions of the 512×512 grayscale “Lena” image: 1) the uncompressed BMP format; 2) compressed JPEG format 
(QF=90); 3) compressed JPEG format (QF=75) (Fig. 8). These dependences were obtained for ±2 and ±3 embedding 
steganography. As the results show, correctness of stego message length estimation (the ratio of the estimated stego 
message length to its correct value) strongly depends on the stego image region properties, which were obtained based 
on the stego image segmentation using local variance as the segmentation parameter. In regions with a smaller local 
variance, the stego message length can be estimated more accurately. As can be seen in Fig. 8,  a (BMP format), only one 
region gave a reasonably accurate estimation pp̂ =0.82. Better results ( pp̂ =0.99) were obtained for a high quality 
decompressed JPEG image (Fig. 8, b): image with QF=90 (Fig. 8, b) and QF=75 (Fig. 8, c). This is because for 
decompressed JPEG images the estimation accuracy as well as the number of regions, where estimation can be 
performed, has increased significantly because lossy compression suppresses high frequency components, which in turn 
decreases the term xxe ˆ−=  and improves the stego message SNR. The results show that in the BMP image only two 
regions lead to pp̂ > 0.8, whereas in decompressed JPEGs this value was reached for 5 (QF=90) and 32 (QF=75) 
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regions. Quite understandably, the estimator reliability improves with an increasing number of stego image regions 
where the stego message model parameter estimation can be performed with a high accuracy. Thus, for the ±3 
embedding steganography, the ratio pp̂  was always larger than 0.96 and the number of regions with pp̂ > 0.8 was 
31, 46, and 78 for the BMP image (Fig. 8, d), decompressed JPEG with QF=90 (Fig. 8, e), and decompressed JPEG with 
QF=75 (Fig. 8, f), respectively.  
 
In Table 4, we show the performance of Methods 1, 3, and 5 for ±1 embedding with p = 0.2, 0.4, 0.6, 0.8, 1.0 and the 
512×512 grayscale “Lena” image. For these methods, the stego message SNR gain was in the range of 37–43 dB. 

 
 
 
 
 
 
 
 
 

Table 4. Comparison of stego message SNR improvement for Methods #1, 3, and 5. 
 
Fig. 9 shows that for all three methods and k = ±1 the probability of error, appeared during stego message estimation is 
between 0.25 and 0.35 depending on the stego message length, which is rather high for reliable steganalysis. We also see 
that the undecimated wavelet transform provides the best results (approximately 0.3 dB gain in stego message SNR). 
Despite the more general (GGD) model for the stego message in the wavelet domain used in Method 5, the performance 
of Method 5 is worse than for Method 3, which can be explained by the unstable behavior of the model parameter 
estimator (especially for low embedding rates) due to an ill-conditioned cover image estimator. Therefore we conclude 
that for estimating signals with small SNR (e.g., estimating stego message from stego image) both accurate models and 
existing of the estimators with closed form solution are necessary for reliable steganalysis. 
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Fig. 9. Probability of error as a function of the stego message SNR: a) Method 1; b) Method 3; c) Method 5 
(?  - p=0.2, x – p=0.4, o - p=0.6, + - p=0.8, * - p=1.0) 

 
To test the proposed detection method on real images, the stego message length estimation (for k = ±1) was done for a 
set of 120 grayscale images acquired by three types of digital cameras (Fig. 10) with different image resolution (8 
images with 1024×756 pixels, 70 with 1280×960, and 42 with 1600×1200) and different level of compression 
corresponding to JPEG quality factors ranging from 65 to 93. 
 
Fig. 10 illustrates the fact that the accuracy of stego message length estimation strongly depends on the image source, 
resolution, and content because these factors influence the local image variation and thus the stego message SNR. The 
limitation of the proposed method is illustrated in Fig. 11, where the mo st interesting case of ±k  steganography, k = ±1, 
is analyzed. Fig. 11 was calculated for ML stego message estimation from (4) (see Fig. 7, a). Marked areas were 
obtained by averaging the stego message SNR over a set of cover images.  
 

p Stego message 
SNR, dB 
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0.4 -40.0942 +0.3252 +0.5630 +0.3957 
0.6 -38.3333 +0.4583 +0.7403 +0.7137 
0.8 -37.0839 +0.5701 +0.8821 +0.8804 
1.0 -36.1148 +0.6632 +0.9989 +0.9921 
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Fig. 10. Stego message length estimation for 120 digital camera images 

(plus - p=0; diamond - p=0.25, star - p=0.5, square - p=0.75, cross - p=1). 
 

 
The proposed estimation procedures for the cover image and the stego message lead to an improvement in the stego 
message SNR from the original range of [–43, –36]dB to [0.3, 1]dB. However, this improvement still does not allow 
reliable stego message detection. Reliable results are expected after further improving the stego message SNR by 
additional 3–5dB. We support this claim based on our analysis of the embedding with k = ±2, ±3 because increasing the 
stego message amplitude causes approximately the same improving of the stego message SNR, as required by the 
proposed method to achieve reliable stego message estimation. Also it has to be mentioned, that all results presented in 
this paper were obtained for decompressed JPEG images that were previously compressed with different quality factors. 
Application of even high quality compression causes significant reduction of the local variation of cover image intensity, 
therefore, reliable stego message detection and parameter estimation in raw images is a more complex problem.  
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Fig. 11. Probability of erroneous estimation as a function of stego message SNR obtained from Fig. 7, a) (ML estimator). The 

highlighted areas were obtained by averaging the stego message SNR over a small set of cover images 
 

4. CONCLUSIONS AND FUTURE PERSPECTIVE 
 

In this paper, we develop steganalysis methods for ±k  steganography – an embedding process equivalent to adding a 
noise signal with three possible values –k , 0, and k  to the cover image. For k=1, this type of embedding is a trivial 
modification of LSB embedding (the message reader stays the same). The detection of this steganography, however, is 
much more difficult than for LSB embedding for which reliable detection is known4–9.  
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In our approach to steganalysis, we strive to estimate the number of embedding changes and thus estimate the relative 
length of the embedded message. We present a stochastic approach based on sequential estimation of cover image and 
stego message. We work in the wavelet domain where the cover image is modeled using the non-stationary Gaussian 
model and the stego signal using Gaussian and Generalized Gaussian models. ML and MAP estimators were created for 
stego message estimation. 
 
As opposed to previous approaches to detection of this type of steganography14,15, the proposed method works for both 
grayscale and color images. In fact, we treat color images as three-times larger grayscale images. The performance of the 
method improves with increasing amplitude of the stego signal. For k = ±3, a good separation between embedded and 
non-embedded images was obtained using Method #3 and 4 (see Section 3). Because the larger amplitude increases the 
stego message SNR, stego messages can be successfully detected in a wider range of cover images and in a larger 
number of image regions. Taking into account the dependence of stego message parameters estimation on the cover 
image content, decreasing the amplitude k  reduces the estimation reliability. However, for certain types of cover images 
successful estimation can still be obtained even for k = ±1. The accuracy of the message length estimation is better for 
images with a suppressed high frequency component, for example due to lossy JPEG compression. We have also 
estimated the necessary improvement in the stego message SNR that would enable reliable steganalysis using the 
proposed approach.  
 
The results presented in this paper confirm the importance of accurate cover image estimation for steganalysis because 
its quality influences the reliability of the detection in a major manner. Also, in this paper we used the simplest 
assumption about the cover image model (i.i.d.). Further improvement is expected by taking into consideration inter and 
intraband dependencies of wavelet coefficients in the cover image model. In our future work, we plan to investigate 
other redundant wavelet transforms (overcomplete wavelets, steerable pyramid, etc.) and improve the cover image and 
the stego message stochastic models. It remains to be seen if these improvements will be sufficient for reliable and 
accurate estimation of secret message length in noisy images, such as never compressed images, scans, or certain 
resampled images. We consider this challenging problem as an open field for future investigation. 
 
The results obtained in this paper also point to certain design principles for building better steganographic schemes. 
First, non-adaptive embedding in the spatial domain should be replaced with adaptive embedding based on either local 
structure or some other side information available to the sender. The approach presented in this paper heavily relies on 
the fact that the embedding is non-adaptive and es timates the message length from those segments in the stego image 
that allow easier and more accurate modeling, such as flat or smooth areas. Second, the steganographer should pay close 
attention to the selection of the cover image. Obviously, images with rich texture and/or areas that do not allow reliable 
modeling should be chosen. Decompressed (and processed) JPEG images are highly discouraged for spatial domain 
steganography (also due to the threat of JPEG compatibility steganalysis25). 
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