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ABSTRACT 
 

This paper is an extension of our work1 on stego key search for JPEG images published at EI SPIE in 2004. We 
provide a more general theoretical description of the methodology, apply our approach to the spatial domain, and 
add a method that determines the stego key from multiple images. We show that in the spatial domain the stego key 
search can be made significantly more efficient by working with the noise component of the image obtained using a 
denoising filter. The technique is tested on the LSB embedding paradigm and on a special case of embedding by 
noise adding (the ±1 embedding). The stego key search can be performed for a wide class of steganographic tech-
niques even for sizes of secret message well below those detectable using known methods. The proposed strategy 
may prove useful to forensic analysts and law enforcement. 
 

1. INTRODUCTION 
 
The art of discovering secret messages embedded using steganography2 is called steganalysis. The vast majority of 
work in steganalysis focuses on detection of secret messages rather than extraction. On a more general level, stega-
nalysis comprises of several phases, some of which belong to digital forensic analysis (hence the term Forensic 
Steganalysis in the title of this paper): 1) identification of suspicious images, 2) determining the steganographic 
method in use, 3) searching for the stego key and extracting the embedded bit-stream, 4) deciphering the bit-stream. 
In this paper, we investigate Phase 3 under the assumption that we have one or more stego images and, by Kerck-
hoffs’ principle, we already know the steganographic program used for embedding (i.e., we have the source code). 
 
One simple approach to determine the stego key would be to use a brute-force search for the stego key, inspecting 
the most likely keys first (dictionary attack) and extracting the alleged message while looking for a recognizable 
header as a sign that we have come across the correct stego key3. However, this approach will fail if the embedded 
data stream does not have any detectable structure in which case the search also becomes significantly more com-
plicated because for each stego key, all possible encryption keys must be tested. Thus, the complexity of the brute 
force search is proportional to the product of the size of stego and encryption keyspaces. Even though for some 
stego programs the stego key space itself may be small enough to make the brute force search for the stego key 
plausible, if the message has been encrypted using strong encryption, the search becomes computationally infeasi-
ble. 
 
Trivedi et al.4,5 presented a method for secret key detection in sequential steganography. The authors’ goal is to 
determine, using a sequential probability ratio test, the embedding key, which is, in their interpretation, the begin-
ning and the end of the subsequence modulated during embedding. In contrast, in this paper the key determines a 
pseudo-randomly ordered subset of all indices in the cover signal to be used for embedding. This situation is more 
typical for a steganographic application, while sequential embedding is typically used for watermarking. While it is 
possible to apply the method of Ref. 4 for this case by performing the same hypothesis test for each possible key, 
additional research would have to be done to estimate the probability of falsely determined and missed keys. Also, 
the necessity to encounter a jump in the statistics implies that the whole signal used for embedding must be proc-
essed, which would slow down the search. 
 
In this paper, we follow the approach previously proposed for JPEG images1 and modify it for spatial domain steg-
anography. In the next section, we define the embedding paradigm that will be investigated in this paper and in 
Section 3 we give a detailed problem formulation. The stego key search method itself is described in Section 4. In 
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Section 5, experimental results are interpreted and discussed for ±1 embedding and Least Significant Bit embed-
ding (LSB) in the spatial domain. In Section 6, we show how the reliability of the search can be improved if multi-
ple stego images embedded with the same key are available. Finally, the paper is concluded in Section 7 where we 
discuss limitations of the proposed method and possible countermeasures. 
 

2. THE EMBEDDING PARADIGM 
 
The stego-key search method described in this paper is applicable to virtually all steganographic methods whose 
embedding mechanism consists of the following three primitives in sequence: 1) The embedding proceeds along a 
pseudo-random path generated from the stego key, 2) The message bits are embedded as parities of individual pix-
els (e.g. their LSBs, special palette parity assignments6, key-dependent parities7, etc.), 3) If necessary, the pixels’ 
parity is changed using an embedding operation. Indeed, most steganographic techniques work in this manner. The 
random path selection is usually implemented using a Pseudo-Random Number Generator (PRNG) that is seeded 
with a seed derived from a user-specified stego key or a pass-phrase. The output of the PRNG is used to generate a 
pseudo-random walk through the pixels.  
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Figure 1a.  LSB embedding operation   
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Throughout this text, boldface symbols will denote vectors or matrices, non-boldface symbols will stand for scalars, 
and boldface Greek symbols will denote random variables. We reserve the letter i to index image elements, k for 
indices of histogram bins, and j to index stego keys. 
 
Let the cover image be represented with a vector x={xi}, i=1, …, N. Depending on the image format, the elements 
xi can be shades of gray or color indices. The range of xi is a finite set of integers. Let K be the space of all possible 
stego keys that lead to different pseudo-random paths. After embedding m message bits, the stego image, 
x(q) = {xi(q)}, is obtained, where q = m/N is the relative message length. During embedding, at least m≤N elements 
in x are visited (and potentially modified) along the path generated from the stego key K0∈K. Our task is to find the 
embedding stego key K0 given only the stego image x(q) and a full knowledge of the embedding algorithm. 
 
For each possible candidate key Kj∈K, let Path(Kj) denote the ordered set of element indices visited along the path 
generated from the key Kj. Assuming the embedded message bits are i.i.d. realizations of a binary random variable 
uniformly distributed on {0, 1} (which is the case if the message is encrypted), in the sequence {xi(q)}, i∈Path(K0), 
on average 50% of elements were modified by the embedding operation. Thus, taking the first n elements along the 
path generated from the correct key, n≤m, the expected number of modified elements is n/2. 
 
Assuming paths produced from different keys are independent and that each path of length n forms a random subset 
of the cover image (each element has the same probability of being selected), the probability of encountering a 
modified element is m/(2N). Thus, the expected number of modified elements along an incorrect path consisting of 
n elements is n×m/(2N) ≤ n/2 (because m≤N). Thus, if the stego image is not fully embedded, the distribution of 
elements {xi(q)}, i∈Path(K0), along the correct path will be different from the distributions taken along the incor-
rect paths {xi(q)}, i∈Path(Kj), j > 0. Assuming the elements xi(q) are i.i.d. realizations of a random variable, the 
elements’ Probability Density Function (PDF) is their complete statistical characterization. Thus, we identify the 
correct key as the one for which the distribution of elements xi(q) along the embedding path is not compatible with 
the PDF derived for incorrect keys. 
 
As explained in Section 4, it is possible to calculate from the whole stego image x(q) the expected distribution h of 
image elements {xi(q)} along paths generated from an incorrect key. Thus, the stego key search involves a compos-
ite hypothesis testing for each candidate key Kj : 
 

H0:  the elements {xi(q)}, i∈Path(Kj), are drawn from h.  
H1:  the elements {xi(q)}, i∈Path(Kj), are not drawn from h. 

 
For this purpose, we use the chi-square test. One of the reasons for this choice is the low computational complexity 
of this test, which is crucial for any exhaustive search method. Keys for which the null hypothesis is rejected are 
possible candidates for the correct key and are further inspected (see Section 4.1).  
 

4. STEGO KEY SEARCH USING THE CHI-SQUARE TEST 
 
In order to apply the chi-square test, we divide the range of elements xi(q), i=1, …, N, into d disjoint bins B1, B2, …, 
Bd. The choice of bins depends on the steganographic technique and is discussed in detail in Section 5. The discrete 
distribution of the first n elements along the path generated from key Kj will be denoted using hk(Kj, n, q), k = 1, …, 
d. In other words, nhk is the number of elements among the first n elements xi(q), i∈Path(Kj), whose values belong 
to the k–th bin Bk. Note that hk(Kj, n, 0) is the same quantity calculated from the cover image x. Furthermore, let 
hk(q), k = 1, …, d, denote the distribution of all image elements from the whole image x(q). 
 
Let Ξ denote the random variable that stands for a randomly selected incorrect key from K (each key selected with 
the same probability). The random variable hk(Ξ, n, q) has a multivariate hypergeometric distribution with the ex-
pected value and variance of hk(Ξ, n, q) (for proof, see for example Ref. 9): 

 
E{hk(Ξ, n, q)} = hk(q)       (1) 
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For n < 0.05N, hk(Ξ, n, q) is well approximated using multivariate binomial distribution. If, at the same time, n is 
large enough to warrant that each bin is sufficiently populated (at least 30 samples in each bin9), then the binomial 
distribution is well approximated with a Gaussian distribution. These conditions will be satisfied in practice, be-
cause for digital images N is typically of the order of millions, while n is at most of the order of thousands (also, see 
the discussion for choosing the bins in Section 5). Therefore, with n, N→∞ and n < 0.05N, the variable S 
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is asymptotically chi-square distributed with d–1 degrees of freedom. 
 
We now calculate the value of the statistic S for the correct key K0 
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The dominant term in the numerator is the middle term (hk(1)–hk(q))2. This is because along the correct path, the 
values xi(q), i∈Path(K0), follow the same distribution as elements randomly chosen from a fully embedded image. 
Thus, hk(K0, n, q) can be considered as a sample mean drawn from N realizations of a random variable ζk with prob-
ability distribution Prob(ζk=1) = hk(1), Prob(ζk=0) = 1–hk(1). The expected value and variance of the sample mean 
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creasing n while the second term is non-zero and independent of n. Therefore, for the correct key K0 
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So far, in our considerations, the embedded message was a fixed random binary bit-stream – qN realizations of an 
i.i.d. binary random variable uniformly distributed on {0,1}. Realizing the messages as a qN-dimensional vector 
binary random variable µ uniformly distributed in {0,1}qN, h(q) becomes a k-dimensional vector random variable 
that we denote h(µ, q). For a large class of steganographic schemes, there is a linear relationship between h(0) (the 
histogram of elements of the cover image) and the expected value of h(µ, q) 
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where A and C are constant d×d matrices. For long messages, E{hk(µ, q)} ≈ hk(q), which simplifies (5) to 
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Assuming that all bins in the histogram of elements of the embedded image are populated, e.g., hk(q) ≥ 1/N for all 

q∈[0,1], we see that 
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is a bounded function of q on [0,1]. Thus, S(K0, n, q) 

decreases to zero as (1–q)2 when q approaches 1. This confirms the intuition that the key search should become less 
reliable for messages whose length approaches the maximal image capacity. 
 



The linear relationship (6) is satisfied for many steganographic schemes. In particular, it is true for any steganogra-
phy that can be formulated as adding noise that is independent of the cover image element values because then 
E{h(µ, q)} is a convolution of h(0) with a low-pass filter kernel11. 
 
The performance of the key search will be measured using the probability 
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that during the stego key search a randomly chosen incorrect key will produce a value of the statistic S equal or 
larger than the value obtained for the correct key (7). Expression (8) is obtained using the asymptotic expansion of 
the cumulative density function Fd–1 (c.d.f.) for the chi-square distribution with d–1 degrees of freedom (which is 
an incomplete Gamma function): 
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The expected number of incorrect outlier keys Kj producing S(Kj, n, q) ≥ S(K0, n, q) among NK keys is 
 

Nout = NK p(n, q).           (10) 
 
Note that the chi-square value for the correct key (7) increases with n. Thus, larger values of n will lead to a smaller 
number of candidate keys (10) at the expense of more computations. Also, n needs to be large enough so that our 
assumption about (3) being asymptotically chi-square distributed is satisfied. Obviously, we also need to keep n 
smaller than the number of embedded bits, n < m=qN. If q can be estimated using quantitative steganalysis meth-
ods10, we can use this estimate and choose n accordingly. If q cannot be estimated, it is in our interest to keep n 
small to be able to detect stego keys for short messages and to maximize the search speed. Typically, n ~ 500–
10000 provides a good compromise between the above mentioned requirements. 
 
Also, note from (7) and (10) that the number of outliers Nout gradually increases as q approaches 1 (see Fig. 3). This 
will slow down the key search as more candidate keys must be further inspected using complement checking or 
other measures (Section 4.1). 
 
4.1 Search speed and candidates for the correct key 
Because the size of the key space varies significantly among steganographic systems and can be quite large, an 
essential property of an effective stego key search algorithm is its speed with which it processes individual keys. To 
maximize the processing speed and the probability of finding the correct key in a reasonable amount of time, one 
can employ several measures: 
 

a) The stego key search should start with a dictionary attack and inspect the most likely keys first. 
b) The number of image elements n along each path could be varied for each key based on the evidence we col-

lect as we add more elements12. 
c) The testing may consist of several hierarchical passes. All keys are first processed using a fast detector with 

an extremely low probability of missing a correct key but possibly with a high false positive rate. This will 
produce a smaller set of keys that is further processed using another test that has higher reliability but also 
higher computational complexity. We can cascade several detectors in this manner to maximize the speed of 
the search algorithm. 

d) For many steganographic techniques, it is possible to estimate11 the relative message length q. This estimate 
gives us information on how to choose n and how many false outliers Nout can be expected during the search. 

 
It is possible that more than one key pass Step c) above. In fact, the number of keys that are identified as potentially 
correct is given by (10) and strongly depends on the relative message length q=m/N, the number of image elements 
n, the properties of the cover image ρ(q), and the number of inspected keys NK. To identify the correct key, for each 
candidate key we can determine the whole embedding path and inspect n image elements that were not visited dur-



ing embedding and were thus unmodified (complement checking). For an incorrect key, we expect statistical evi-
dence compatible with an incorrect key (e.g., a low value of S), while for the correct key the elements’ distribution 
should again produce an outlier value of S. 
 
Another possibility to identify the correct key from outliers is to gradually increase n while looking for a “sudden” 
change in the statistic S as we encounter the end of the message (c.f., Westfeld’s “chi-square attack”13). However, 
this approach requires always O(N) operations for every incorrect key, which increases with image size and thus 
slows down the key search. 
 
Finally, we note that one of the most important factors influencing the speed of the key search is the PRNG used 
for generating the random paths. Steganographic algorithms that generate a random permutation of all image ele-
ments before embedding will lead to slower key searches than algorithms for which only a small portion of each 
path can be generated without having to produce the whole embedding path (e.g., OutGuess). In fact, deliberately 
making the path generation slow, e.g., one second, can be considered as a countermeasure against key search as it 
will slow down any exhaustive searches for key. 
 

5. STEGO KEY SEARCH IN SPATIAL DOMAIN 
 
The search algorithm as described above is directly applicable only to images in the JPEG format. For steg-
anographic systems that work in the spatial domain, before applying this methodology, the stego image should be 
preprocessed in the following manner. We apply a denoising filter F to the stego image and calculate the residual 
r(q) = x(q) – F(x(q)) with elements ri(q). We have experimented with simple FIR filters, the Wiener filter, and 
some nonlinear filters. The best performance was obtained using a wavelet-based denoising filter (Appendix A). 
The filtering improves the SNR between the stego signal and the cover image. It also decorrelates the stego image 
elements. Thus, our assumption to model the image elements as an i.i.d. signal becomes more plausible. This pre-
liminary step improves the performance of the stego key search quite dramatically. 
 
In this paper, we address two major embedding types – LSB embedding and ±1 embedding (Fig. 1), which are the 
simplest examples of embedding by noise adding7. We have chosen LSB embedding because most steganographic 
schemes available on the Internet use this simple embedding paradigm. The ±1 embedding was chosen as an exam-
ple of a scheme for which no detection is currently known that would work for a wide class of images.  
 
For our testing, we used a “generic” Matlab implementation of the LSB and ±1 embedding in which the secret key 
is used as a seed for a PRNG. The output of the PRNG is used to spread the message bits at pseudo-random posi-
tions in the stego image. To speed up our simulations, we used a special fast random-path generator that enables 
generation of the first n image elements without having to generate the complete embedding path.  
 
For LSB embedding, we further pre-process the image elements utilizing the fact that we know the pixel modifica-
tions are in LSBs only. We calculate the residual r(q) = x(q) – F(x(q)) with elements ri(q), and the “shifted” resid-
ual ( )qr = ( )qx – F(x(q)), with elements ( )ir q , where ( )qx  denotes x(q) with all its LSBs flipped. Because along 
an incorrect path, fewer pixels are modified than along the correct path, the average value of ri(q) along the correct 
path is larger than along an incorrect path. On the other hand, the average value of ( )ir q along the correct path is 
smaller than along an incorrect path. Thus, it makes sense to use the difference between the residual and the shifted 
residual ( )ir q – ri(q) for the chi-square test. Indeed, this significantly improved the search performance in our tests. 
In the next two paragraphs, we discuss the choice of the bins Bi for the chi-square test. 
 
For LSB embedding, the values ( )ir q – ri(q), i = 1, …, N, are divided into bins B1, …, Bd in the following manner. 
The bins’ width is equal to σ −r r /α, where σ −r r  is the standard deviation of ( )ir q – ri(q), α is a constant, and the 
bins are evenly distributed around zero. The left most and right most bins are exceptions, spanning to –∞ and +∞, 
respectively. We observed similar performance for values in the range 0.8 ≤ α ≤ 1.1, 7 ≤ d ≤ 10, and used α = 0.9, 
d = 8 in all our tests for LSB. Because for natural images both r and r  have approximately Gaussian distribution, 
this choice of bins also guarantees that all bins will be well populated for our analysis of Section 4 to apply. 
 
The choice of bins for the ±1 embedding was different. Because r(q) is approximately zero-mean and has a sym-
metrical PDF, we can reduce the number of operations in the chi-square test by taking the absolute value of the 



residual |r(q)| with all bins in the interval [0,+∞). The bins’ width was again chosen as σr/α  with the same value of 
α = 0.9 and with d = 5. 
 
We have performed a number of different experiments in order to gain understanding of which factors influence the 
key search the most. As the first simple experiment, we searched for the correct key among 220 keys in one image 
embedded with ±1 embedding (see Fig. 2). 
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Figure 2. Statistic S (3) (left) and its PDF (right) generated from 2  keys Kj 

The performance of the search is quite understandably sensitive to the amount of noise in the image. We took four 
grayscale images of one scene using the Canon G4 digital camera (image Gazebo in Appendix B) – one image in 
the raw (uncompressed) format, and three decompressed JPEG images with three different quality settings. The 
performance of the key search was measured using the probability p(n, q) (8). As can be seen from Table 1, the 
stego key search works best for the lowest quality (decompressed) JPEG image and worst for the raw image. This is 
not surprising because the JPEG compression removes high frequency noise and thus the denoising filter F gives a 
better estimate of the cover image. We can see that for LSB embedding, the stego key search works significantly 
better overall than for ±1 embedding. Th

20

e search can also be carried out faster because fewer elements n need to be 
rocessed to determine the correct key. 

×600 pixels, and saved in the 8-bit 
rayscale format. For illustration, we show p(n, 0.2) for 12 images in Table 2. 

ructure and the stego key search works extremely reliably. The test images No. 4 and 5 are shown in Appendix B. 
 

h
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Next, we studied how the stego key search depends on the image content. We experimented with grayscale images 
of natural scenes containing both indoor and outdoor scenes taken under varying light conditions, all obtained with 
the Olympus 3030 digital camera, resampled from 2048×1536 pixels to 800
g
 
The performance of the key search is very strongly influenced by image content, namely its noise component. Im-
age No. 5 has an extreme amount of edges and a strong noise level due to low light conditions. As a result, the key 
search cannot be successfully completed with a relatively small n. For this image and the LSB method, the smallest 
n to achieve p(n, 0.2)≤10–10 is n ≈ 29000 or 6% of the image size. On the other hand, Image No. 4 has very little 
st

 igh com essio me m low com raw ge 
n LSB ±1  LSB ±1  LSB ±1  LSB ±1  

5000 –99.02 –26.12 –91.71 –22.60 –53.39 –11.94 –26.42 –1.04 
10000 –203.67 –54.96 –160.88 –45.71 –113.15 –25.78 –55.79 –7.45 
15000 –317.48 –97.66 –254.05 –67.39 –184.68 –47.05 –81.51 –11.09 

pr n diu pression  ima

20000 –430.66 –128.70 –360.50 –100.34 –249.13 –60.25 –106.71 –16.05 

Table 1. Quantity log10[p(n,0.2)] for 4 image qualities (image Gazebo) averaged over 10 different embeddings 
 



Fig. 3 shows the outlier probability p(n, q) for different relative message length q averaged over 20 different em-
beddings for each q. One can clearly see how the outlier probability increases as q approaches 1 thus slowing down 

e key search (as discussed in Section 4). We also see that for short messages, p(n, q) exhibits quite a large vari-
ance over different mbeddings. 
 

  

th
 e

LSB ±1
 # =10000 n=20000 n=40000 =10000 20000 =40000 
1 – –224.05 –19.87 –37.09 111.70 –531.51 –95.19 
2 –61.39 –158.74 –317.81 –12.22 –29.64 –60.54 
3  – – – –18.31 40.86 110.32 –1.13 –3.78 20.40 
4 –224.54 –492.18 –1104.06 –43.86 –101.61 –243.26 
5 –2.94 –5.93 –14.64 –0.11 –0.20 –0.21 
6 –114.09 –254.82 –549.07 –48.47 –128.41 –279.93 
7 – –165.11 –363.03 –773.72 –63.78 133.15 –318.05 
8 –129.43 –256.11 –519.33 –35.62 –76.39 –153.53 
9 –85.89 –202.93 –491.85 –18.14 –143.07 –57.04 

10 – –31.97 –162.58 125.30 –297.02 –654.55 –74.83 

Image n n n= n

11 –58.34 –125.33 –270.96 –7.56 –20.17 –51.69 
12 .82 –69.20 –140.93 –266.50 –9.97 –21.05 –38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
q

Figure 3. Logarithm of outlier probability for different 
relative message length q averaged over 20 different 
embeddi

Table 2. Quantity log10[p(n,0.2)] av
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ngs for image No. 8 with n=8000 elements. The 

e

plete em-
edding path must be generated. Thus, t(n) is usually the 

d a Pentium IV machine HT (hyper threading) running at 2.4GHz, 512MB, 3200 DDR RAM. The 
ecessity to generate the whole embedding path slowed down the key search considerably, producing only 11 

keys/second. 

 from all images may uniquely and decisively determine 

raged over 10 different embeddings. 
 

We now address the complexity of the key search. Note 
that the filtering as well as binning of each value ri can 
be done only once before the key search begins. For 
each candidate key Kj, we need to generate the first n 
elements of Path(Kj) (time needed is t(n)), then construct 
the histogram of their bin indices (n additions), and 
finally calculate the statistic (3) (3d arithmetic opera-
tions). Note that t(n) is at least linear in n and could even 
be proportional to N, the number of all pixels, for some 
steganographic programs for which the com
b
dominant term for the key search complexity. 
 
We have implemented a generic LSB embedder with a 
path generator that produced the whole embedding path 
(t(n)=O(N)) to extract the first n elements. In particular, 
we used the C++ Standard Template Library function 
std::random_shuffle, a 800×600 grayscale image, 

n = 0.05N, an

boxes indicate lower quartile, median, and upper quartile 
values. 

n

 
6. STEGO KEY SEARCH USING MULTIPLE IMAGES 

 
In the case when the stego image is of low quality (noisy) or contains a complex texture or when the key space is 
very large, our key search algorithm may not provide enough evidence about the correct secret key (there may be 
too many candidate keys) even after applying the measures of Section 4.1. It is not unreasonable to assume, how-
ever, that a forensic analyst will have more than one stego image embedded with the same stego key, which in-
creases her chances to identify the correct key. Let us assume that the analyst has u stego images J1, …, Ju embed-
ded with the same key K0, but possibly different messages. Although the measure p(n, q) (8) may not provide con-
vincing evidence about the correct key for each particular image (see Table 3 that shows p(n, q) for the correct key 
and one incorrect key), some cumulative evidence obtained



the correct key. It is not clear, however, how such evidence should be calculated and how the performance of the 

 

i j i j

stego key search should be measured for mu

For each image J  and key K , let α (K ) = 

ltiple images. 

( )1 ( , , )1d jF S K n q− , where−  S is defined in (3). Recalling (8), the per-

form  was evaluated using  
 

i

ance of the key sear  Jich for the single image

p (n, q)  = P ( )0rob ( , , ) ( , , )S n q S K n qΞ ≥   

 = ( ) ( )( ) ( ) ( )( )1 1 0 0Prob ( , , ) ( , , ) Probd d i iF S n q F S K n q KΞ α Ξ α− −≥ =

w
j from u images, we take the product 

(Kj) = α1(Kj)…αu(Kj). Obviously, the smaller α(K ) is, the larger our evidence for the key Kj. Generalizing (8) to u 
images and dropping the dependence on 

< , 
 

hich is the probability that a randomly chosen key will produce a value of S larger than the one for the correct key 
K0 for image Ji. As a (heuristic) cumulative evidence for key K
α j

, we define n and q for brevity
 

p(u) = ( )0Prob ( ) ( )Kα Ξ α<       (11) 

as the measure of performance  the stego  search fo  images. 
 

 
for  key r u

 J1 J2 J3 J4 α(Kj)  p(u) 
K : p(n, q) 1.58×10–4 1.26×10–3 2.00×10–12 3.97×10–5 1.58×10–23 4.04×10–19 

0

K1: p(n, q) 7.16×10–5 8.03×10–4 6.39×10–2 2.21×10–1 8.12×10–10 1.44×10–6 

Table 3. Example of collecting evidence from 4 images. Note that while the evidence in favor of each key is inconclusive, the 

The expected number of incorrect keys (outliers) that produce values α(Kj) < α(K0) is 

cumulative measure p(u) allows reaching an unambiguous decision when all four images are consi e. 

culate p(u), we apply Theor n

dered at the same tim

out ( ) ( )KN u N p u= . To cal-
em 1 below (proved i  Appendix C) to the case when Fi = 1dF − , iX ( ,S , )Ξ n q= , for 

image Ji, and q(X1, …, Xu) = ( )( )11
u

d iF X−−∏  
1i=

 = α1(Ξ)…αu(Ξ). Thus, from

1
0( log ( ))u iKα− −

 (11) and (13) we have

ou 0( )K KN Kα ∑ .                                                   (12) t ( ) ( )N u N p u= =

1

)
u

i

0 !i i=

Theorem 1. Let q(x1, x2,…, xu) = (1 ( )i iF x−∏ e a function of u real v re i
=

 b ariables xi, whe F  are cumulative den-

sity functions of u independent variables Xi. If 1
iF −  exists for all Xi (i.e., ( )1 ( )i iF F x x− =  for all x and i), then for 0 

< α ≤ 1 
2 1( , log ) log ( log ) ( log )uuΓ α α α αα α

− − − − −
< = = + + + +1Prob( ( ,..., ) ) 1 ...

( 1)! 1! 2! ( 1)!uq X X
u u

  − − 
.             (13) 

tego images embedded 
sing a key-dependent steganographic scheme. This work is thus a bridge between steganography detection and 

appropriately defined statistic that quantifies statistical properties of pixels along portions of the embedding path. 

 
7. SUMMARY AND COUNTERMEASURES 

 
In this paper, we present a methodology for identifying the stego key from one or more s
u
message extraction and is likely to be of interest to law enforcement and forensic analysts.  
 
In our approach, we focus on steganographic techniques in the spatial domain that embed one bit per image ele-
ment. We assume that we have a complete knowledge of the embedding algorithm and at least one stego image. 
The stego key search does not rely on any recognizable patterns in the embedded bit-stream (i.e., it can be en-
crypted). Instead, the stego key is determined through an exhaustive stego key search by an outlier value of an 



We derive expressions for the expected number of falsely determined keys as a function of the relative embedded 
message length, the image content, and the number of pixels taken along each tested path. We discuss measures 

at can be taken to identify the correct key from possible candidate keys determined by the search. 

 each steganographic embedding mechanism, the stego key search perform-
nce can likely be further improved. 

. If the stego key search can be searched in a reasonable time, this method could be used as a 
etection method. 

ker guesses the correct stego key, she will have no information at 
ll about which pixels were used for embedding. 

c 
easure that combines the evidence obtained from multiple images and improves the reliability of the key search. 
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APPENDIX A 

r justification of the stego message model, see Ref. 18. In the first stage, we estimate the cover image 
variance 

th
 
Although the search methodology is applicable to virtually all steganographic schemes, this paper focuses on two 
different embedding paradigms – the LSB and ±1 embedding in the spatial domain. For spatial steganography, prior 
to the stego key search a special non-linear high-pass filter is applied to the stego image to improve the SNR be-
tween the stego signal and the cover image residual. The denoising filter has a major effect on the search perform-
ance. By designing a filter matched to
a
 
The existence of fast stego key search algorithms underlines the need for strong steganographic keys. Combining a 
strong encryption algorithm with an insufficient stego key space may actually lead to successful attacks on the 
embedding scheme
d
 
Besides making the stego keyspace large or slowing down the pseudo-random path generator, there is one simple 
countermeasure that effectively prevents stego key searches similar to the one described in this paper. If the em-
bedding scheme can, in principle, use every image element with the same probability, independently of the message 
length, our stego key search will fail. However, padding messages to their maximal length would not be safe as this 
would make the stego channel more vulnerable to attacks. Instead, we recommend the selection channel2 or the 
matrix embedding14. For both methods, on average the groups along the correct embedding path will have the same 
properties as groups along an incorrect path. Moreover, the matrix embedding minimizes the number of embedding 
changes, which further increases the steganographic security. Lastly, steganographic schemes that use the wet paper 
codes15 provide an elegant and effective countermeasure because the sender does not have to share the pixel selec-
tion rule with the recipient. Thus, even if the attac
a
 
In the case when the stego image is of low quality (noisy) or contains a complex texture or when the keyspace is 
very large, our key search algorithm may not provide enough evidence about the correct secret key (there may be 
too many candidate keys) even after applying the measures of Section 4.1. Clearly, having more than one stego 
image embedded with the same stego key increases our chances to identify the correct key. We proposed a heuristi
m
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The denoising filter is based on the work first proposed in Ref. 16 and extended in Ref. 17. It is constructed in the 
wavelet domain while modeling the wavelet coefficients as a conditionally independent zero-mean Gaussian mix-
ture process with identically distributed highly correlated variances. In this appendix, we consider the cover and 
stego images as two-dimensional signals indexed using two indices, i and j, where i and j are row and column indi-
ces. For a message of relative length q, let xij(q), xij, and sij(q) be the values of the stego image, cover image, and the 
stego signal, respectively. Assuming the act of message embedding is an additive process in the spatial domain, 
xij(q)=xij+sij(q), we have Xij(q)=Xij+Sij(q) for the corresponding wavelet transforms Xij=W(xij), etc. In this appendix, 
capital letters will denote wavelet transforms of corresponding lower case variables. We model Sij(q) as a white 
Gaussian noise N(0,σS

2), Xij as a locally stationary i.i.d. signal with zero mean, and build the denoising filter in two 
stages. Fo



2 2 2

,

1ˆ max 0, ( )
ijX ij S

ij i j

X q
N

σ σ
 
 = −
  

∑ ,      (A1) 

where N  is the number of et coefficients in a local square neighborhood of the (i, j)-th wavelet coefficient 
and σS is calcu ed from the assumption t

ij

hat the stego image is embedded with a maximal length message (q=1). If 
the relative m e length  can be determ σS(q). In particular, for both LSB 
and ±1 embedding σS(q) =

wavel

 q
lat

essag ined10, we can also use it to calculate 
ond stage uses the local Wiener filter to obtain an estimate of the de-/ 2.q  The sec

noised image ˆ
ijX  in the wavelet domain 

2

2

ˆ
( ) ( )

ˆ
ij

ij ij2
ijXˆ

X S
X q X q

σ

σ σ
= .     (A2) 

+

The denoised stego image F(xij(q)) is obtained as the inverse wavelet transform of ˆ
ijX : 1 ˆ( ( )) ( )ij ijF x q W X−= . Be-

To provide some measure of performance of this o other standard denoising filters, we calculated 
the correlation between the stego signal sij(q) and xij(q)– xij(q)). The typical value obtained from the 5×5 Wiener 

cause of the presence of edges in images, we estimate 2ˆ
ijXσ  not only in local windows of different sizes, but also of 

different orientations by changing the window size and shape. 
 

 filter compared t
F(

filter was around 0.06, comp
 

ared to 0.31 with the denoising filter. 

APPENDIX B 
 

   
Image Gazebo (2272×1704) Image No. 4 (128 960 resampled to Image No. 5 (1280×960 resampled to 0×

800×600 800×600)   
 

 
Proof of T m 

) 

APPENDIX C 

heore 1: The random variables ( )1 ( )i iW F X= − i  , i = 1,…, u, are uniformly

( )
 distributed in [0,1] be-

cause ( )1 1− −( ) Prob ( ) 1 ))i i iP W w F X w w< = > − = . Because X1,…, Xu are 

independent, Zu = q(X1, …, Xu) 
with PDF ( )

uZ

Prob (1 ) 1 ( (1i i i iw X F w F F− = > − = −

is a product of u independent and uniformly distributed random variables in [0,1] 
f z ,  

1( log ) , (0,1)
( 1)!( )

0, otherwise,
u

u

Z
z z

uf z
−− ∈ −= 


which can be proved by induction with respect to u. Thus, 

1
                                              (C1) 
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α α
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where Γ(u, x) is the incompl known property of 
Γ(u, x), which can be easily

 

ete gamma function. In the final step of the proof, we applied a well-
 proved by induction 

2 1u− log ( log ) ( log )( , log ) ( 1)! 1
1! 2! ( 1)!

u u
u

α α αΓ α α − − −
− = − + + + +  − 

.  (C3) 
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