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Abstract 
In this report, we present a method for estimation of primary quantization matrix from a 
double compressed JPEG image. We first identify characteristic features that occur in DCT 
histograms of individual coefficients due to double compression. Then, we present 3 different 
approaches that estimate the original quantization matrix from double compressed images. 
Finally, most successful of them - Neural Network classifier is discussed and its performance 
and reliability is evaluated in a series of experiments on various databases of double 
compressed images. It is also explained in this paper, how double compression detection 
techniques and primary quantization matrix estimators can be used in steganalysis of JPEG 
files and in digital forensic analysis for detection of digital forgeries. 

1. Introduction 
A double compressed JPEG file is created when a JPEG image is decompressed and then 
resaved with a different quantization matrix. There are at least two reasons why forensic 
experts should be interested in double compressed images and the estimation of the 
primary (first) quantization table. First, double compressed JPEG images often result 
from digital manipulation (forgeries) when a portion of the manipulated image is replaced 
with another portion from another image and resaved. In this case, the pasted portion will 
likely exhibit traces of only a single compression while the rest of the image will exhibit 
signs of double compression. This observation could in principle be used to identify 
manipulated areas in digital images. Second, double compressed images are often 
produced by steganographic programs (e.g., by F5 [5], OutGuess [4], or J-Steg). For 
some steganalytic methods [4],[5], it is very important to estimate the primary 
quantization matrix to facilitate accurate and reliable steganalysis.  
 
Previously, successful attempts to determine whether a bitmap image was originally 
JPEG compressed have been made in [2] and [3]. A simple idea how to detect JPEG 
double compression and estimate the primary quality factor was suggested and partially 
realized in [4] and [5]. On this idea was built our first detection approach presented in 
section 4.1. 
 
Due to simplicity of explanation, we focus in this paper only on double compression of 
grayscale images. We believe that the technique presented here can be extended to work 
with both chrominance and luminance components of color JPEG images. 
 
In Section 2 we briefly review the basics of JPEG compression and discuss JPEG double 
compression. Then, we describe some characteristic features in the DCT histogram that 
are created during double compression. In Section 3, we discuss the problem of 
estimating the primary quantization matrix and mention some inherent limitations In 



Section 4 we present 3 different approaches to the primary matrix estimation, which we 
have examined. Experiments are described and the results of our neural network classifier 
are presented in Section 5. Section 6 contains conclusions and future ideas. 

2. The double compression phenomenon 

2.1 JPEG compression and decompression 
In JPEG compression, the image is first divided into disjoint 8×8 pixel blocks. For each 
block B, the discrete cosine transform (DCT) is calculated using the following formula:  
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The DCT coefficients (matrix D) are then quantized using a quantization matrix Q: 
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The quantized coefficients Dq

ij are then arranged in a zigzag order and compressed using 
the Huffman encoder. The resulting compressed stream together with a header forms the 
final JPEG file. 
 
The decompression works in the opposite way. For each block B, the quantized DCT 
coefficients Dq obtained from the JPEG file are multiplied by quantization coefficients 
stored in the quantization matrix Q: Dij = QijDq

ij, i, j∈{0, …, 7}. We note that the matrix 
Q is stored in the JPEG file. Then, the inverse DCT (IDCT) is computed, and finally the 
result is rounded and truncated to integer values in the interval [0, 255]: B = 
truncate[round(IDCT(D))]. 

2.2 JPEG double compression 
By double compression we understand repeated JPEG compression of the image with 
different quantization matrices Q1 (primary matrix) and Q2 (secondary matrix). The DCT 
coefficient Dij is said to be double compressed if and only if Qij

1 ≠ Qij
2. 

 
Next, we look at what exactly happens with DCT coefficients Dij (ij-th coefficient from 
each 8×8 block in the image) during double compression. In the original JPEG image, 
these coefficients are quantized with Qij

1, which means that in every 8×8 block in the 
image, the value of the DCT coefficient Dij is a multiple of Qij

1. When the image is 
decompressed, pixels are integer rounded and truncated to values from the interval [0, 
255]. When processed for the second time, the DCT coefficients are computed from these 
rounded and truncated values. This is the reason why coefficients usually lose their 
integer values. They are no longer multiples of Qij

1, but they are spread around these 



multiples. Then, they are quantized with the matrix Qij
2 and the JPEG file is formed the 

same way as described above. 
 
The concentration of coefficients around multiples of Qij

1 and their following 
quantization by Qij

2 creates a pattern in the histogram of the values Dij that can be used 
for identification of the primary quantization factor Qij

1. For instance, when Qij
1 > Qij

2, 
some multiples of Qij

2 are almost missing in the histogram. In the opposite case, some 
multiples of Qij

2 form local maximums or minimums in the histogram of Dij. These 
missing points, as well as the extremes, can be identified to determine Qij

1. Experiments 
showed that especially the missing values (“almost zeros” in the DCT histogram) are a 
very robust feature providing important information about the primary quantization 
factors. 
 
Another very interesting property is the double peak. Some ideal cases of double peaks 
are marked in Figures 1b, 1c, and 1d. A double peak occurs when some integer multiple 
of Qij

1 falls between two multiples of Qij
2 and none of the remaining multiples of Qij

2 lies 
closer to Qij

1. Mathematically, there exist integers k, l, such that kQij
1=[(l–1)Qij

2+lQij
2]/2. 

This implies that a double peak can occur only for even multiples of Qij
2, because k and 

Qij
1 are integers and thus [(l–1)Qij

2+lQij
2] must be divisible by 2. Next, we look at what 

happens during double compression for such a combination of integers k, l. 
 
As stated above, after decompressing a JPEG file and computing DCT, the DCT 
coefficients are spread around multiples of Qij

1. It ca be shown that this distribution can 
be modeled as Gaussian with the mean value at the multiples of Qij

1. When the value 
kQij

1 is quantized by Qij
2, most of the coefficients with value less than kQij

1 are indeed 
rounded to (l–1)Qij

2 and the coefficients with values greater or equal to kQij
1 are rounded 

to lQij
2. The values l–1 and l will exhibit a double peak in the histogram of the coefficient 

Dij (see Figure 1b-d). 
 
The shape of double peaks also depends on the implementation of the DCT transform. 
Due to computational efficiency, some DCT implementations do not compute DCT 
coefficients with a high accuracy and return coefficients that are quantized by some 
factor (for instance by 1/8). This causes asymmetry in rounding and more DCT 
coefficients are quantized to the right of kQij

1 than to the left. Thus, more DCT 
coefficients are quantized to lQij

2 than to (l–1)Qij
2.  

 
From our experiments, we conclude that although statistical properties for double peaks 
exist, the shape of individual instances of double peaks exhibit great variability that is 
hard to predict. Overall, the presence of double peaks makes the detection of JPEG 
double compression harder rather than easier. 
 
In order to understand the behavior of histograms of individual DCT coefficients in a 
double compressed image, we averaged the histograms of the coefficients D10 and D11 
obtained from 100 JPEG files. The multiples of Qij

2 equal to 0 and 1 were not included in 
these histograms, because the maximum at zero is not a distinguishing feature and the 
value at 1 is usually still too big and thus it would have an undesirable effect after 



histogram normalization. In Sections 2.2.1–2.2.3 we analyze three different combinations 
of the primary and secondary quantization steps and how they affect the shape of the 
DCT histogram of individual DCT coefficients in the double compressed image. 

2.2.1 Qij1=Qij2 or Qij1 is a divisor of Qij2 
 
When Qij

1 is equal to Qij
2 or when Qij

1 is a divisor of Qij
2, we do not expect any special 

features in the histogram of the coefficient Dij. The histogram should be smooth as shown 
in Figure 1a (the histogram is normalized). 
 
If a double peak is present, then each multiple of Qij

1 participates in two double peaks, for 
instance when Qij

1=4 and Qij
2=8, then odd multiples of 4 split into double peaks, but each 

multiple of 8 lies between two odd multiples of 4. Thus, one double peak from left and 
one from right is contributing to each multiple of 8 and the resulting effect is that double 
peaks should be and usually are unobservable. 

2.2.2 Qij1>Qij2 
 
As mentioned in Section 1, when Qij

1 is greater than Qij
2, some multiples of Qij

2 in the 
histogram of Dij may be missing in the double compressed image. In general, each 
multiple of Qij

2 either contains all coefficients that were quantized to one specific 
multiple of Qij

1 or it participates in a double peak or it has been almost “zeroed” in the 
histogram. The first category is always present, while one of the remaining categories 
may be absent from the histogram of Dij. 
 
Figure 1b shows the ideal case of a normalized histogram where the quantization with 
Qij

1=7 was followed by quantization with Qij
2=2. We can see double peaks at multiples 3 

and 4 (because 7 is rounded either to 6 or 8) and at 10 and 11 (21 is rounded either to 20 
or 22.). There are several “almost zeros”, because no multiple of 7 is quantized to the 
following multiples of 2 {2, 5, 6, 8, 9, 12, 13, 15}. 
 
Another example is shown in Figure 1c. The quantization with Qij

1=6 was followed by 
quantization with Qij

2=4. All possible zeros are affected by double peaks and, as a result, 
there are no zeros in the histogram. The coefficient value 12 was requantized to 12 (3 in 
the histogram), 18 is split into a double peak at multiples 4 and 5, 24 was requantized to 
24, then a double peak follows, and so on. Because the double peaks are always located 
between two local maximums, we notice them only as local minimums. 
 



 
Figure 1a: Normalized DCT histogram, Qij

1=5, 
Qij

2=5 (ideal case). 

 
Figure 1b: Normalized DCT histogram, Qij

1=7, 
Qij

2=2 (ideal case). 

Figure 1c: Normalized DCT histogram, Qij
1=6, 

Qij
2=4 (ideal case). 

 
Figure 1d: Normalized DCT histogram, Qij

1=5, 
Qij

2=8 (ideal case). 

2.2.3 Qij1<Qij2 but Qij1 is not a divisor of Qij2 
 
If Qij

1 is smaller than Qij
2, all multiples of Qij

2 are always present in the histogram, 
however different number of multiples of Qij

1 are quantized to different multiples of Qij
2. 

Also, if some multiple m of Qij
2 is participating in a double peak, there exists at least one 

more multiple of Qij
1, that was quantized to this multiple m. Below, we show on 

examples how this mechanism changes the shape of the histogram of Dij in the double 
compressed image. 
 
Let’s look at the example shown in Figure 1d. The quantization coefficient Qij

1=5 was 
followed by quantization coefficient Qij

2=8. The value 16 (multiple 2) is the quantized 
value 15 plus it participates in a double peak from 20. Similarly, the value 24 (multiple 3) 
is the quantized value 25 and it also participates in a double peak from 20. The value 32 
(multiple 4) is the quantized value of both 30 and 35. Therefore, it should exhibit a local 
maximum, but because it is still located in the part of histogram that has a steep slope, we 
notice just a slight change in the slope. The value 40 (multiple 5) is just one requantized 
value 40 and it is a local minimum. The value 48 (multiple 6) is the quantized value of 
both 45 and 50 and forms a local maximum. A double peak follows, and so on. We can 
see that the double peaks at multiples 7 and 8 and at 12 and 13 are almost imperceptible. 



3. Problem Formulation, Strategy, and Limitations 
The two tasks investigated in this paper are double compression detection and estimation 
of the primary quantization matrix. In other words, given a JPEG file with the 
quantization matrix Q2, we need to determine if the file was previously JPEG compressed 
and quantized with a different quantization matrix Q1 and estimate its values. 
 
First, we would like to point out that methods described in this paper focus on double 
compressed images and may not work properly for files that underwent JPEG 
compression repeated more than two times (e.g., triple compression). In those cases, the 
individual DCT histograms will have other, perhaps more complicated characteristics 
than in the case of double compression. 
 
The problem of reliable double compression detection would be much easier if we could 
limit ourselves to standard JPEG quantization matrices or matrices that are close to 
standard ones. However, custom quantization matrices are widely used, especially in 
digital cameras. Such matrices cannot be matched to any standard quantization matrix. 
For instance, the following matrix is a commonly used luminance quantization matrix by 
the Kodak DC 290 camera. 
 

1916141210988
161513119876
14131198766
1211987655
109876555
98765555
87655555
86655555

 

 
The only solution to this problem is to estimate individual quantization steps rather than 
the whole matrix. The DCT transform is an orthogonal transform, so changes (e.g., 
quantization) in one coefficient should not affect other coefficients. This property allows 
estimation of the quantization step Qij

1 for each DCT coefficient Dij separately. However, 
we may not be able to estimate all quantization steps, especially those corresponding to 
high frequencies. This is because digital images of natural scenes have most of their 
power in low frequencies and thus higher frequency coefficients are often quantized to 
zero and are more affected by noise. As a result, we can expect to have insufficient 
statistics in a typical image to correctly determine quantization steps corresponding to 
higher frequencies (larger i+j). Because of these reasons, in this paper, we constrain our 
analysis to the low-frequency coefficients only. Fortunately, such coefficients are usually 
the most important for forensic analysis, be it steganalysis of forgery identification. 
 
Another fundamental limitation occurs for certain values of Qij

1 and Qij
2 or their 

relationship. Obviously, we will not be able to distinguish between cases where Qij
1=1 (or 

there was no previous JPEG compression.) and Qij
1= Qij

2. In both cases, the DCT 



coefficients Dij (from all 8×8 blocks in the image) will be multiples of Qij
2 without 

exhibiting any characteristic features, such as minimums, maximums, double-peaks, etc. 
For the same reason, another indistinguishable case is when Qij

1 is a divisor of Qij
2. 

 
There is one more important property of DCT coefficients that we quote in this paper – 
the shape of their histogram. The histograms of all AC coefficients (Dij, with i+j≠0) have 
the Laplacian distribution [2]. 
 
Although all methods described bellow are designed specifically for AC terms, we 
strongly believe they could be easily modified to work for the DC term as well. The DC 
term also exhibits local maximums, minimums, and double peaks that could be the main 
distinguishing features for our analysis. 

4. Methods for Estimation of Primary Quantization Steps 

4.1 Compatibility Test 
This method was briefly outlined in our previous papers on steganalysis [4] and [5]. As 
the first step, we calculate the histograms of absolute values of all DCT coefficients of 
our interest from the image. Let us denote one such histogram as ho. The image is then 
cropped (for example by 4 pixels) to disrupt the structure of JPEG blocks. Then, it is 
JPEG compressed with the set of candidate quantization matrices Q1,1,  …, Q1,n. All these 
n JPEG files are then decompressed and JPEG compressed again with the quantization 
matrix Q2. From all n double compressed JPEG files we obtain histograms 
h(Q1,1), …, h(Q1,n). The original quantization matrix can then be estimated as 
Q1 = arg minQ,1,m ||h(Q1,m)–ho||. As a norm, we simply used the sum of absolute values 
(the L1 norm). 
 
Although this method is relatively robust and reliable, it requires a limited set of n 
possible quantization matrices. When dealing with custom quantization matrices, it is 
necessary to compute minimums for each DCT coefficient of interest Dij separately. The 
corresponding quantization step for every coefficient Dij is then Qij

1. From these 
quantization steps we form a part of the primary quantization matrix Q1 and, if needed, 
we can eventually determine the remaining terms in the matrix by finding the closest 
standard matrix. 
 
For this method, the length of the histogram is an important parameter. Because the 
histogram of absolute values of DCT coefficients is rapidly decreasing, larger values of 
DCT coefficients produce insufficient statistics for any method to work. In our 
experiments, we have tried histogram lengths 10 (the maximal absolute value of DCT 
coefficient contained in the histogram is 10Qij

2), 15 (the maximal value is 15Qij
2) and 30 

(the maximal value is 30Qij
2). According to our experiments, the length 15 has been most 

useful. 



4.1.1 Implementation and Improvement Issues 
 
Because our task is to estimate also custom JPEG quantization matrices, we have always 
tried to detect double compression quantization steps for each DCT coefficient 
separately. The simpler version of this method described in [4] and [5] dealt with entire 
matrices and was used only in the beginning phase of our research. 
 
We should note that although we are dealing with individual DCT coefficients, we are 
not able to perform DCT decompression, rounding, and truncation in the image domain 
for a single DCT coefficient. For a given DCT coefficient Dij (and a given quantization 
matrix Q2), we must therefore select some candidate matrices Q1,1, …, Q1,n, such that 
Qij

1,m are candidate values of quantization steps used for the DCT coefficient Dij, when 
the image was originally compressed. 
 
In our experiments, we have originally used standard quantization matrices for this 
purpose, but later we switched to a special kind of quantization matrices – constant 
quantization matrices. A constant quantization matrix is defined as Qij

1,m = Cm, for all i, j, 
where Cm is the candidate quantization step. This enables us to speed up computations, 
because we have the same amount of matrices for an arbitrary number of DCT 
coefficients of our interest. We are no longer required to somehow select special 
quantization matrices for each DCT coefficient Dij and each candidate quantization step 
Cm. In our experiments, we have observed that using matrices similar to those actually 
used when the image was originally first time compressed, yields slightly better results. 
However, the difference was almost negligible. We attribute this small difference to 
integer rounding and truncating in the image domain, when the image was decompressed 
before its second JPEG compression. 
 
Also, as mentioned above, we used the histograms of absolute values of DCT coefficients 
in our method. Because the histogram of any AC coefficient is approximately an even 
function, we thus obtain a better statistics for each feature (local maximum, minimum, 
double-peak) when using histogram of absolute values. 

4.1.2 The Estimation Algorithm 
For a given JPEG file: 
1. Extract the quantization matrix Q2 from the JPEG file under inspection. 
For every DCT coefficient Dij of interest: 
2. Obtain the histogram h0 of absolute values of quantized DCT coefficient Dq

ij from the 
JPEG image. 

3. Crop the image (say, by 4 and 4 pixels). 
4. Select the quantization matrices Q1,1, …, Q1,n for every candidate value of the primary 

quantization step. 
5. JPEG compress the cropped image with quantization matrices Q1,1, …, Q1,n. 
6. Decompress all JPEG files and compress them again with the quantization matrix Q2. 
7. Compute the histograms h(Q1,1), …, h(Q1,n) = h1, …, hn of absolute values of Dq

ij 
from the double compressed cropped images. 



8. Compute k = arg minm{||hm–h0||}. 
9. The value of Qij

1,k is the estimated primary quantization step for Dij . 

4.2 Compatibility Test with Histogram Properties Checking 
Because the algorithm described in the previous section does not give satisfactory 
performance, we have tried to improve it. We have attempted to use information about 
local maximums, minimums, and double-peaks to verify if the found quantization step is 
correct and then select a more probable candidate. 
 
It is not an easy task to match the DCT histogram to the expected local maximums, 
minimums, and double-peaks. Although the histogram of absolute values of AC 
coefficients is expected to have the Laplacian distribution, this is only a statistical fact. 
Histograms obtained from specific images may not have some local maximums, 
minimums, or double-peaks or may have additional ones caused by the image content. 
 
We have modified Step 8 in the algorithm above in following manner. Instead of 
computing a single minimum, we took 6 minimal values as candidates to match them to 
expected histogram properties. In our experiments, we have never observed the situation 
where the true quantization step value would not be among the 5 minimal values. 
 
An important part of our approach is the determining of expected features (local 
maximums, minimums, and double-peaks). We can then check if a given histogram of a 
particular DCT coefficient is compatible with these expected features. It is important that 
not only the histogram exhibits all expected features (in an ideal case) but that it also 
exhibits no other features that are not expected. 
 
We have tried to determine local maximums, minimums, and double-peaks in histograms 
by computing their derivative and finding where it changes its sign. Also, we have simply 
tried to identify maximums and minimums directly from the set of values. Both these 
approaches were unsuccessful. This is because very often instead of a local minimum or 
maximum the histogram slope changes but remains decreasing (i.e., it does not form a 
minimum). Also, the behavior of double-peaks is very unpredictable. Sometimes, there 
are only a few local minimums that are not too significant and in combination with 
double-peaks some of them may disappear. 
 
Finally, we have developed an approach that became partially successful. But this 
approach differs for some combinations of candidate quantization steps for the primary 
compression Qij

1,k and the quantization step Qij
2 used when second JPEG compression 

was carried out. Next, we will explain the method together with a method for 
determination of expected features of the DCT histogram for the candidate quantization 
step Qij

1,k. 
 
For each candidate value of the primary quantization step Qij

1,k, we compute the 
following sequence of values 0, Qij

1,k, 2Qij
1,k, 3Qij

1,k, …. Then, we divide this sequence by 
Qij

2 and finally round it to integers. Thus, we obtain a sequence of integers I = {0, i1, i2, 
i3, …}. If Qij

2 is even, we also need to determine the locations of possible double-peaks, 



by finding all il∈I, such that ∃k∈Z, kQij
1=[(il–1)Qij

2+ilQij
2]/2. We note, that il is always 

present in the sequence I, but il–1 may not. Let us denote the set of all il as Id⊂I. 
 
If Qij

1,k and Qij
2 were equal, I would become I = {0, 1, 2, 3, …} and Id=∅. There should 

be no special features in the histogram in this case. The same situation occurs when Qij
1,k 

is a divisor of Qij
2 because then each integer is in the set I exactly Qij

2/Qij
1,k times. 

Although all positive integers may also be in Id, we still do not expect special features in 
the histogram due to the reasons given in Section 2.2.1. The histogram ho of quantized 
DCT coefficient Dq

ij should be relatively smooth as shown in Figure 1a. Smoothness can 
be measured by the absolute value of the second derivative. 
 
If Qij

1,k is greater than Qij
2, some integers are missing in the sequence I, but then either 

some or all of these missing integers may be affected by double-peaks. These are cases of 
integers f∉I, f+1∈Id. Let us denote the set of such f as I’d. To check the compatibility, we 
split the histogram ho into two parts. First, we take h0(Ic–I’d) and calculate its maximum 
value. The set Ic is the complement of I in the set of all integers – it contains integers that 
are not present in I. On the set Ic–I’d, we expect the histogram to be almost zero. In the 
second part, we first transform double-peaks to single peak equivalents ∀f∈Id, 
h0(f)=h0(f)+h0(f–1). After this correction, we expect the histogram h0(I) (reduced to set I) 
to be smooth without any special features. We can again assess its smoothness by the 
absolute value of second derivative. Our experiments showed that this is the only 
effective method how to deal with double-peaks. They can behave arbitrarily, but every 
double-peak comes from a single multiple of Qij

1,k. 
 
The most complicated case is when Qij

1,k was smaller than Qij
2, but not a divisor of Qij

2. 
The sequence I contains all non-negative integers and at least some of them are there 
multiple times. Let us built the sequence C={c0, c1, c2, …}. For each f, cf is equal to the 
number of occurrences of the integer f in the sequence I. Now, we expect that exactly cf 
multiples of Qij

1,k should round to f-th multiple of Qij
2, but we still do not count with 

double-peaks, if they are present. Unfortunately, in this case, we have no other option 
than model them statistically. If using independent JPEG implementation of the DCT 
transform, we have experimentally observed and it has been theoretically proven, that on 
average double-peaks split in ratio approximately 7:10 between two multiples of Qij

2. 
Double-peak originates from one multiple of Qij

1,k, therefore we must normalize the ratio 
to get 1 when summing both parts. So, we adjust the sequence C, ∀f∈Id, cf=cf –7/17 
(Entire double-peak was counted as it should round to f-th multiple of Qij

1,k, the part, that 
should round to (f–1)-th multiple is subtracted.), cf–1=cf–1+7/17. For the f-th multiple of 
Qij

2, cf tells us how many multiples of Qij
1,k were supposedly quantized to it. Experiments 

showed that it is generally very difficult to determine how exactly the histogram must 
look to declare a fit. As Figure 1d shows, some local maximums or double-peaks can be 
almost hidden in the histogram.  
 
We have found a detection method that at least partially worked. If we adjust the 
histogram ho with the formula ho(f)=ho(f)/cf for each non negative integer f, we should get 
something, what is not perfectly smooth, but is smoother than if the histogram does not 



fit the expected Qij
1,k. As in the previous two cases, we can assess smoothness with the 

absolute value of the second derivative. 

4.2.1 Estimation Algorithm 
 
The algorithm starts as the one described in Section 4.1.2. We just replace Steps 8 and 9 
and add additional ones. The replaced and added part follows. 
 
8. Sort {||hm–ho||} and find 6 indices k, for which ||hk–ho|| takes 6 minimum values. 
For each candidate quantization step Qij

1,k: 
9. If Qij

1,k is a divisor of Qij
2, compute the quantity s(k) = max{abs(h”o)} and go to Step 

17. 
10. Compute the sequence I=round({0, Qij

1,k, 2Qij
1,k, 3Qij

1,k, …}/Qij
2). If Qij

2 is even, 
determine also the set Id={il∈I|∃k∈Z, kQij

1=[(il–1)Qij
2+ilQij

2]/2}. If Qij
2 is odd, Id=∅. 

11. If Qij
1,k<Qij

2, go to Step 14. 
12. Compute I’d={f∉I | f+1∈Id}, Ic={0, 1, 2, 3, …}–I and ĥo= ho. Adjust ĥo according to 

the formula ∀f∈Id, ĥo(f)= ĥo(f)+ ĥo(f–1). 
13. Compute the quantity s(k) = max{max{ĥo(Ic–I’d)},max{ĥ”o(I)}} and go to Step 17. 
14. Compute the sequence C={c0, c1, c2, …} such that for each f, cf is equal to the number 

of occurrences of integer f in the sequence I. Adjust C according to the formula 
∀f∈Id, cf=cf –7/17, cf–1=cf–1+7/17. Compute ĥo= ho. 

15. For each f∈I, adjust ĥo as ĥo(f)= ĥo(f)/cf. 
16. Compute the quantity s(k) = max{abs(h”o)}. 
17. Compute l = arg mink{s(k)}. 
18. Qij

1,l is the estimated primary quantization step for Dij . 

4.3 Classification Method 
Unfortunately, previous methods, described in Sections 4.1, and 4.2, proved to be 
computationally expensive and not very reliable. This motivated us to investigate 
alternate approaches. We attempted to find a similarity measure that would classify a 
normalized DCT histogram for a given DCT coefficient according to “template” 
histograms averaged over many double compressed images. However, we were unable to 
find a similarity measure that would perform satisfactorily. Because the task of finding 
the “closest” histogram can be naturally formulated as a classification problem, we have 
decided to use neural network classifiers. This approach indeed proved to be by far the 
most accurate and reliable one. 
 
For the design of the neural network classifier, we have used the Matlab Neural Network 
Toolbox [1] and chose the two-layer architecture with a log-sigmoid transfer function. A 
separate network was designed for each value of the second quantization step Qij

2. All 
networks take a vector of length 14 as an input {h(2), h(3), …, h(15)}, where h(m) is the 
number of values mQij

2 in the histogram of absolute values of the DCT coefficient Dij. 
The hidden layer had 10, 13, 16, 17, or 22 neurons depending on the value of Qij

2. The 
value of 22 was chosen for 1≤Qij

2≤5, 16 for Qij
2=6, 10 for Qij

2=7, 17 for Qij
2=8, and 13 

for Qij
2=9. The number of neurons in hidden layers was determined according to the 

performance of trained networks. The output layer had 8 neurons for Qij
2>1 and 9 



neurons when Qij
2=1 because in this case we must also consider the value 1 as a possible 

value for Qij
1. In the ideal case, the output vector would consist of one value 1 and zeros. 

The location of 1 in the vector tells us, which value of Qij
1 was actually used. In practice, 

we have used the maximum element in the vector to determine the network output. Note 
that all elements of the output vector always lay in the interval [0, 1] due to the range of 
the sigmoid transfer function. 
 
To prepare the training set, we took 100 images from various archives, all originally 
stored as JPEGs obtained using at least 5 different digital cameras. Their dimensions 
varied from 700×500 to 2050×1550. To remove possible artifacts due to previous JPEG 
compression or other processing, we resampled all images to 33% of their original size, 
converted them to grayscale, and saved as BMPs.  
 
For each network (i.e., for each value of Qij

2), we have prepared the training set by 
double compressing each image using matrices with specific quality factors: 61, 65, 70, 
75, 79, 84, 88, and 90. These factors were chosen because the lowest frequency 
quantization steps for these factors are the same, ranging from 2 to 9. Thus, for example, 
for the secondary quantization step Qij

2=6, each test image was first compressed using the 
above 8 matrices, followed by a compression using the factor 75. To create the training 
set for Qij

2=1, we also used the quality factor 95 for both primary and secondary 
quantization matrices. 
 
Then, for each double compressed image we calculated the histogram of absolute values 
of the quantized DCT coefficient Dq

ij. The histogram values for multiples 0 and 1 were 
removed and the remaining values were normalized (so that their sum was 1). Because 
the shape of histograms of individual DCT coefficients changes with their frequency, we 
included in the training set only histograms corresponding to low-frequency coefficients 
D11 and D10 (this means that each neural network can be used for estimation of primary 
quantization steps of low-frequency coefficients, only). Thus, from a database of 100 
training images, we obtained a training set with 100×8×2=1600 (for Qij

2>1) and 1800 (for 
Qij

2=1) DCT histograms. For indistinguishable cases (see Sections 2.2.1, and 3), the 
training sets were modified, so the correct output of the network was the value Qij

2. The 
Bayesian regularization, a modification of the Levenberg-Marquardt training algorithm 
[1] to produce networks that generalize well, has been used for training all of our 
networks. We used this algorithm because we experienced problems with other 
commonly used algorithms and we were unable to solve them by adjusting the number of 
neurons in the hidden layer. 

4.4 Estimation Algorithm 
For a given JPEG file: 

1. Extract the quantization matrix Q2 from the JPEG file under inspection. 
For every DCT coefficient Dij of interest: 

2. Obtain the histogram h0 of absolute values of the quantized DCT coefficient 
Dq

ij from the JPEG image, remove the values h0(0) and h0(1), and normalize it. 
3. Load the neural network N corresponding to value of Qij

2. 
4. Put the normalized histogram h0 as input into the network N. 



5. Output of neural network N gives the estimated primary quantization step for 
Dij . 

5. Experiments and Results 
All test images were originally obtained using 4 different digital cameras as JPEGs, only 
two of them were originally BMPs. To remove JPEG artifacts we have resized JPEG 
images to 83% of their original size using PaintShop Pro 7 and saved them as BMPs. All 
images were also converted to grayscale. The resulting images in the set have 5 different 
sizes ranging from 744×491, the smallest, to the largest 1275×850. We should also note 
that no image in this testing set was used for training of our neural networks. 
 
At first, we tested the network on single compressed images. We created single-
compressed JPEGs from our testing images using 9 different standard JPEG quantization 
matrices (180 different JPEG files). Then, we tested the neural network on this set by 
trying to identify the primary quantization step for DCT coefficients D01, D11, and D10. 
Because for single compressed images, all DCT histograms look the same way as if the 
primary quantization step was a divisor of Qij

2 (including 1 and Qij
2), the network should 

return the secondary quantization steps from the JPEG file. It has been trained this way. 
 
The network misclassified 4 DCT coefficients out of 3×180=540 examined DCT 
coefficients in 4 different files. Two files were of the size 1062×797 and two of the size 
744×491. In these error cases, the network always estimated 2 as the primary 
quantization step. This occurred once for secondary quantization steps 5, 7, and twice for 
the value 9. We reiterate that in single compressed images, all DCT histograms are 
fundamentally indistinguishable from double compressed images with primary 
quantization step that are divisors of Qij

2. 
 
We have continued our experiments on double compressed images. To prepare the test 
images, we have used standard quantization matrices corresponding to quality factors 61, 
65, 70, 75, 79, 84, 88, 90, and 95 for both primary and secondary quantization matrices. 
We have also included cases when the primary quantization matrix was non-standard (see 
Section 3). Using all possible combinations of these quantization matrices, we have 
prepared the total of 900 different JPEG files. The neural networks were tested on this 
set. We were again looking for primary quantization steps of the same three DCT 
coefficients D01, D11, and D10. 
  
The method misclassified 25 DCT coefficients in 24 different files. Thus, the error rate of 
the neural network classifier was below 1% because out of 3×900=2700 examined DCT 
coefficients, only 25 were misclassified. Table 1 shows the number of misclassified cases 
for different combinations of quality factors. Note that for each combination there were 
20 files and 3 examined coefficients in each file, which means 60 coefficients total. As 
Table 1 shows, errors are more likely to occur when the primary quantization step is 
followed by a large secondary step, i.e., when the double compression decreases the 
image quality. 
 



 Secondary JPEG compression quantization matrix 
(quality factor) 

 61 65 70 75 79 84 88 90 95 
61 2 0 0 0 0 0 0 0 0 
65 1 0 0 0 0 0 0 0 0 
70 0 1 1 0 0 0 0 0 0 
75 0 0 0 0 0 0 0 0 0 
79 0 0 0 0 1 0 0 0 0 

custom 1 0 0 0 1 0 0 0 0 
84 0 0 0 0 0 0 0 0 0 
88 2 1 0 0 0 0 0 0 0 
90 6 0 3 0 0 0 0 0 0 Pr
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95 3 0 1 0 1 0 0 0 0 

Table 1: Number of misclassified quantization steps for combinations of quantization matrices. 
Total of 60 quantization steps were estimated for each combination. 

Additional experiments were performed with different quantization matrices. These 
experiments yielded similar results. 
 
We have also investigated the influence of the image size on the number of 
misclassifications. For this purpose, we took two 1275×850 images from the previously 
described testing set. We have intentionally selected images that did not yield any 
misclassifications in our experiments. From these two images, we have created smaller 
images of 90, 80, 70, 60, 50, 40, 30, 20, and 10% of original dimensions. We have 
repeated our experiments on this set.  
 
Table 2 shows how the number of errors depends on the image size. For each size, we 
had 2 files, double compressed by 90 combinations of quantization matrices. In each 
double compressed file, we have estimated 3 quantization steps for DCT coefficients D01, 
D11, and D10. In other words, for each image size we have estimated 540 quantization 
steps. 
 

File-size (% of 1275×850) 10 20 30 40 50 60 70 80 90 100 
Number of errors 119 37 11 14 7 0 0 1 0 0 

Table 2: Number of misclassified quantization steps (out of 540 estimated) for different file-sizes. 

Table 2 shows that the network still performs well for about 50% of the original image 
dimensions. The results for 30% of original image dimensions are still acceptable 
considering how small the image is (255×382). Obviously, the results get then 
progressively worse because very small images do not provide sufficient statistical data 
for reliable classification. 
 
Another matter of our interest was performance of our current neural network classifier 
on DCT histograms of coefficients with different frequencies. Provided we have DCT 
coefficient Dij we define frequency of this coefficient as i+j. Originally, we have tried to 
add frequency parameter to the classifiers and retrain neural networks again. We 
expected this could improve their performance. However, results of our experiments did 
not show any noticeable improvement, and this was the reason we abandoned this idea 



and returned to our original network trained on DCT histograms of coefficients D11 and 
D10 (frequencies 1 and 2).  
 
In this moment the question about performance of our current classifier on higher 
frequencies became apparent. We have made experiments on DCT coefficients of 
frequency 3 (D30, D21, D12, and D03), we have used the same BMP files as in our first 
experiments. The results can be seen in the Table 3. For every secondary quantization 
step we have unique classifier, this classifier estimated four coefficients from 200 double-
compressed images with different primary quantization steps. In fact, this classifier 
estimated 800 primary quantization coefficients. 
 

Secondary quantization step 1 2 3 4 5 6 7 8 9 
Number of errors 0 0 0 0 35 1 21 34 64 

Table 3: Number of misclassified quantization steps (out of 800 estimated) on frequency 3. 

We can see, results for values less than 5 are excellent. For value 5, we think it might be 
possible to retrain the classifier better, however, the error is still below 4.4%. We can see 
rising number of errors as secondary quantization step increases. We expect insufficient 
statistics for higher frequencies and these results correspond to our expectations. 
However, even for these high values, percentage of errors did not exceed 8% in this 
particular experiment. 

6. Conclusions 
We have presented solution to the problem of JPEG double compression detection and 
estimation of the primary quantization matrix. Our experiments indicate that our best 
method – the neural network classifier – is sufficiently reliable yielding less than 1% of 
errors. The estimation is also very fast and significantly outperforms previous approaches 
described in Sections 4.1 and 4.2. 
 
In this paper, we have focused on the problem of estimating primary quantization steps 
for selected low-frequency DCT coefficients. However, in practice we may need the 
entire quantization matrix. Because coefficients of higher frequencies are more often 
quantized to zero than low-frequency coefficients, we believe that reliable estimation of 
higher frequency coefficients is not possible due to insufficient statistics. Results of our 
experiments support this expectation. We recommend first estimating selected low-
frequency quantization steps and then estimate the rest of the primary quantization matrix 
from some standard matrix whose low-frequency steps are close (identical) to the 
estimated coefficients. 
 
We have identified four limitations of our neural network classifier, some of which, we 
believe, are fundamental and unavoidable. (1) As already mentioned in this paper, some 
combinations of quantization steps are indistinguishable from single JPEG compression. 
This happens when the primary quantization step is a divisor of the secondary 
quantization step. (2) We have also experimentally documented that sufficiently large 
images are required for our method to work, because small images do not contain 
sufficient statistics. (3) Because histograms of multiple compressed JPEGs exhibit 
different features than histograms of double compressed ones, our neural network 



estimator would most likely not perform satisfactorily in those cases. (4) It may not be 
possible to reliably estimate quantization steps for high-frequency coefficients due to 
insufficient statistics. We have observed insufficient statistics on middle-frequency 
coefficients. However, base on our experiments, we currently, do not think it is necessary 
to train another classifiers for middle-frequencies. 
 
In this paper, we only dealt with AC coefficients but we strongly believe that our method 
could be easily extended to work for the DC term, as well. Although the DC term 
histogram has a different distribution, the features introduced by double compression are 
the same. The reliability of the estimates could be improved by testing the estimated 
primary quantization steps whether they form a plausible matrix. Even custom matrices 
usually have close values for similar frequencies. The proposed method could also be 
improved by removing saturated image blocks from processing. It has been shown in [2] 
and [3] that DCT coefficients from saturated blocks have different statistical properties 
than coefficients from unsaturated blocks. Finally, a possible extension of our method 
already mentioned in this paper is to work with chrominance and luminance components 
in color JPEG images.   
 
As already mentioned in the introduction, reliable estimation of primary quantization 
steps is quite important in steganalysis [4],[5] and it may find applications in forensic 
image analysis. Imagine someone creates a digital manipulation by copying an area from 
one image and pasting it to another image, already stored as JPEG. If we have a suspicion 
which area of the image has been tampered and if the area is sufficiently large, we can 
run our algorithm separately on the suspected area and the rest of the image. It is very 
improbable that the tampered area would yield the same original quantization matrix as 
the rest of image. That could happen only when the tampered area was copied from a 
JPEG image saved with the same quantization matrix and if the 8×8 raster of the copied 
area matched with the 8×8 raster of the image being tampered. 
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