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ABSTRACT

This paper addresses how to fairly compare ROCs of ad hoc (or data
driven) detectors with tests derived from statistical models of digital
media. We argue that the ways ROCs are typically drawn for each
detector type correspond to different hypothesis testing problems
with different optimality criteria, making the ROCs uncomparable.
To understand the problem and why it occurs, we model a source
of natural images as a mixture of scene oracles and derive optimal
detectors for the task of image steganalysis. Our goal is to guarantee
that, when the data follows the statistical model adopted for the
hypothesis test, the ROC of the optimal detector bounds the ROC
of the ad hoc detector. While the results are applicable beyond the
field of image steganalysis, we use this setup to point out possi-
ble inconsistencies when comparing both types of detectors and
explain guidelines for their proper comparison. Experiments on
an artificial cover source with a known model with real stegano-
graphic algorithms and deep learning detectors are used to confirm
our claims.
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1 MOTIVATION

A steganography detector is a mapping from the space of cover
objects to the set of real numbers. The detector output, which is
called the test statistic, can be thresholded to reach a binary decision
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on the analyzed object — it is either cover or stego (containing a
secret message). Depending on how the test statistic is computed,
detectors can be roughly divided into two categories: tests derived
from models within the theory of statistical hypothesis testing and
ad hoc detectors designed using heuristics [8, 10, 11, 14, 16, 34, 35]
or learned on a training set using some machine learning strategy.

The advantage of the former is that the tests can be shown to
be optimal within the adopted statistical model with guaranteed
error rates. They also provide feedback to the steganographer. The
obvious downside is that one often needs to adopt modeling as-
sumptions that are too simple to closely describe digital media
objects, which may lead to poor detection performance in practice.
This is especially true for complex content-adaptive steganographic
schemes.

On the other hand, ad hoc detectors, in particular the kind built
with machine learning, can be easily obtained in a fully automa-
tized fashion simply by generating many examples of cover and
stego images even without knowing the details of the embedding
algorithm. Most importantly, they can often achieve significantly
better detection accuracy, albeit at the cost of giving up on insight
and losing the ability to control error rates for images outside of
the sources on which the detector has been trained.

Both detector types are important, and they have been the subject
of intense research ever since the birth of the field of digital media
steganography in 1990s. It is thus not surprising that researchers
desire to fairly compare (benchmark) these detectors against each
other. This comparison is usually based on some scalar quantity
derived from the Receiver Operating Characteristic (ROC) curve,
such as the Area Under the Curve (AUC), its weighted version
wAUC [9], the total error probability under equal priors Pg, missed
detection at a fixed false-alarm rate [9], and false-alarm rate for a
fixed probability of detection [9]. In many cases, the entire ROC
curve is drawn to highlight the trade off between false alarms
and missed detections so that practitioners can adjust the decision
threshold for specific application-dependent requirements.

A test derived using hypothesis testing usually starts by adopt-
ing a statistical model for the specific cover image at hand either
by modeling content [32], noise residuals [13], or the acquisition
noise [36]. The test is then derived as some form of the Likelihood
Ratio Test (LRT) or versions of the Universally Most Powerful (UMP)
test [11, 16]. The test statistic is often normalized to follow the same
known statistical distribution across cover images so that a fixed
threshold guarantees the same false-alarm rate across the cover
source. We can also draw an ROC for each cover image. In contrast,
the ROC for ad hoc detectors can only be drawn empirically from a
set of unique cover images and their stego counterparts. As shown
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in this paper, ROCs drawn empirically by evaluating the normal-
ized test or the ad hoc detector on a set of cover and stego images
are incomparable as they correspond to different hypothesis tests
with different optimality criteria. And this stays true even when the
covers exactly follow the adopted statistical model.

To explain why this happens and to understand how the com-
parison should be properly executed, we start this paper in the next
section by refining the concept of a cover source as a mixture of
scene oracles. In Section 3, we describe three different hypothesis
testing setups and argue that ROCs typically drawn for ad hoc detec-
tors and for hypothesis tests correspond to detectors equipped with
different knowledge and derived for different optimality criteria.
Adopting simplifying modeling assumptions on the scene oracle
and the associated optimal tests in Section 4, in Section 5 we reveal
a relationship among the different hypothesis tests and properties
of their ROCs. Based on this analysis, we formulate guidelines on
how to fairly compare the ROCs of both detector types. To confirm
the validity of our analysis, in Section 6 we include the results of
experiments with a real steganographic method and deep learning
detectors on an artificial cover source. The paper is concluded in
Section 7.

2 SCENE ORACLE

Without loss of generality and for simplicity, we will assume that
cover objects are grayscale digital images of natural scenes repre-
sented as W X H matrices of real numbers. We denote the set of
cover objects by X = RW*H with N = W x H the total number
of cover elements. The choice to use continuous-valued images is
to simplify the analysis to avoid having to deal with quantization.
This is feasible since statistical models are usually imposed not on
pixels but on some transformed quantities, such as DCT coeflicients
or noise residuals.

In this paper, random variables are denoted with capital letters
with lowercase letters reserved for their realizations. Boldface is
used for vectors and matrices.

Technically, a cover source is a distribution (or measure) on
X. Since it is unlikely that a reasonable statistical model could
be adopted for this high-dimensional distribution [4], we instead
postulate the existence of a two-step statistical process that can be
used to acquire an abitrary number of images for a dataset. One
possibility to visualize this process is to think of it as one or more
photographers who take pictures by first selecting a scene and then
creating its digital representation by acquiring it with a camera.
Both actions involve randomness. We will first discuss the scene
selection and then describe the acquisition.

A scene ¢ € X is a digital representation of the physical reality
one wishes to photograph in the absence of any imperfections or
noise. For now, we will merely assume that there exists a measure
v on X describing the distribution of the random scene C. Hence,
scene selection amounts to obtaining a sample or realization of
C~v.

Next, acquisitions of a scene c follow a distribution over X con-
ditioned on C = ¢, denoted by X ~ so(x|c). Meaningful modeling
assumptions can be adopted on this conditional distribution, which
we call in this paper the scene oracle, by considering the properties
of imaging sensors, various noise sources, such as the photonic

(shot) noise or the readout noise, and a specific development and
processing pipeline.! We note that modeling frameworks other than
those rooted in acquisition models are possible. For instance, in
the embedding algorithm MiPOD [32], noise residuals of pixels are
modeled as independent realizations of a Gaussian random variable
whose variance depends on local content complexity. As for another
example, the RJCA [6] models the rounding errors of pixels after
JPEG decompression as wrapped Gaussian random variables.

To summarize, sampling from the cover source involves sampling
C = c from v and then obtaining the actual digital image from
the scene oracle so(x|c). The cover source distribution is thus the
mixture

po(x) = / so(clo(c) )

In this paper, we frequently consider the conditional probabil-
ity P(E|C) of some event E and conditional expectation E[Z|C] or
variance Var[Z|C] of some random variable Z. Recall that P(E|C),
E[Z|C], and Var[Z|C] are random variables since they are func-
tions of C and so it makes sense to consider, e.g., E[P(E|C)] =
/c X P(E|C = c)dv(c). Additionally, to make mathematical expres-
sions more concise we use Py, Ex, and Vary to denote probability,
expectation, and variance assuming hypothesis Hy. is true (k = 0
or 1).

3 TEST FOR MIXTURE OR MIXTURE OF
TESTS?

Equipped with the cover source model as a mixture of scene oracles,
we now formulate three types of hypothesis test setups the stegana-
lyst may face depending on the available information and optimality
criteria. We argue that the way ROCs are typically drawn for ad
hoc detectors corresponds to a very different hypothesis testing
setup than when drawing an ROC for a normalized test statistic.

Assuming a known fixed payload « in bits per pixel (bpp) for
simplicity, we denote the stego distribution conditioned on ¢ by
sa(x|c). The stego distribution is thus the mixture

palx) = / (Rl )

with the same prior distribution on scenes v. There are two hy-
pothesis tests we can consider when testing between the cover and
stego classes: testing a mixture (Case I in Section 3.1) and a mixture
of tests for a fixed scene (Section 3.2). Moreover, the latter can be
considered for two different optimality criteria (Cases II and III).

3.1 Testing a mixture (Case I)

Given an observable (image) y € X, a realization of Y, we consider
the hypothesis test of the mixtures in their entirety,

Ho +Y ~ po(x) = /X so(xle)dv(e) 3

Hi 5Y ~ pa(x) = /X s (xl0)dV(0)

where we denote the scene oracle as sy to highlight the fact that
covers are stego images with nothing embedded.

! Acquisition noise models have been used for both steganography [1, 19, 20, 33] and
forensics [36].



The test above requires the prior measure v on the scenes to
be known in order for the test to be simple. In this case, the most
powerful test is the LRT

fyseyle)dne)
[ o¥lo)dv(©)

where y is a fixed threshold chosen to satisfy a desired probability
of false alarm. This general form of the hypothesis test, which we

call Case I, corresponds to how ad hoc and data driven detectors
are used and trained. In particular, the way we draw the ROC for L,

Pp(y) =P1(L(Y) > y)
Pea(y) = Po (L(Y) > y), ®)
and the empirical ROC for an ad hoc detector d : X — R are

consistent in the sense of using a single threshold y on the output
of L and d to partition X into cover and stego classes.

L(y) = log 4

3.2 Mixture of tests
On the other hand, we can consider a hypothesis test conditioned

on the realization C = c. That is, we face the random hypothesis
test (or a mixture of hypotheses)

Ho Y ~ so(x]c) (©)
Hj Y ~ sq(x]c)

according to the prior distribution v. Note that the test does not
require v to be known for the test to be simple—only the realization
c needs to be known to prevent any error due to estimating c, and
consequently, mismatching tests. The most powerful test is the LRT
sa(yle)

- > Yo (7)
so(ylc)
where the chosen threshold y. now dependents on c. In this paper,

we consider two perspectives for constructing a Neyman-Pearson
(NP) detector explained below.

le(y) = log

3.2.1 Fixed false alarm (Case Il). For each c, one could choose
Yc to maximize the conditional probability of correct detection
Py (€c(Y) > yc) while constraining the conditional probability of
false alarm to be bounded above by a pre-determined value Ppa:

Po (€e(Y) > ye) < Pra. ®)

Observe that no knowledge of v is needed to compute the thresholds.
Conditional constraints of this form are reasonable to impose if
repetitions of the hypothesis testing experiment are potential rather
than actual or if the main interest is the particular event (C = c) that
occurs (c.f. Chapter 10 of [28]). This constraint is typically adopted
when drawing the ROC of £¢(Y) in situations when a simple model
for sq(x|c) is adopted or is easily computable [6, 15, 32] (also, see
Section 4).

Assuming Py (£c(Y) > t) is continuous and strictly monotone
in t for all ¢ and k, the optimal threshold y. uniquely satisfies
Po (€c(Y) > yc) = Ppa, meaning we can express it as a function of
Pra by yc(Pra). Therefore, we have the following functional form
for the ROC

Pp(Pra) = E[P1 (¢c(Y) > ye(Pea)|O)].- ©
In plain language, the ROC for Case II is computed by drawing the
ROCs for each scene and then vertically averaging the ROCs so

that Ppa is fixed across all scenes. An illustrated example of this is
provided in Section 6.1.

If the distribution of £.(Y) only has shift and scale parameters,
£c(Y) can be normalized—denoted by £c(Y)—to follow the same
conditional distribution under Hy for all ¢, guaranteeing that a
uniform threshold y achieves Ppp across all scenes. For example,
when the test is mean-shifted Gauss-Gauss [23] the normalized test
decides Hy when

) = (W) “EolbeV)] |
Var [£e(Y)]
and its distribution is independent of the scene ¢ under Hy, i.e.,
£e(Y) ~ N(0,1) for all c.

Note that the ROC for Case I is in general different than for Case

II. This observation is elaborated upon in more detail in Section 5.

(10)

3.2.2  Fixed expected false alarm (Case I1l). Alternatively, one could
relax the constraint so that only the expected probability of false
alarm across scenes is bounded from above:

Pra = E[Po (€c(Y) > yclO)] < Pra (11)
while maximizing the expected probability of detection
Pp =E[P1 (£c(Y) > yelO)] (12)
- [ mem s yle=oae. @
ceX

In this case, one would need to know v in order to choose the
thresholds yc. The requirement (11) is reasonable to adopt if this
random test is performed a large number of times or if average
performance is the main interest [28]. The ROC for this case plots
Pp as a function of Ppa.

In general, the ROC for Case IIl must bound the ROC for Case II
since the optimization constraint for Case III is weaker (i.e. Case
IIT’s feasible set of thresholds is a superset of Case II's). The reason
for adding Case III will become apparent later as it will help us
establish that, under some mild modeling assumptions, the ROC
for Case I coincides with the ROC for Case III and thus must bound
the ROC for Case II (see Section 5).

4 TYPICAL MODELING SETUP

Among many possibilities for the oracle, the following general
model is often adopted in steganalysis [13, 26, 32]:

N -
soxle) = [ [ Gxise), (14)
i=1

which essentially assumes that the individual pixels x; (cover ele-
ments in general) are independent realizations of random variables
following distributions p(()l)(x; c) on their specific ranges. Note that
these distributions are allowed to vary with i.

Embedding relative payload a bpp into the cover, each pixel
ends up being modified with probability f;(c) with ;s determined
by the particular embedding algorithm and payload . Computing
the change rates f§; from c rather than the particular realization x
ensures that the ensuing stego distribution is factorizable:

N .
sa(xle) = [ [ pjy)(xize). (15)
i=1



Without this assumption, stego image pixels would be dependent
and it would not in general be tractable to work out the stego
distribution for typical content-adaptive stego algorithms, such as
the UNIWARD family [21], HILL [29], or MiPOD.

The LRT (7) is

Py Wi o)

N
lely) = ) log 5 0
i=1 (yz,C)

As shown in Part I of the appendlx, by the Lindeberg version of
the CLT and Taylor expansion w.r.t. f; at 0, for a large number of
pixels N and for small payloads (change rates f3;), the distribution
of the non-normalized test is approximately Gaussian under both
hypotheses

(16)

N (-482.82) Hy

e = N( Jo2.82) Hi.

(17)

The quantity 52 is the deflection coefficient

N
= D B (18)
i=1

_ / 1 Bp;)f)(y; 0)
i = 5
pél)(y; c) op

is the steganographic Fisher information at pixel i [17, 25]. The
asymptotic approximation (17) allows us to write the ROC for scene
cas

and

dy, (19)
B=0

Po(Pra) = © (07! (Pra) - &) (20)

where Q(x) = fx “(2m)~1/2 e~t"/2dt is the standard normal tail prob-
ability function.

5 COMPARISON IN PRACTICE

The hypothesis tests above will in practice be formulated for finite
mixtures with images from a dataset formed by sampling v n-times,
obtaining scenes cj, . . ., ¢y, and then sampling each scene oracle
Xi ~ so(x|c;) once to form a dataset of n cover images, X1, . .., Xp.

In order to simplify the analysis and to be able to express our
claims in a closed-form, the rest of this paper will assume that
the LRT for each scene c, {c(Y), follows the asymptotic Gaussian
distribution (17) under each hypothesis exactly. This approximation
is often very tight even for small 256 X 256 images typically used in
steganography experiments as illustrated in Figure 8 in Section 5
and also as apparent in numerous prior art [5, 11, 32, 36].

5.1 Casel

Typical datasets of natural images (even with a size on the order
of millions) do not contain multiple acquisitions of the same scene,
or even similar scenes—images taken in the same physical location
and camera settings will differ due to changes in lighting conditions,
camera shake, etc. Taking multiple acquisitions of the same scene
is only feasible in laboratory conditions. Therefore, we assume that
for any realistic v, given scenes cy, . . ., ¢, independently sampled
according to v, the log-likelihood log 37", s« (x|c;) will be numeri-
cally close to log sy (x|c;) for some i since the other n — 1 terms in

the sum should be approximately zero.? Thus, the distribution of

the LRT for Case I, L(Y) = log % is well approximated
by a mixture of the distributions of £;(Y) £ £¢,(Y) = log SS“((;( ||§))

In other words, under both hypotheses (k = 0 or 1) we have that
n

Pi (L(Y) > y) ~ ) B (6(Y) > 7). (21)
i=1

The LRT L(Y) (4) will thus be a Gaussian mixture under the simpli-
fying assumption described in the beginning of this section.

Let p be the distribution of the deflection coefficient 5% as intro-
duced in Section 4, C ~ v. Notice that, unlike v, i can be feasibly esti-
mated from a large dataset of images because it is a one-dimensional
distribution. From (17), we have for the probability of detection and

false alarm probability

Pp(y) = Py (L(Y) > y)

~ / P(N(t/2,t) > y)du(t) (22)

—(x — t/2)?
/teR/ Vant ( 2% )dxdu(t), (23)

_ —(x+t/2)2)
Pra(y) = /t = /y \/Z_mexp( o dxdu(t).  (24)

We now argue that empirically drawing the ROC using only
one sample per scene is asymptotically equivalent to drawing the
ROC using many acquisitions. This can be argued in the same style
as proofs of the Glivenko—Cantelli Theorem [28]. Consider the
realizations c, . . ., ¢, independently sampled according to v and
their deflections 51 s 52, ...,02. By the strong law of large numbers
and realizing that 52 ~ 1, we have the following convergence for
the random empirical distribution under H;

% Zn: P (N(E62/2,6%) > y)

i=1

Y B > ) =
i=1

— |2 (Ns2/2.6%) > v | 62)|
~ Py (L(Y) > y) 9

almost surely in y as n — oo under both hypotheses k = 0 and 1
with the signs of the Gaussian means equal to — and +, respec-
tively.> The LHS amounts to sampling one acquisition from a fi-
nite n number of scenes. Since a formula similar to (25) holds for
Py (¢i(Y;) > y) with the opposite means of the Gaussians, the ROC
for the dataset of n images x; with deflections 51.2 is in a parametric
form

P = L 308 (M@ 2.0 > ) (26)
i=1
Pian) = - Z B (N(-0}/2.8) > v). @7

i=1

2The validity of this assumption relies on N being large, which is a reasonable as-
sumption given typical image sizes produced by modern cameras and phones.

3 Additionally, the convergence is uniform in y due to the monotonicity of the right-tail
probability function.



Thus, to fairly compare the ROC of an ad hoc detector with
a statistical test, we need to draw the ROC for the test from the
non-normalized LRT (7). Note that in this case, due to (6) the ROC
will be symmetrical about the minor diagonal in agreement with
the observation that the ROCs of ad hoc detectors built using ma-
chine learning are indeed approximately symmetrical (also see
Section 6.3).

5.2 Casell

In this section, we show that the ROC for Case II given by Eq. (9) is
asymmetrical unlike the ROC for Case I. Given scene c, the difficulty
of detecting steganography is quantified by the deflection coeffi-
cient §2 associated with the UMP test for the random hypothesis.
For a fixed false-alarm Ppp, the probability of correct detection is
(see Eq. (20))

Pp(Pra) = E[Q(Q™ ' (Pra) — 801, (28)

where the expectation is taken over scenes.
Denoting m = E[§¢], using Taylor expansion of Q(x) at Q™ (Pga)—
m, the expected ROC (28) can be written as

Pp(Pra) = E [Q(Q™ ! (Ppa) — 60)]

=E[; (m = 50) 071 (Ppy) — m)]

—Z( DRk 01810 a) — ), (29)

where cy. is the kth central moment of §c. We note that the Taylor
expansion converges rather quickly due to the following bound on
the kth derivative of the Q function

0% (x)| < \/7 for all x, (30)

which follows from the Cramér inequality [22], and the fact that
central moments of a bounded random variable* can grow only
polynomially fast.

The analysis shown above highlights an important property of
ROCs drawn under Case II; the ROC can be highly asymmetric,
bending toward the y-axis that allows Pp(Pga) to be large for small
Pra. This is because only the first term for k = 0 in expansion (29) is
symmetrical about the minor diagonal. Ultimately, the shape of the
ROC depends on the central moments ¢y, which when contrasted
with Case I is a very different ROC. °

5.3 Caselll
We wish to determine the thresholds y; for each conditional test ¢;
in order to maximize average Pp

n

) 2 YRG0 > 1), (51)

i=1

I_JD()/l, ..

4The boundedness of d¢ follows from the fact that the Fisher information F; is
bounded since natural images contain certain minimum amount of acquisition noise.
Unbounded or infinite F; would indicate deterministic pixels and in general pixels
where the embedding changes are extremely detectable and thus should be avoided by
the embedding algorithm anyway.

5In practice, we use Eq. (28) to draw the ROC. The form given in (29) is strictly used
for analysis in this paper.

while satisfying the constraint for the average Ppa

n

SYn) = Z %PO (€i(Y) > yi) < Ppa- (32)
=1

Pra(y1s - -

Using the method of Lagrange multipliers as shown in Part II of
the appendix, the thresolds y; = y will be the same across scenes.
Setting y; = y in Eq. 31 and using Eq. 21, we have

P (L(Y) > ) Z Py (6i(Y) > y)

= LN B G > ), (33)
i=1

=

and therefore, the ROCs for LRT in Eq. (3) (Case I) and LRT in Eq. (6)
with thresholds chosen to satisfy Py only on average (Case III)
are equal. Since in general the UMP test for Case III should upper
bound the UMP for Case II, Case I must also upper bound Case II
when under the assumptions of Section 5.

At first, the result of the UMP of Case I dominating the UMP
of Case Il may seem counter-intuitive since Case II fundamentally
knows the exact scene while Case I is scene-agnostic. However,
Case II is ultimately crippled by the stringency of the constraint
even though it is afforded detection power in the sense of having
knowledge of the scene.

6 EXAMPLES AND PRACTICAL
IMPLICATIONS

In general, one cannot guarantee any relationship between an ROC
drawn from outputs of an ad hoc detector and a test derived from
a model. This is, of course, because real images do not necessarily
follow the model but, as argued in this paper, also because an ROC
drawn from outputs of an ad hoc detector on cover and stego images
corresponds to Case I, while drawing the ROC for a normalized test
corresponds to Case IL

Since the ROC for Case I bounds the one for
Case II, ad hoc detectors are thus portrayed in
better light or one can say that the normalized
statistical test is disadvantaged.

As explained in the introduction, our goal is to provide guidelines
on comparing both detector types so that if the model is true the
ROC of the most powerful detector indeed bounds the one for the
ad hoc detector. To guarantee this, we need to either make sure
that both detector types are evaluated as in Case I or in Case II. The
former should be used when working with a dataset without access
to the scene oracles, which pretty much covers all practical cases.
The latter is an option when working with an artificial dataset that
exactly follows the model.

Below, we start with a simple illustrative example to reinforce
how the ROC averaging differs between Case I and II. We then
point out cases of prior art with comparisons that involve both
Case I and II. To solidify the theoretical claims made above, we
include experiments on an artificial dataset to demonstrate the
consequences of conflating Case I and Case II and point out the
properties of ROCs corresponding to both cases.



6.1 Toy Example

Suppose the modeling assumptions in Section 4 and (21) hold. Con-
sider a cover source consisting of three scenes whose deflections
are 512 =1, 5§ =6, 5§ = 12 and prior probabilities are v(c;) = 0.3,
v(cz) = 0.2, v(c3) = 0.5. Figure 1 (left) shows the distribution of
£;(Y) under both hypotheses for each scene as well as the distribu-
tion of L(Y) under both hypotheses. On the right, the figure shows
the distributions of the normalized LRTs ¢;(Y) per Eq. (10). Figure 2
illustrates on the left that the ROCs for each scene are vertically
averaged in order to draw the ROC for Case II. On the right, Figure 2
demonstrates that the ROC for Case I bounds the ROC for Case IL
Additionally, note that the ROC for Case I is symmetric while the
ROC for Case II bends towards the y-axis.

6.2 Examples from prior art

The ROCs of three Asymptotically Universally Most Powerful (AUMP)
normalized tests of non-adaptive Least Significant Bit (LSB) Match-
ing are compared in Fig. 6 of [11] with ROCs of two ad hoc detectors

— the center of mass of a two-dimensional histogram characteristic
function [24] and a heuristic measure of histogram smoothness
(ALE) [37]. In [34], normalized tests derived for the Jsteg algorithm
are contrasted with Zhang’s quantitative detector [38]. The ROC
of AUMP test derived in [16] is compared with a version of the
Generalized Category Attack [27].

Another interesting example worth mentioning appears in [32].
The ROC of an hoc detector in the form of a spatial rich model [18]
with the low complexity linear classifier [12] is compared with
the most powerful test in Fig. 6 of [32]. Here, the comparison is
consistent because the stego images are embedded with variable
payloads to guarantee the same deflection coefficient across all
images. Thus, the Gaussian mixture of Case I becomes a single
Gaussian distribution and, at the same time, the ROC of Case II is
also a Gaussian ROC since the expectation in (28) can be removed
as &c = § for all c. For this deflection-limited sender, the ROCs for
Case I and II coincide.

The most glaring example of improper comparison (mismatching
Case I and II hypothesis tests) appears in the “Are We There Yet”
paper [5]. The authors investigated the limits of machine learning
detectors by working with an artificial cover source and embedding
modified so that a closed form for the most powerful detector (a
LRT) exists. The ROCs of ad hoc detectors, however, appear to
intersect the ROCs of the corresponding optimal detectors (see Fig.
5 for LSBM and Fig. 6 for S-UNIWARD in [5]). This is due to the
fact that the ROCs of ad hoc detectors were based on Case I while
the LRT’s ROCs corresponded to Case II, making their ROCs highly
non-symmetrical and weaker in comparison to the ad hoc detectors.
To paraphrase the authors of [5], “we are less there than we thought”
Below, we used the same datasets and embedding algorithms to
show that when both detectors are compared either based on testing
in Case I or both as in Case II, the LRT’s ROC indeed bounds the
ROCs of the ad hoc detectors as this must be the case for such
artificial datasets that follow the modeling assumptions exactly.

6.3 Experiments on an artificial dataset

To illustrate the impact of various comparison methods on ROCs
in real-world scenarios, we conduct experiments using an artifi-
cial dataset which is derived from natural images. The dataset of
natural images is the union of BOSSbase 1.01 [2] and BOWS2 [3],
each containing 10,000 grayscale images resized to 256 X 256 pixels
using Matlab’s imresize with default parameters. The images have
been stored in an uncompressed format and split into three subsets:
training (TRN), validation (VAL), and testing (TST). The training
set includes all 10,000 images from BOWS2, as well as 4,000 ran-
domly selected images from BOSSbase. The remaining images from
BOSSbase were randomly divided into a validation set with 1,000
images and a testing set with 5,000 images. This dataset of images
is referred to as the 'raw image dataset’

To enable access to a scene oracle, we create an artificial version
of the dataset in the same manner as in [5]. This artificial dataset
assumes that pixels are independent realizations of a Gaussian
distribution N (y;, O'iz ),i =1,...,N. To create this dataset, each
raw image was first denoised using the wavelet denoising filter [31]
with open = 10. The dynamic range of the image was then narrowed
and the values rounded to the nearest integers to ensure that the
pixel values after adding noise fall within the range [0, 255] with
high probability. The denoised images represent the means y; of the
Gaussian distributions, while the variances O'iz were obtained using
MiPOD’s variance estimator [32] from the original raw images.
Finally, cover image pixels are sampled from N(y;, alg), and the
values are rounded to the closest integer and clipped to the range
[1,254] to enable ternary embedding in all pixels. Further details
on the creation of this dataset can be found in [5].

To generate stego images, we use the content-adaptive scheme
S-UNIWARD [21] and non-adaptive Least Significant Bit Matching
(LSBM). As already pointed out in Section 4, to have a closed form
for the LRT, the embedding change probabilities (the selection
channel) were computed from raw images. Since our covers are
curbed to [1,254], no wet costs need to be assigned to pixels at
the boundary of the dynamic range. S-UNIWARD’s embedding
simulator was used to simulate embedding payload a = 0.6 bpp,
while the impact of LSBM was simulated by fixing the global change
rate f = 0.01.

As an ad-hoc detector, we used the SRNet pre-trained on a bi-
nary task of steganalyzing J-UNIWARD ([21] (the so-called JIN pre-
training exactly as described in [7]). This pre-trained SRNet was
used to train detectors for both stego sources. Each model was
trained for 100 epochs with a batch size of 64. The Adamax op-
timizer was used in order to optimize the model’s performance
with the initial learning rate set to 1073, A cosine scheduler was
employed to reduce the learning rate smoothly down to 2 x 107>
during training.

To evaluate SRNet’s performance in Case II, 5000 covers were
sampled with the scene oracle for each image and then embedded
to create the same number of stego images. Both cover and stego
images were fed into the network trained for the corresponding
stego algorithm, and the output logits were stored. The process
was repeated for each scene from the testing set of the artificial
dataset. To plot the SRNet ROC in Case I in Figure 3 (shown as the
red dashed line), the logits computed for all images in the test set
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were aggregated into a single vector and fed

to the ROC plotter.

To plot SRNet’s ROC in Case II in Figure 3 (blue dashed line), the
ROC for each test image (scene) was computed separately from the
2 % 5000 images, and the values of Pp were averaged across the

scenes for the same Pgpvalue.
In the same figure, we also plot the ROCs

of the LRT on the

test set for both cases. Since the deflection coefficient 52 can be

computed from our model (18), the ROCs for both Case I and II can
be computed analytically from Egs. (26)—(27) and Eq. (28). Since
these analytic forms are based on asymptotic approximations, we
verify their tightness by including the empirically sampled ROCs
of the LRT (dotted lines) computed from cover / stego images in
the same manner as SRNet (see previous paragraph).
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The following can be inferred from Figure 3. In agreement with
our analysis, while the ROCs for Case I are indeed symmetrical
for both types of detectors, for Case II they bend towards the y-
axis. Second, for large false alarms SRNet’s ROC for Case I can
be above LRT’s ROC for Case I, creating a seeming contradiction
with the LRT being the most powerful detector. Comparing both
detectors correctly (always both either for Case I or both for Case
II), LRT’s ROC bounds the SRNet’s (the dashed line is always below
the solid line for the same color). Additionally, the non-normalized
LRT (Case I) bounds the normalized one (Case II). While we also
see this effect for the ad-hoc detector, it is not anticipated in theory.
These observations hold for both embedding algorithms, which
further supports the significance of the problem and confirms the
validity of our results.

7 CONCLUSIONS

This paper deals with the problem of how to fairly compare ROCs
of ad hoc (data driven) detectors and normalized tests derived from
statistical models. In general, ROCs of ad hoc detectors the way
they are usually drawn correspond to a test between mixtures (Case
I) while ROCs drawn from normalized statistics correspond to a
mixture of tests while guaranteeing constant false alarm rate across
images (Case II). When the datasets exactly follow the adopted
statistical model, the ROCs of Case I are symmetrical and bound
the (highly asymmetrical) ROCs for Case II. Thus, when comparing
a test statistic against an ad hoc detector, one should use the LRT
(or some other version of the most powerful detector) in its non-
normalized form.

On artificial datasets, a second option is available for a fair com-
parison since the ad hoc detector can produce an ROC for each
image (scene), allowing thus a comparison via Case II - by aver-
aging the ROCs of individual images. This paper shows examples

of prior art where the comparison is inconsistent in that ROCs for
Cases I and II are shown in the same graph. For artificial datasets,
this can lead to a paradoxical (impossible) situation when the ad
hoc detector ROC intersects the ROC of the most powerful detector,
making the procedural mistake in [5] obvious.
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APPENDIX
Part I: Asymptotic form of LRT

Here, we explain the asymptotic form of the LRT from Section 4.
First, we compute the leading terms of the expectations and vari-
ances of the log LRT for the ith pixel

(i)(x. )

Ai(x) £ log (l)( )
X;C

(34
under both hypotheses while expanding the distribution of the
stego pixels at § = 0:

(x <)

(l)(x C)+ﬁ ﬁ ﬁzo

Py i) = +0(fY).  (35)

For the expectations,
i),(i 1
BolAi(0)] = ~Dic (o) llply)) = ~5 Fif? + O(B)  (36)
i 1
BN = Dol liph) = SFifE + O, (37)

because the leading term of both KL divergence terms is the same.



For the variances under either hypothesis (k € {0, 1})

25 0) + i ) (5 0) | o
Varg [Ai(x)] = Vary [log

(x5 )

IR0
pg(x;¢) |p=0
i(ﬂ) ﬁ?vark aﬁ f;l) ‘ﬂ
p() (.X'i;C)

iP(i)(x'c) ),B—o ’
—(b) ﬁiz Ex aﬁ/il)—_ —0(pY
po (xi;c)
= fiF;, (38)

where F; is the Fisher information (19). The approximation =(a)
is due to Taylor expansion of the natural logarithm, log(1 + x) =
x + O(x?), while the equality =) yses Var[X] = E[X?] - E[X]2.
The leading term of the expectation on the third line is F; under
both hypotheses.

Using the Lindeberg version of the CLT, as N — oo the following
normalized LRT converges in distribution

SN A(Y) - B [Ai(Y)]

~ N(0,1) under Hy, (39)
B, Var[Ai(Y)]

where §2 = Z{i 1 ﬂizFi. Note the expectation and variance terms
in (39) depend on k. The convergence under both hypotheses moti-
vates the Gaussian approximation of £¢(Y) used in (17).

The authors wish to point out that the above result was obtained
under the assumptions that the CLT can be applied and the Taylor
expansions converge. These assumptions would need to be verified
for each particular combination of image representation and embed-
ding method. Just as importantly, one should verify the tightness
of the asymptotic results. A specific example of this for Gaussian
pixels and Gaussian stego mixture appears in the appendix of [32].

Part II: Optimizing error rates for expected false
alarm

In this section, we derive the thresholds y; that maximize average
Pp (31) while satisfying a desired average Ppa (32) under the testing
scenario described in Section 4 and 5.3. For each scene indexed by
i =1,...,n,we write its associated deflection 51.2 > 0(18). Using the
method of Lagrange multipliers and the approximation in Eq. (17),
the Lagrangian

Lty ) = ) PLEY) > 1) (40)

i=1

n
= 2| D Bo (6(Y) > yi) = nPra
i=1

with A > 0 gives us the following necessary conditions for y1, . .., yn
to be a maximizer:

T W e 1
ST 2
i 1127151.2 25i
A —(yi + 382
+ exp ,

2
A [27151? 26;
foralli. If A = 0, then y; = co for all i, implying Pp = 0. Thus, A > 0,
meaning the maximizer achieves the average Ppp exactly. Solving
for y;, observe that we must equivalently satisfy

~(yi = 367)° ~(yi + 362)°

=1
252 exp 25?
1 1
& 267 log () = (1 + 589" = (1i - 567
< ¥i =log(d)

for each i. In other words, all n thresholds are equal to some constant
Yi=y-

The critical point is verified to be a maximizer by seeing that the
signs of leading principal minors of the bordered Hessian alternate
with the smallest being positive (see Ch. 7, Theorem 12 of [30]).
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