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Abstract. In the paper, we advocate a new approach to blind steganalysis based
on classifying higher-order statistical features derived from an estimation of the
stego signal in the wavelet domain. The proposed approach is flexible and en-
ables reliable detection of presence of stego messages embedded using a wide
range of steganographic methods that include 1 embedding (LSB matching),
LSB embedding, Stochastic Modulation, and others. The method is tested on
raw, never compressed digital camera images, scans of photographs and films,
as well as preprocessed (JPEG compressed, downsampled) images. The per-
formance of this method is compared to the current state-of-the-art steganalytic
methods for additive steganography.

1 Introduction

The goal of steganography is stealth communication — to hide a secret message in
innocuous looking cover objects, such as digital media files, so that the presence of
the hidden data is statistically undetectable. Furthermore, in the passive warden sce-
nario, robustness of the hidden data to distortion is not required. Steganalysis is the
art of detecting the presence of hidden messages — attacking steganography. Stegana-
lytic methods can be roughly divided into targeted methods [1-3], in which one as-
sumes the full knowledge of the embedding algorithm, and blind methods [4-10] in
which no knowledge of the hiding algorithm is assumed. Instead, blind methods try to
characterize typical cover objects in some feature space and detect stego objects by
measuring how much a given image is compatible with the cluster of cover images.
Classifiers trained on a large number of natural images are usually used for this pur-
pose. This strategy is also taken in this paper.

Some steganographic embedding methods, e.g., LSB embedding, have been very
successfully attacked in the past [1-3], while other embedding paradigms, such as
embedding by adding noise (Stochastic Modulation [11], £1 embedding [12] also
known as LSB matching [13,14]) are much more difficult to detect.



In this paper, we address steganographic methods in which the stego image y is
obtained from the cover image x by adding a low-amplitude stego noise signal g(s, K)
that may depend on secret stego key K and the secret data s

y =fs, K) =x + g(s, K). 1)

The function g(.) represents the embedding rule. It is shown in the section dealing
with experiments that the proposed detection method works quite well even for steg-
anographic schemes in which the stego signal g exhibits some dependence on the
cover image x, as is the case, for example, for LSB embedding.

The new detection technique is a blind steganalytic method for digital images in
which the features are calculated from an estimation of the stego signal obtained from
the stego object y in the wavelet domain. Obviously, features calculated from the
estimated stego signal are more sensitive to embedding. A linear classifier is then
trained on a database of images to construct a blind steganalyzer. In our experiments,
we evaluate the performance of the steganalyzer on several different images classes
focusing on images that are known to be difficult for steganalysis, such as raw scans,
never compressed digital camera images, and grayscale images. In Section 2, we start
by briefly discussing previous approaches to blind steganalysis and then explain the
details of the proposed method. In Section 3, we give experimental results and com-
pare the performance with some previously proposed methods. The paper is con-
cluded in Section 4.

2 Blind Steganalysis

2.1 Prior Art

The first blind classifier was proposed by Memon et al. [4] in which the authors used
image quality measures as features to build a classifier distinguishing between cover
and stego images. Farid [6] developed a popular blind steganalyzer based on higher-
order statistics (mean, variance, skewness, and kurtosis) of wavelet domain represen-
tation of stego image and the error between the logarithm of actual coefficients and
the logarithm of coefficient magnitudes estimated from a globally optimal linear pre-
dictor. Kharazi et al. [5] built a blind stego classifier based on binary similarity meas-
ures as features. In another approach, Harmsen et al. [8] described a method that
exploits properties of the center of mass of the Fourier transform of the image histo-
gram. The blind steganalyzer presented in [9] is based on rate-distortion curves. The
work of Fridrich [10] focused on blind steganalysis of JPEG images.

While most blind steganalyzers are relatively successful in detecting steg-
anographic methods for JPEG images, such as OutGuess, J-Steg, and others, their
performance for spatial domain steganography is less satisfactory. Also, for spatial
domain steganography the performance is highly dependent on the type of imagery
presented for training and testing. It is an established fact nowadays [3,13,14] that
detection of steganography is significantly more difficult for scans, never compressed
images, and grayscale images, and notably easier for images that were previously
processed using JPEG [3,15] or for color images [8,19]. The best results for detection



of embedding by noise adding (for LSB matching or +1 embedding) in the spatial
domain were reported by Ker [13,14]. This is why in this paper we compare our re-
sults with this method and we do so for the same database of images.

2.2 The Proposed Method

The general structure of the proposed steganalysis method consists of 3 main stages:
1) stego signal estimation; 2) feature extraction; 3) classification. We now describe all
three stages, focusing more attention on the feature extraction problem.

2.2.1  Stego Signal Estimation

The first step of the proposed detection is estimation of the stego signal g(s, K). For
this purpose, we use wavelet transform based on orthonormal Db8 basis. Although
the choice of decomposition type may have a significant impact on the quality of the
estimation, investigation of this issue is beyond of the scope of this paper. The pur-
pose of stego message estimation is to remove or at least minimize the impact of the
cover image and to obtain a signal that is more sensitive to embedding changes. The
estimation is based on modeling the stego image in the wavelet domain as a mixture
of cover image (represented with a non-stationary Gaussian model) and stego signal
(modeled with a stationary Gaussian model N(0, o5’) with ox= 0.5). This stego signal
model was selected because it enables closed form solution. We acknowledge,
though, that the stego signal is in general non-Gaussian, especially in the finest de-
composition levels. This estimation method has been applied in the past for stegana-
lysis in [16] and was originally described for image denoising in [17,18].

2.2.2  Feature Extraction

Selection of the appropriate feature space plays an important role in building the
stego classifier. The features must be sensitive to embedding modifications and be
rather insensitive to the image content. The estimate of the stego signal from the pre-
vious section satisfies both requirements. Following the minimum description length
principle, we also prefer smaller sets of features to larger feature sets.

While the energy of natural images is concentrated mainly in coarse levels, the en-
ergy of the stego signal for most steganographic techniques based on noise adding is
distributed practically uniformly across the wavelet levels. We have verified this
statement for the £1 embedding paradigm (Fig. 1a). This leads to different SNRs
(stego signal to cover image ratios) in different decomposition levels. Because the
probability of correct stego signal detection (correct detection of stego signal pres-
ence or absence) is proportional to the SNR, P,,,. «« SNR, from Fig. 1a we can esti-
mate P, and P,,=1-P.,,. across different levels (Fig. 1b).
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Fig. 1. a) Energy distribution for stego signal (gray) and cover image (black) in decomposition
levels (averaged over 3 orientations); b) probability of correct stego signal detection (squares)
and probability of error of stego signal detection (triangles) in decomposition levels.

Fig. 1 shows that the stego signal can be most accurately estimated in the finest
decomposition level 1, while in higher levels the energy difference, together with a
smaller number of samples, cause an increase in P,.. Thus, in this paper we only
utilize the first decomposition level (contrary to [6] where higher decomposition
levels are used). This reduces the dimensionality of the feature space and simplifies
the construction of the classifier.

3.5
3
25
2 i
s estimated from;ﬁ \‘h— s estimated
151 stego |mage; n, from cover
b i % image
1 [ [
" T
[ T
0 4 i L i o
-6 -4 -2 0 2 4 6

Fig. 2. Histograms of the stego signal estimation obtained from stego (solid) and cover
(dashed) images (for better visualization, the y axis is in log; scale).

Fig. 2 shows the histograms of the first level decomposition of the estimated stego
signal extracted from the stego image y =x + s and from the cover image x for the
case of £1 embedding. We see that the histograms significantly differ in their tails
(high amplitude or most significant subband coefficients) located outside of the
marked central zone. This means that the estimated stego signal is indeed sensitive to
embedding, which enables us to separate cover and stego images.

To distinguish between the PDFs of the estimated stego signal for cover and stego
images denoted p, and p;, respectively, we could employ one of the existing distance
measures, e.g., the Kullback-Leibler distance (KLD). We did not choose this ap-
proach due to potential problems with selecting the bin width for numerical integra-
tion necessary to calculate the KLD. Another possibility is to parametrize the PDFs



using a model and simplify the KLD so that it operates only with the models’ parame-
ters. However, finding an appropriate model that can accurately represent the stego
signal for different embedding methods and stego signal parameters appears to be a
difficult task. To overcome this problem, we map p, and p; to another domain (a
parameter space) and use the Euclidean distance in the parameter space as the dis-
tance measure. This approach avoids the need for an explicit form for the PDFs.
Applying real-valued exponential kernel and Taylor series expansion of exp(zx), a
polynomial description of the stego signal estimation in transform domain is obtained

M(x)z Tp(t)exp(tx)dtz Tp(t){l+tx+%+...+Qn (t) dt =

@)

1+m1x+%x2 +-+R, (x),

where m; is the i moment and Q, and R, are residuals approaching zero with increas-
ing n and fixed x. The function M(x) is known in statistics as the moment generating
function. We take the moments as features for the blind steganalyzer.
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Fig. 3. Parameters of the estimated stego signal for cover (plus) and stego images (diamond)
calculated for the CH1 subband for the set of 10 cover images and 10 stego images embedded
with 50% relative message length using +1 embedding: a) 2" and 4™ moments, b) variance and
kurtosis, ¢) & eop and aggp of the GGD model.

At this point, we would like to point out that the prediction errors used in [6] are
also coming from some heuristic estimator of the stego signal. Denoting the stego



image and the estimated cover image in the wavelet domain as S and X, the authors

calculate their features from Y and log(|Y | / |AA’ |) as opposed to our approach in

which § =Y — X is considered. Because the PDF of § is symmetrical, we do not
need to consider odd moments and thus reduce the dimensionality of the feature space
by one half. Contrasting this with the approach in [6], both odd and even moments

must be considered because the PDF of log (|Y | / |)A( |) is typically asymmetric.

In Fig. 3, we show for a set of 10 cover and stego images (embedded with 50%
relative message length using +1 embedding) the m, and m,; moments, variance ¢
and kurtosis x (normalized m, and m, moments), and o 66p and aggp — parameters of
the generalized Gaussian distribution (GGD) model, which is widely used to model
the distribution of wavelet subband coefficients. The GGD parameters are a unique
function of the moments {ogep, Aeep}=fMa, Mmy).

Clearly, the first two even moments or their transformed forms do not allow sepa-
ration between cover and stego images. We need quantities that would quantify the
differences in the fails of the distribution (see Fig 2b). Fig. 4 shows the advantages of
using higher order moments to capture this difference. While it is not possible to
distinguish between stego message estimations obtained from cover and stego images
based solely on m;, or my, the classes become practically separable when higher order
moments msg, M, OF My are considered.

To investigate which moments are best suited for classification, in Fig. 5 for each
moment we plot the probability of correct classification using simple Fisher linear
discriminator. We see that the probability of correct classification of cover images
decreases with the increasing order of moments while the accuracy of detection of
stego images increases up to roughly 18 and then starts decreasing as well. We attrib-
ute the presence of this local maximum to the following two facts:

a) the low order moments are more influenced by the cover image than higher
order moments because the stego signal estimation is not perfect;

b) very high order moments are too sensitive to different realizations of the
stego signal and insufficient statistics.

Fig. 5b shows the product of probabilities of correct classification of both cover
and stego images. We use it to determine the number of moments that should be used
according the min-max criterion in the sense that the maximal probability of correct
classification (highest classification accuracy) is obtained using the minimal number
of features. This criterion was satisfied by moment #12. At the same time, other mo-
ments also contain information useful for classification. Therefore, we propose to use
all moments for which the joint probability of successful classification is better that
random guessing, i.e., more than 0.5. Based on this reasoning, we chose for further

analysis the 33 moments of S normalized by its standard deviation My, e,

m';y =m;/ m§ , where i=4, 6, ..., and 24, calculated for three different orientations

(Fig. 5b). This amounts to a 33-dimensional feature vector.
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Fig. 5. Impact of the moment order on classification accuracy: a) probability of correct classifi-
cation of cover images (solid), probability of correct classification of stego images (dashed); b)
joint probability of successful steganalysis vs. order of moments averaged over 500 raw images
embedded using £1 embedding and LSB embedding with relative message length in range
0.125-0.5.

2.2.3  Classification

Naturally, the features defined in the previous section exhibit mutual dependencies
that can be removed using Karhunen-Loeve transform that optimally decorrelates the
features in the mean-square error sense. This approach is also called principal com-
ponent analysis. The transform also enables reducing the dimensionality of the feature



space. Our analysis shows that the 33-dimensional feature space can be accurately
represented in a 4—5 dimensional decorrelated feature space.

To investigate the practical performance of the proposed steganalyzer and the im-
pact of feature selection, we used one of the simplest classifiers — the Fisher linear
discriminator (FLD). In FLD, the feature space is projected on a one-dimensional
space, where various decision rules can be applied for determining the classification
thresholds. We acknowledge that potentially better classification results could be
obtained using more sophisticated, preferable, multidimensional classifiers.

3. Numerical Results

It is a well established fact that never compressed raw images pose the biggest chal-
lenge for steganalysis [3,13,14]. Especially scans of film and photographs are diffi-
cult for steganalysis due to a high level of noise that interferes with the stego signal. It
is also more difficult to detect stego signals in grayscale images as it is not possible to
use the relationship between color channels as in [8,19]. In fact, the performance of
[8] decreases quite noticeably when color information is ignored. Also, for some
methods color information is essential for the method to work [19]. A fundamental
reason why color helps to such an extent is that the 3D color histogram is much
sparsely populated (due to the high number of colors) than a histogram of a grayscale
image. Consequently, embedding by noise adding leaves more noticeable artifacts in
the color histogram than in the grayscale histogram. Finally, in general, steganalysis
is easiest for images that were previously compressed using JPEG because of their
lower energy of high-frequency noise removed during compression. We also note that
for decompressed JPEGs, methods similar to JPEG compatibility steganalysis are
possible and can be very accurate. We decided to test the proposed approach on the
following two classes of raw images.

Set #1 consists of 2567 raw, never compressed color images of different dimen-
sions (all larger than 1 megapixel), some stored in the 48-bit TIFF format, some in
24-bit BMP format acquired by 22 different digital cameras ranging from low-cost
cameras to semiprofessional cameras. Part of this database was downloaded from
[20]. For our experiments, we converted the color images to grayscale and, where it
was required, decreased the color depth to 8 bits.

Set #2 includes high resolution (1500x2100 pixels) 32 bit CMYK color TIFF im-
ages (2375 images) from [21]. To be able to compare our results to [14], similar as the
authors we converted all color images to grayscale and applied bicubic downsam-
pling.

The receiver operating characteristics (ROCs) for Set #1 and #2 together with an
example of an ROC for a single image source (one digital camera Canon PowerShot
S40) are presented in Fig. 6. The embedding method tested was 1 embedding also
called LSB matching. We also report some quantitative characteristic commonly used
in the literature, such as the false positive rate at 50% stego detection rate (Table 1).
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Fig. 6. ROCs for +1 embedding for Set #1 (a), #2 (b) and a single camera (Canon PowerShot
S40) (c) with different embedding capacity: solid = 0.25 bits per pixel (bpp), dash-dotted =
0.5 bpp, dotted = 0.75 bbp, dashed = 1 bpp.

Table 1. False positives at 50% correct detection of stego images.

Image source Embedding ratio (bpp)

0.25 0.5 0.75 1.0
Canon Power Shot S40 2.56% 0% 0% 0%
Set #1 16.24% 3.12% 1.17%  0.58%
Set #2 28.63%  13.98% 6.57% 3.45%

We can see that the detection of embedding in scans (Set #2) is less reliable than
for digital camera images. Again, this is due to the high level of noise in scans that
interferes with the stego signal. Fundamentally, it appears to be difficult to distin-
guish between the stego noise and noise naturally present in scans. As the same Set
#2 was used in experiments in [14], we can make direct comparison of performance.
The false positives for the proposed scheme for detection rate 50% and 80% were
3.45% and 16.25% compared to about 7% and 27% reported in [14].

Contrasting Fig. 6a with Fig. 6¢ and Table 1, we see that for a homogenous image
source (one camera) it is possible to detect £1 embedding rather reliably even at low
embedding rates (for grayscale never compressed images). Similar results were ob-
tained for the other 21 cameras.



Just for comparison, we used the proposed steganalysis method to detect the LSB
embedding in raw images (test was done for 100 512x512 images cropped from Ko-
dak DC290 set) and +1 embedding in decompressed JPEG cover images (ROC was
built for 100 512x512 images cropped from Canon Power Shot G2 set that were pre-
viously JPEG compressed with quality factor 90%). The results (Fig. 7) confirm our
statement made above that detection of steganography in previously compressed
images is significantly easier — the detection is nearly perfect even for 0.25 bits per

bit, which quite an impressive result for a blind scheme.
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Fig. 7. ROCs for LSB embedding in raw images (a) and +1 embedding in previously com-
pressed JPEG images (b) with different capacity: solid = 0.25 bpp, dash-dotted = 0.5 bpp,
dotted = 0.75 bbp, dashed = 1 bpp.

The last set of results is related to the classification ability of the proposed method.
For this purpose, the Monte-Carlo approach was applied to Set #1 and #2. The prob-
ability of correct detection of non-embedded images P, and correct detection of em-
bedded images P; were obtained by averaging over 100 different random choices of
training subsets with 2:8 ratio between the size of the training and testing subsets for
each Set (Table 2). The classification was done using the FLD with Bayes and Ney-
man-Pearson (P, = 0.8) decision rules.

Table 2. Correct classification of cover P, and stego images P; using FLD

Embedding Py/P, Bayes decision rule Py/P; Neyman-Pearson decision rules
ratio (bpp) Set #1 Set #2 Set #1 Set #2
0.25 0.71/0.72 0.61/0.62 0.79/0.58 0.79/0.37
0.50 0.86/0.87 0.72/0.73 0.79/0.92 0.79/0.63
0.75 0.92/0.92 0.78/0.79 0.79/0.97 0.79/0.78
1.00 0.94/0.94 0.80/0.81 0.79/0.98 0.79/0.82
Conclusions

In this paper, we describe a new approach to blind steganalysis realized using a linear
classifier with features calculated from higher-order statistical moments of PDF of the
estimated stego signal in the finest wavelet level. Because the features are calculated



from the estimated stego signal, they are more sensitive to steganographic modifica-
tions while suppressing the influence of the cover image.

The proposed method is tested on various classes of images that are known to
pose problems for steganalysis — never compressed raw images from digital camera
and grayscale uncompressed film scans. We test the methodology on the 1 embed-
ding paradigm and LSB embedding. On raw grayscale digital camera images for +1
embedding, we obtained reliable detection results for message lengths above 0.5 bits
per pixel. For images coming from a homogenous source, such as raw grayscale im-
ages obtained using a single camera, relatively reliable detection is even possible at
the embedding rate of 0.25 bits per pixel (for £1 embedding).

The detection performance on decompressed JPEGs embedded with £1 embed-
ding showed why such images are the easiest class for steganalysis — the detection
was nearly perfect even for embedding rates of 0.15 bits per pixel, which is a very
good result for a blind steganalysis approach.
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