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Abstract. In this paper, we introduce a new feature-based steganalytic method 
for JPEG images and use it as a benchmark for comparing JPEG steg-
anographic algorithms and evaluating their embedding mechanisms. The detec-
tion method is a linear classifier trained on feature vectors corresponding to 
cover and stego images. In contrast to previous blind approaches, the features 
are calculated as an L1 norm of the difference between a specific macroscopic 
functional calculated from the stego image and the same functional obtained 
from a decompressed, cropped, and recompressed stego image. The functionals 
are built from marginal and joint statistics of DCT coefficients. Because the 
features are calculated directly from DCT coefficients, conclusions can be 
drawn about the impact of embedding modifications on detectability. Three dif-
ferent steganographic paradigms are tested and compared. Experimental results 
reveal new facts about current steganographic methods for JPEGs and new de-
sign principles for more secure JPEG steganography.  

1   Introduction 

Steganography is the art of invisible communication. Its purpose is to hide the very 
presence of communication by embedding messages into innocuous-looking cover 
objects. Each steganographic communication system consists of an embedding algo-
rithm and an extraction algorithm. To accommodate a secret message in a digital 
image, the original cover image is slightly modified by the embedding algorithm. As 
a result, the stego image is obtained. 

Steganalysis is the art of discovering hidden data in cover objects. As in cryptana-
lysis, it is assumed that the steganographic method is publicly known with the excep-
tion of a secret key. Steganography is considered secure if the stego-images do not 
contain any detectable artifacts due to message embedding. In other words, the set of 
stego-images should have the same statistical properties as the set of cover-images. If 
there exists an algorithm that can guess whether or not a given image contains a se-
cret message with a success rate better than random guessing, the steganographic 



system is considered broken. For a more exact treatment of the concept of steg-
anographic security, the reader is referred to [1,2]. 

1.1  Steganalytic Methods 

Several trends have recently appeared in steganalysis. One of the first general stega-
nalytic methods was the “chi-square attack” by Westfeld [3]. The original version of 
this attack could detect sequentially embedded messages and was later generalized to 
randomly scattered messages [4,5]. Because this approach is based solely on the first 
order statistics and is applicable only to idempotent embedding operations, such as 
LSB (Least Significant Bit) flipping, its applicability to modern steganographic 
schemes, that are aware of the Cachin criterion [2], is rather limited. 

Another major stream in steganalysis is based on the concept of a distinguishing 
statistic [6]. In this approach, the steganalyst first carefully inspects the embedding 
algorithm and then identifies a quantity (the distinguishing statistics) that changes 
predictably with the length of the embedded message, yet one that can be calibrated 
for cover images. For JPEG images, this calibration is done by decompressing the 
stego image, cropping by a few pixels in each direction, and recompressing using the 
same quantization table. The distinguishing statistic calculated from this image is 
used as an estimate for the same quantity from the cover image. Using this calibra-
tion, highly accurate and reliable estimation of the embedded message length can be 
constructed for many schemes [6]. The detection philosophy is not limited to any 
specific type of the embedding operation and works for randomly scattered messages 
as well. One disadvantage of this approach is that the detection needs to be custom-
ized to each embedding paradigm and the design of proper distinguishing statistics 
cannot be easily automatized. 

The third direction in steganalysis is formed by blind classifiers. Pioneered by 
Memon and Farid [7,15], a blind detector learns what a typical, unmodified image 
looks like in a multi-dimensional feature space. A classifier is then trained to learn the 
differences between cover and stego image features. The 72 features proposed by 
Farid are calculated in the wavelet decomposition of the stego image as the first four 
moments of coefficients and the log error between the coefficients and their globally 
optimal linear prediction from neighboring wavelet modes. This methodology com-
bined with a powerful Support Vector Machine classifier gives very impressive re-
sults for most current steganographic schemes. Farid demonstrated a very reliable 
detection for J-Steg, both versions of OutGuess, and for F5 (color images only). The 
biggest advantage of blind detectors is their potential ability to detect any embedding 
scheme and even to classify embedding techniques by their position in the feature 
space. Among the disadvantages is that the methodology will always likely be less 
accurate than targeted approaches and it may not be possible to accurately estimate 
the secret message length, which is an important piece of information for the stegana-
lyst. 

Introducing blind detectors prompted further research in steganography. Based on 
the previous work of Eggers [8], Tzschoppe [9] constructed a JPEG steganographic 
scheme (HPDM) that is undetectable using Farid’s scheme. However, the same 



scheme is easily detectable [10] using a single scalar feature – the calibrated spatial 
blockiness [6]. This suggests that it should be possible to construct a very powerful 
feature-based detector (blind on the class of JPEG images) if we used calibrated 
features computed directly in the DCT domain rather than from a somewhat arbitrary 
wavelet decomposition. This is the approach taken in this paper. 

1.2  Proposed Research 

We combine the concept of calibration with the feature-based classification to devise 
a blind detector specific to JPEG images. By calculating the features directly in the 
JPEG domain rather than in the wavelet domain, it appears that the detection can be 
made more sensitive to a wider type of embedding algorithms because the calibration 
process (for details, see Sec. 2) increases the features’ sensitivity to the embedding 
modifications while suppressing image-to-image variations. Another advantage of 
calculating the features in the DCT domain is that it enables more straightforward 
interpretation of the influence of individual features on detection as well as easier 
formulation of design principles leading to more secure steganography. 

The proposed detection can also be viewed as a new approach to the definition of 
steganographic security. According to Cachin, a steganographic scheme is considered 
secure if the Kullback-Leibler distance between the distribution of stego and cover 
images is zero (or small for ε-security). Farid’s blind detection is essentially a reflec-
tion of this principle. Farid first determines the statistical model for natural images in 
the feature space and then calculates the distance between a specific image and the 
statistical model. This “distance” is then used to determine whether the image is a 
stego image. In our approach, we change the security model and use the stego image 
as a side-information to recover some statistics of the cover image. Instead of measur-
ing the distance between the image and a statistical model, we measure the distance 
between certain parameters of the stego image and the same parameters related to the 
original image that we succeeded to capture by calibration. 

The paper is organized as follows. In the next section, we explain how the features 
are calculated and why. In Section 3, we give the details of the detection scheme and 
discuss the experimental results for OutGuess [11], F5 [13], and Model Based Steg-
anography [12,14]. Implications for future design of steganographic schemes are 
discussed in Section 4. The paper is summarized in Section 5. 

2   Calibrated Features 

Two types of features will be used in our analysis – first order features and second 
order features. Also, some features will be constructed in the DCT domain, while 
others in the spatial domain. In the whole paper, scalar quantities will be represented 
with a non-bold italic font, while vectors and matrices will always be in bold italics. 
The L1 norm is defined for a vector (or matrix) as a sum of absolute values of all 
vector (or matrix) elements. 



All features are constructed in the following manner. A vector functional F is ap-
plied to the stego JPEG image J1. This functional could be the global DCT coefficient 
histogram, a co-occurrence matrix, spatial blockiness, etc. The stego image J1 is de-
compressed to the spatial domain, cropped by 4 pixels in each direction, and recom-
pressed with the same quantization table as J1 to obtain J2. The same vector functional 
F is then applied to J2. The final feature f is obtained as an L1 norm of the difference 
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The logic behind this choice for features is the following. The cropping and recom-
pression should produce a “calibrated” image with most macroscopic features similar 
to the original cover image. This is because the cropped stego image is perceptually 
similar to the cover image and thus its DCT coefficients should have approximately 
the same statistical properties as the cover image. The cropping by 4 pixels is impor-
tant because the 8×8 grid of recompression “does not see” the previous JPEG com-
pression and thus the obtained DCT coefficients are not influenced by previous quan-
tization (and embedding) in the DCT domain. One can think of the cropped 
/recompressed image as an approximation to the cover image or as a side-
information. The use of the calibrated image as a side-information has proven very 
useful for design of very accurate targeted steganalytic methods in the past [6]. 

2.1 First Order Features 

The simplest first order statistic of DCT coefficients is their histogram. Suppose the 
stego JPEG file is represented with a DCT coefficient array dk(i, j) and the quantiza-
tion matrix Q(i, j), i, j = 1,…,8, k = 1, …, B. The symbol dk(i, j) denotes the (i, j)-th 
quantized DCT coefficient in the k-th block (there are total of B blocks). The global 
histogram of all 64k DCT coefficients will be denoted as Hr, where r = L, …, R, L = 
mink,i,j dk(i, j) and R = maxk,i,j dk(i, j). 

There are steganographic programs that preserve H [8,10,11]. However, the 
schemes in [8,9,11] only preserve the global histogram and not necessarily histo-
grams of individual DCT modes. Thus, we add individual histograms for low fre-
quency DCT modes to our set of functionals. For a fixed DCT mode (i, j), let , r = ij

rh



L, …, R, denote the individual histogram of values dk(i, j), k = 1, …, B. We only use 
histograms of low frequency DCT coefficients because histograms of coefficients 
from medium and higher frequencies are usually statistically unimportant due to the 
small number of non-zero coefficients. 

To provide additional first order macroscopic statistics to our set of functionals, we 
have decided to include “dual histograms”. For a fixed coefficient value d, the dual 
histogram is an 8×8 matrix  d

ijg
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where δ(u,v)=1 if u=v and 0 otherwise. In words, is the number of how many 

times the value d occurs as the (i, j)-th DCT coefficient over all B blocks in the JPEG 
image. The dual histogram captures how a given coefficient value d is distributed 
among different DCT modes. Obviously, if a steganographic method preserves all 
individual histograms, it also preserves all dual histograms and vice versa. 

d
ijg

2.2 Second Order Features 

If the corresponding DCT coefficients from different blocks were independent, then 
any embedding scheme that preserves the first order statistics – the histogram – 
would be undetectable by Cachin’s definition of steganographic security [2]. How-
ever, because natural images can exhibit higher-order correlations over distances 
larger than 8 pixels, individual DCT modes from neighboring blocks are not inde-
pendent. Thus, it makes sense to use features that capture inter-block dependencies 
because they will likely be violated by most steganographic algorithms. 

Let Ir and Ic denote the vectors of block indices while scanning the image “by 
rows” and “by columns”, respectively. The first functional capturing inter-block de-
pendency is the “variation” V defined as 

 

||||

|),(),(| |),(),(| 
8

1,

1||

1
)1()(

8

1,

1||

1
)1()(

cr

ji

I

k
kIkI

ji

I

k
kIkI

II

jidjidjidjid

V

c

cc

r

rr

+

−+−

=
∑ ∑∑ ∑
=

−

=
+

=

−

=
+

.  (3) 

 
Most steganographic techniques in some sense add entropy to the array of quantized 
DCT coefficients and thus are more likely to increase the variation V than decrease. 

Embedding changes are also likely to increase the discontinuities along the 8×8 
block boundaries. In fact, this property has proved very useful in steganalysis in the 
past [6,10,12]. Thus, we include two blockiness measures Bα, α = 1, 2, to our set of 
functionals. The blockiness is calculated from the decompressed JPEG image and 
thus represents an “integral measure” of inter-block dependency over all DCT modes 
over the whole image: 
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In the expression above, M and N are image dimensions and xij are grayscale values 
of the decompressed JPEG image. 

The final three functionals are calculated from the co-occurrence matrix of 
neighboring DCT coefficients. Recalling the notation, L ≤ dk(i, j) ≤ R, the co-
occurrence matrix C is a square D×D matrix, D = R – L + 1, defined as follows 
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The co-occurrence matrix describes the probability distribution of pairs of neighbor-
ing DCT coefficients. It usually has a sharp peak at (0,0) and then quickly falls off. 
Let C(J1) and C(J2) be the co-occurrence matrices for the JPEG image J1 and its cali-
brated version J2, respectively. Due to the approximate symmetry of Cst around 
(s, t) = (0, 0), the differences Cst(J1) – Cst(J2) for (s, t)∈{(0,1), (1,0), (–1,0), (0,–1)} 
are strongly positively correlated. The same is true for the group (s, t)∈{(1,1), (–1,1), 
(1,–1), (–1,–1)}. For practically all steganographic schemes, the embedding changes 
to DCT coefficients are essentially perturbations by some small value. Thus, the co-
occurrence matrix for the embedded image can be obtained as a convolution C∗P(q), 
where P is the probability distribution of the embedding distortion, which depends on 
the relative message length q. This means that the values of the co-occurrence matrix 
C∗P(q) will be more “spread out”. To quantify this spreading, we took the following 
three quantities as our features: 
 
N00=C0,0(J1)–C0,0(J2)             (6) 
N01=C0,1(J1)–C0,1(J2)+C1,0(J1)–C1,0(J2)+C–1,0(J1)–C–1,0(J2)+C0,–1(J1)–C0,–1(J2) 
N11=C1,1(J1)–C1,1(J2)+C1,–1(J1)–C1,–1(J2)+C–1,1(J1)–C–1,1(J2)+C–1,–1(J1)–C–1,–1(J2) . 
 
The final set of 23 functionals (the last three are directly features) used in this paper is 
summarized in Table 1. 

3   Steganalytic Classifier 

We used the Greenspun image database (www.greenspun.com) consisting of 1814 
images of size approximately 780×540. All images were converted to grayscale, the 
black border frame was cropped away, and the images were compressed using an 
80% quality JPEG. We selected the F5 algorithm [13], OutGuess 0.2 [11], and the 



recently developed Model based Steganography without (MB1) and with (MB2) 
deblocking [12,14] as three examples of different steganographic paradigms for JPEG 
images. 

Each steganographic technique was analyzed separately. For a fixed relative mes-
sage length expressed in terms of bits per non-zero DCT coefficient of the cover 
image, we created a training database of embedded images. The Fisher Linear Dis-
criminant classifier was trained on 1314 cover and 1314 stego images. The general-
ized eigenvector obtained from this training was then used to calculate the ROC curve 
for the remaining 500 cover and 500 stego images. The detection performance was 
evaluated using detection reliability ρ defined below.  
 
Table 1. All 23 distinguishing functionals  
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Global histogram 1
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Variation V 
L1 and L2 blockiness B1, B2 

Co-occurrences N00, N01, N11 (features, not functionals) 
 

The reason why we used in our tests message lengths proportional to the number of 
non-zero DCT coefficients in each image was to create stego image databases for 
which the detection is approximately of the same level of difficulty. In our experi-
ence, it is easier to detect a 10000-bit message in a smaller JPEG file than in a larger 
JPEG file. The testing was done for the following relative embedding rates expressed 
in bpc (Bits Per non-zero DCT Coefficient), bpc = 0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8. If, 
for a given image, the bpc rate was larger than the maximal bpc rate bpcmax deter-
mined by the image capacity, we took bpcmax as the embedding rate. The only excep-
tion to this rule was the MB2 method, where we took 0.95×bpcmax as the maximal rate 
because, for the maximal embedding rate, the deblocking algorithm in MB2 fre-
quently failed to embed the whole message. Fig. 1 shows the capacity for all three 
methods expressed in bits per non-zero DCT coefficient. 

The detection results were evaluated using ‘detection reliability’ ρ  defined as 
 

ρ = 2A–1,     (7) 
 

where A is the area under the Receiver Operating Characteristic (ROC) curve, also 
called an accuracy. We scaled the accuracy in order to obtain ρ = 1 for a perfect de-
tection and ρ = 0 when the ROC coincides with the diagonal line (reliability of detec-
tion is 0). The detection reliability for all three methods is shown in Table 2. 
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Fig. 1. Capacity for the tested techniques expressed in bits per non-zero DCT coefficient. The 
capacity for MB1 is double that of MB2. The F5 and MB1 algorithms provide the highest 
capacity 

 
Table 2. Detection reliability ρ for F5 with matrix embedding (1, k, 2k – 1), F5 with turned off 
matrix embedding (1,1,1), OutGuess 0.2 (OG), Model based Steganography without and with 
deblocking (MB1 and MB2, respectively) for different embedding rates (U = unachievable 
rate) 

bpc F5 F5_111 OG MB1 MB2 
0.05 0.2410 0.6451 0.8789 0.2197 0.1631 
0.1 0.5386 0.9224 0.9929 0.4146 0.3097 
0.2 0.9557 0.9958 0.9991 0.7035 0.5703  
0.4 0.9998 0.9999 U 0.9375 0.8243  
0.6 1.0000 1.0000 U 0.9834 U 
0.8 1.0000 1.0000 U 0.9916 U 

 
One can clearly see that the OutGuess algorithm is the most detectable. Also, it pro-
vides the smallest capacity. The detection reliability is relatively high even for em-
bedding rates as small as 0.05 bpc and the method becomes highly detectable for 
messages above 0.1 bpc. To guarantee a fair comparison, we have tested F5 both with 
and without matrix embedding because some programs could be easily adapted to 
incorporate it (e.g., OutGuess). Turning off the matrix embedding, the F5 algorithm 
still performs better than OutGuess. The matrix embedding significantly decreases the 
detectability for short messages. This is understandable because it improves the em-
bedding efficiency (number of bits embedded per change). Because OutGuess needs 



to reserve a relatively large portion of coefficients for the correction step, its embed-
ding efficiency is lower compared to F5. This seems to have a bigger impact on the 
detectability than the fact that OutGuess preserves the global histogram of DCT coef-
ficients. 
 
Table 3. Detection reliability for individual features for all three embedding algorithms for 
fully embedded images (for fully embedded images, F5 with matrix embedding and without 
matrix embedding coincide) 

Method 
Functional/feature F5 OutGuess 0.2 MB1 MB2 
Global histogram 0.9936 0.8110 0.1224 0.0359 

Indiv. histogram for (2,1) 0.9343 0.6625 0.6166 0.3775 
Indiv. histogram for (3,1) 0.9940 0.7521 0.1018 0.0606 
Indiv. histogram for (1,2) 0.8719 0.6353 0.4686 0.3828 
Indiv. histogram for (2,2) 0.9827 0.7879 0.5782 0.3499 
Indiv. histogram for (1,3) 0.9879 0.7718 0.0080 0.0095 

Dual histogram for –5 0.1294 0.0853 0.1350 0.1582 
Dual histogram for –4 0.1800 0.2727 0.0338 0.0448 
Dual histogram for –3 0.2188 0.4239 0.6675 0.3239 
Dual histogram for –2 0.2939 0.9921 0.2724 0.0733 
Dual histogram for –1 0.4824 0.9653 0.7977 0.4952 
Dual histogram for 0 0.9935 0.6160 0.2697 0.0859 
Dual histogram for 1 0.5101 0.4068 0.6782 0.3336 
Dual histogram for 2 0.2740 0.8437 –0.0058 0.0311 
Dual histogram for 3 0.1990 0.7060 0.0904 0.1208 
Dual histogram for 4 0.1421 0.1933 0.0169 0.0100 
Dual histogram for 5 0.1315 0.1055 0.4097 0.2540 

Variation 0.7891 0.5576 0.7239 0.2337 
L1 blockiness 0.9908 0.1677 0.5749 0.2737 
L2 blockiness 0.9411 0.1064 0.2485 0.2253 

Co-occurrence N00 0.9997 0.4180 0.8818 0.6088 
Co-occurrence N01 0.9487 0.9780 0.8433 0.5569 
Co-occurrence N11 0.9954 0.9282 0.7873 0.4957 

 
Both MB1 and MB2 methods clearly have the best performance of all three tested 

algorithms. MB1 preserves not only the global histogram, but all marginal statistics 
(histograms) for each individual DCT mode. It is quite remarkable that this can be 
achieved with an embedding efficiency slightly over 2 bits per change (compared to 
1.5 bits per change for F5 and roughly 1 for OutGuess 0.2). This is likely because 
MB1 does not avoid any other coefficients than 0 and its embedding mechanism is 
guaranteed to embed the maximal number of bits given the fact that marginal statis-
tics of all coefficients must be preserved. The MB2 algorithm has the same embed-
ding mechanism as MB1 but reserves one half of the capacity for modifications that 
bring the blockiness of the stego image to its original value. As a result, MB2 is less 
detectable than MB1 at the expense of a two times smaller embedding capacity. Both 
methods perform better than F5 with matrix embedding and are significantly better 
than F5 without matrix embedding. Even for messages close to 100% capacity, the 



detection of MB2 is not very reliable. An ROC with ρ = 0.82 does not allow reliable 
detection with a small false positive rate (c.f., Fig. 2). Never the less, in the strict 
formulation of steganographic security, whenever the embedded images can be dis-
tinguished from cover images with a better algorithm than random guessing, the steg-
anography is detectable. Thus, we conclude that the Model based Steganography is 
detectable using our feature-based approach on our test database. 

F5 
 

OG 

MB1 
 

MB2 
Fig. 2. ROC curves for embedding capacities and methods from Table 2. 

 
For each steganographic method, we also measured the influence of each individ-

ual feature f as its detection reliability ρ(f) obtained from the ROC curve calculated 
from the single feature f and no other features. We acknowledge that the collection of 
individual reliabilities ρ(f) does not have to necessarily capture the performance of 
the whole detection algorithm in the 23 dimensional space. This is because it is possi-
ble that none of the individual features themselves has any distinguishing power, yet 
the collection of all features achieves a perfect detection. Never the less, we use ρ(f) 
as an indication of how much each feature contributes to the detection. 

In Table 2, we show the influence of each feature for each steganographic method 
for the maximal bpc rate. In the next section, we interpret the results and draw con-
clusions concerning the existing and future design principles of steganographic 
schemes for JPEG images. 

We note that in our tests, we did not include double compressed images. It is 
likely that such images would worsen our detection results. In agreement with the 



conclusion reached in [6], the double compression needs to be first estimated and 
then corrected for during the feature calibration. Although we have not tested this, we 
believe that the feature-based blind steganalysis would work in this case as well. 

4   Implications for Steganography 

The F5 algorithm uses a non-idempotent embedding operation (subtracting 1) to pre-
vent the attacks based on the chi-square attack and its generalizations [3–5]. It also 
makes sure that the global stego image histogram is free of any obvious artifacts and 
looks “natural”. In fact, it has been argued by its authors [13] that the stego image 
looks as if the cover image was originally compressed with a lower JPEG quality 
factor. However, the F5 predictably modifies the first order statistics and this is why 
the first six functionals are so influential (see Table 2). It is also not surprising that 
the dual histogram for 0 has a big influence because of the shrinkage. Note that the 
second-order statistics significantly contribute to the detection as well. Most features 
with the exception of dual histograms have high influence on detection. 

OutGuess 0.2 was specifically designed to preserve the global coefficient histo-
gram. However, OutGuess does not have to necessarily preserve the individual histo-
grams or the dual histograms, which is reflected by a relatively large influence for 
these functionals in Table 2. The most influential functional is the dual histogram for 
the values –1 and –2. This is again, understandable, considering the embedding 
mechanism of OutGuess. The values –1 and –2 determine the maximum correctable 
capacity of the method and thus form the most changed pair of values during the 
embedding (and the correction step). Although the coefficient counts are preserved, 
their positions in the JPEG file are highly disturbed, which is why we see a very high 
influence of features based on dual histograms for values –1 and –2. Another reason 
why OutGuess is more detectable than F5 is its low embedding efficiency of 1 bit per 
change compared to 1.5 for F5. 

Considering the large influence of the dual histogram, it seems feasible that one 
could design a targeted steganalytic scheme of the type described in [6] by using the 
dual histograms for values –1 and –2 as the distinguishing statistic. This is an exam-
ple how the blind analysis may, in turn, give us direct ideas how to estimate the 
length of the embedded message. 

What is somewhat surprising is that the global histogram also has quite a large in-
fluence on detection, despite the fact that it is preserved by OutGuess. We will revisit 
this peculiar finding when we discuss the results for Model Based Steganography 
below. Another seemingly surprising fact is that although L1 blockiness proved very 
useful in designing successful attacks against OutGuess [6], its influence in the pro-
posed detection scheme is relatively small (0.16). This fact is perhaps less surprising 
if we realize that the distinguishing statistic in [6] was the increase of blockiness after 
full re-embedding rather than the blockiness itself, which appears to be rather vola-
tile. 

Looking at the results in Table 1 and 2, there is no doubt that the Model Based 
Steganography [12,14] is by far the most secure method out of the three tested para-
digms. MB1 and MB2 preserve not only the global histogram but also all histograms 



of individual DCT coefficients. Thus, all dual histograms are also preserved. More-
over, MB2 also preserves one second-order functional – the L1 blockiness. Thus, we 
conclude that the more statistical measures an embedding method preserves, the more 
difficult it is to detect it. Consequently, our analysis indicates that it is possible to 
increase the security of JPEG steganographic schemes by identifying a set of key 
macroscopic statistical features that should be preserved by the embedding. It is most 
likely not necessary to preserve all 23 features to substantially decrease the detectabil-
ity because many of the features are not independent. 

One of the most surprising facts revealed by the experiments is that even features 
based on functionals that are preserved by the embedding may have substantial influ-
ence. One might intuitively expect that such features would have very small influ-
ence. However, as shown in the next paragraph, preserving a specific functional does 
not automatically mean that the calibrated feature will be preserved. Let us take a 
closer look at the L1 blockiness as an example. 

Preserving the blockiness along the original 8×8 grid (solid lines) does not mean 
that the blockiness along the shifted grid will also be preserved (see Fig. 2). This is 
because the embedding and deblocking changes are likely to introduce distortion into 
the middle of the blocks and thus disturb the blockiness feature, which is the differ-
ence between the blockiness along the solid and dashed lines. Consequently, it is not 
surprising that features constructed from functionals that are preserved still have 
some residual (and not necessarily small) influence in our feature-based detection. 
This is seen in Table 2 for both OutGuess 0.2 and the Model Based Steganography. 
Therefore, the designers of future steganographic schemes for JPEG images should 
consider adding calibrated statistics into the set of quantities that should be preserved 
during embedding. 

We further point out that the features derived from the co-occurrence matrix are 
very influential for all three schemes. For the Model based Steganography, these 
features are, in fact, the most influential. The MB2 method is currently the only JPEG 
steganographic method that takes into account inter-block dependencies between 
DCT coefficients by preserving the blockiness, which is an “integral” measure of 
these dependencies. Not surprisingly, the scalar blockiness feature does not capture 
all higher-order statistics of DCT coefficients. Thus, it seems that the next generation 
of steganographic methods for JPEG images should preserve both the marginal statis-
tics of DCT coefficients and the probability distribution of coefficient pairs from 
neighboring blocks (the co-occurrence matrix). Eventually, if the stego algorithm 
preserved all possible statistics of the cover image, the embedding would be pre-
sumably undetectable. Although this goal will likely never be achieved, as the em-
bedding algorithm preserves more “orthogonal or independent” statistics, its detect-
ability will quickly decrease. We firmly believe that incorporating a model for the co-
occurrence matrices and preserving it would probably lead to significantly less de-
tectable schemes. The Model based Steganography [14] seems to be an appropriate 
guiding principle to achieve this goal. However, the embedding operation should not 
be idempotent, otherwise targeted attacks based on re-embedding (c.f., the attack on 
OutGuess [6]) could likely be mounted. 

 



Fig. 2. Blockiness is preserved along the solid lines but not necessarily along the dashed lines 
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5   Summary and Future Research 

In this paper, we developed a new blind feature-based steganalytic method for JPEG 
images. Each feature is calculated as the L1 norm of the difference between a specific 
functional of the stego image and its cropped/recompressed version. This “calibra-
tion” can be interpreted as using the stego image as side information to approximately 
recover some parameters of the cover image. As a result, the calibration decreases 
image-to-image variations and thus enables more accurate detection.  

The features were calculated directly in the DCT domain as first and higher order 
statistics of DCT coefficients. This enables easier explanation of the impact of em-
bedding modifications on detection as well as direct interpretation of the detection 
results and easy formulation of design principles for future steganographic methods. 

We have applied the detection to several current steganographic schemes some of 
which are aware of the Cachin criterion [2]. The experimental results were carefully 
evaluated and interpreted. Conclusions concerning current and future steganographic 
schemes for JPEGs were also drawn. In particular, we concluded that 

 
1. Secure steganographic schemes must preserve as many statistics of DCT co-

efficients as possible. It is not enough to preserve the marginal statistics, e.g., 
the histograms. DCT coefficients exhibit block-to-block dependencies that 
must be preserved as well. 

2. A scheme that preserves more statistics is likely to be more secure than a 
scheme that preserves fewer statistics. Surprisingly, preserving more statistics 
may not necessarily lead to small capacity, as shown by Model Based Steg-
anography. This is also because many statistical features one can identify in 
an image are likely to be dependent. 

3. Even though a scheme may preserve a specific statistic ζ(X) of the cover 
JPEG image X, the calibrated statistic ζ(Compress(Crop(X))) calculated from 
the cropped/recompressed image may not necessarily be preserved, thus 
opening the door for attacks. Future steganographic schemes should add cali-
brated statistics to their set of preserved statistics. 



4. For all tested schemes, one of the most influential features of the proposed 
detection was the co-occurrence matrix of DCT coefficients (5), which is the 
probability distribution of coefficient pairs from neighboring blocks. We hy-
pothesize that a scheme that preserves marginal statistics of DCT coefficients 
and the co-occurrence matrix (which captures block-to-block dependencies) 
is likely to exhibit improved resistance to attacks. For this purpose, we pro-
pose the Model Based Steganography paradigm [12,14] expanded by the 
model for joint probability distribution of neighboring DCT coefficients. 

 
Although the calibration process is very intuitive, we currently do not have a quanti-
tative understanding of how much information about the cover image can be obtained 
from the stego image by calibration. For example, for images that contain periodic 
spatial structures with a period that is an integer multiple of 8, the calibration process 
may give misleading results (c.f., the spatial resonance phenomenon [6]). In this case, 
it may be more beneficial to replace the cropping by other operations that will also 
break the block structure of JPEG images, such as slight rotation, scaling, or random 
warping. Further investigation of this issue will be part of our future research. 

In the future, we also plan to replace the Fisher Linear Discriminant with more so-
phisticated classifiers, such as Support Vector Machines, to further improve the de-
tection reliability of the proposed steganalytic algorithm. We also plan to develop a 
multiple-class classifier capable of recognizing stego images produced by different 
embedding algorithms (steganographic program identification). 
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