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Abstract—The bag gain relates to a gain in security due to
spreading payload among multiple covers when the steganog-
rapher maintains a positive communication rate. This gain is
maximal for a certain optimal bag size, which depends on the
embedding method, payload spreading strategy, communication
rate, and the cover source. Originally discovered and analyzed
in the spatial domain, in this paper we study this phenomenon
for JPEG images across quality factors. Our experiments and
theoretical analysis indicate that the bag gain is more pronounced
for senders that assign payloads based on image content more
aggressively and maintain a fixed payload per bag in terms of
bits per DCT rather than per non-zero AC DCT. We also observe
a larger bag gain for higher JPEG qualities.

Index Terms—Batch steganography, pooled steganalysis,
JPEG, bag gain

I. INTRODUCTION

In batch steganography, the sender spreads the secret pay-
load among multiple cover images (a bag) to decrease the
chances of being detected by the Warden. The Warden pools
evidence from the same bag of images to detect the use
of steganography, a process known as pooled steganalysis.
This is achieved by fusing soft outputs of Warden’s Single-
Image Detector (SID) applied to each image in the bag. Batch
steganography and pooled steganalysis has been introduced
by Ker in 2006 [1] and has since been a subject of intense
research [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14].

With the introduction of content-adaptive steganography
researchers began studying payload spreading strategies that
allocate chunks of the secret payload based on how detectable
the embedding is in each image. The authors of [7] considered
an omniscient Warden pooling optimally using the likelihood
ratio test derived from a Gaussian model of Warden’s detector
output and three heuristic batch senders: the Image Merg-
ing Sender (IMS) and the Distortion / Detectability Limited
Senders (DiLS / DeLS). The paradigm of Gaussian embedding
with Gaussian pixel model has been extended to the IMS
and its improved version called Adaptive Batch size Image
Merging sender (AdaBIM) in [8], [13]. Detector-informed
spreading strategies called Minimum Deflection Sender (MDS)
and Shift Limited Sender (SLS) with an omniscient Warden
were studied in the spatial domain in [12]. The authors also
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reported on a new phenomenon called the bag gain. Batch
steganography in the JPEG domain for a Warden unaware of
the spreading strategy was studied in [11].

Figure 1 is an illustrative example of the bag gain showing
the accuracy of Warden’s pooled detector as a function of
number of images sent (the bag size B). The pooled detector’s
accuracy initially decreases with increasing B, then levels off,
and eventually increases as the square-root law [15] inevitably
engages since the sender maintains a positive communication
rate. The bag gain is the maximal drop in detectability. It
has been observed in the spatial domain for all batch senders
studied in [12], for many types of SIDs and pooled detectors,
and for differently informed Wardens. The bag gain was
analyzed and explained in [16] with a simple source model. In
particular, it was shown to robustly manifest for batch senders
that, loosely speaking, embed larger payloads in hard-to-
steganalyze images and small payloads in easy-to-steganalyze
images. Since the bag gain occurs for bag sizes that can be
used in practice, the steganographer can decrease the chances
of being caught simply by selecting a bag size that is neither
too big nor too small.

In general, the manifestation of the bag gain depends on
many factors, including the average communication rate, the
response of the SID used for pooling, the aggressiveness of
the batch sender to assign payloads, and the cover source. The
work of Zakaria et al. [11], for example, does not show the
bag gain because the results are reported over multiple batch
senders and rates that were too large. To the best of knowledge
of the authors, the bag gain has not been studied in the JPEG
domain, which is the main focus of this paper.

In the next section, we describe batch steganography and
pooled steganalysis in a more formal manner and introduce
all necessary concepts and terminology. Section III describes
the batch senders and Warden’s poolers studied in this paper.
The setup of our experiments and implementation details
appear in Section IV with the results of all experiments, their
interpretation, discussion, and analysis laid out in Section V.
The paper is concluded in Section VI.

II. BATCH STEGANOGRAPHY AND POOLED STEGANALYSIS

A cover bag of size B, X = (X
(1)
0 , . . . , X

(B)
0 ), is formed

by independently selecting B cover images X(1)
0 , . . . , X

(B)
0

from a cover source of equally sized JPEG images, each
with a total of N DCT coefficients. We assume that the
steganographer maintains a fixed communication rate r in
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Figure 1. An illustrative example of the bag gain. Pooled detector’s accuracy
is shown as a function of bag size B. The steganographer can gain security
by spreading payload among BGain cover images.

terms of either bits per DCT coefficient (bpc) or bits per
non-zero AC DCT coefficient (bpnzac). This assumption is
reasonable as a steganographic channel is likely to be used
repetitively in practice. For a fixed positive rate r, the sender
will eventually be caught due to the square root law.

In this paper, the relative payload αi to be embedded in X(i)
0

will always be measured in terms of bpc. A batch spreading
strategy is a mapping that assigns payload chunks αi bpc to
all images in X so that the payload constraint is satisfied.
Denoting the number of non-zero AC DCTs in X(i)

0 as Ni ≤
N , the payload constraint is

B∑
i=1

αi = r × c(X), (1)

where c(X) = B for rate r in bpc and c(X) =
∑B
i=1Ni/N

for r in bpnzac. The steganographer produces the ith stego
image X(i)

αi by embedding X(i)
0 with payload of length αi.

Given an intercepted bag of B images Y =
(Y (1), . . . , Y (B)), the Warden infers whether steganography is
being used by performing the following composite hypothesis
test:

H0 : r = 0

H1 : r > 0.
(2)

The Warden “pools” the evidence Y together by using a
pooled detector (or “pooler”). We assume the Warden’s de-
cision is solely informed by the collection of outputs of a
SID, which is a mapping d that assigns to each image a scalar
referred to as the soft output (or response) of the detector.
Formally, the Warden’s pooler is of the form π : RB → R,
and she infers whether the sender uses steganography by
computing d(Y (i)) for all i = 1, . . . , B and comparing
π(d(Y (1)), . . . , d(Y (B))) against a threshold determined by
some application-dependent requirements.

III. BATCH SENDERS AND POOLERS

We restrict our study to the IMS [7] and the MDS [12], [16].
The IMS is a well studied sender, which is a natural extension

of steganography from a single image to a bag. It considers the
entire bag as one large image and lets the embedding algorithm
allocate the payload. The MDS was included because it is the
most amenable to analysis within the context of a statistical
model of the SID [16] and also the appendix. The model will
help us understand, explain, and analyze trends observed in
experiments in Section V.

A. MDS

The MDS assumes the Warden’s hypothesis test has the
following form (2):

H0 : d(Y (i)) ∼ N (µi, σ
2) for all i

H1 : d(Y (i)) ∼ N (µi + si(αi), σ
2) for all i,

(3)

where Y (i) are the images from a bag under inspection by
the Warden and αi is the payload possibly residing in the
ith image. The distribution of Warden’s detector under H0

is over acquisitions of the same scene with the same camera
and settings. The Gaussianity is heuristically justified by the
independent heteroscedastic acquisition noise model [17] and
the fact that d can be linearized on a small neighborhood
of the noise-free scene. Furthermore, notice the additional
simplifying assumption in (3) that the variance does not
depend on i or αi.

Assuming the parameters of the distributions in this hy-
pothesis test are known to the Warden, the most powerful
pooled detector is the likelihood ratio test. The detectability of
steganography in a single bag is determined by the deflection
coefficient

∆2(X) =

B∑
i=1

s2
i (αi)

σ2
=

B∑
i=1

(%i(αi)− %i(0))
2

σ2
, (4)

where
%i(α) = E[d(X(i)

α )|X(i)
0 ] (5)

is the so-called response curve of ith cover image for detector
d, with the expectation taken over embedding X

(i)
0 with

random messages of length α and stego keys. Note that %i(α)
is assumed to be independent of the specific cover acquisition
X

(i)
0 .
Assuming that the sender uses the same SID d as the

Warden,1 the MDS minimizes the power of Warden’s most
powerful detector by selecting αi that minimize ∆2(X) sub-
ject to the payload constraint (1).

B. Poolers

In this paper, we use two types of SIDs: a binary classifier
trained on a random uniform mixture of payloads (in terms of
bpnzac) and a quantitative detector that returns an estimate of
the length of the hidden payload.

We have investigated many different types of poolers but
report only on their subset that performed the best. As the

1In reality and also in this paper, the detector used by the sender and the
Warden do not match, hence the MDS will not be guaranteed to be optimal
w.r.t. Warden’s detector.



simplest uninformed pooler, we consider the average of soft
SID outputs on analyzed images Y (i):

πAVG(Y) =
1

B

B∑
i=1

d(Y (i)). (6)

For a Warden aware of the spreading strategy and rate r,
we also use the correlator

πCOR(Y) =

B∑
i=1

d(Y (i))α̂i, (7)

where α̂i is the payload that might reside in ith image
estimated by the Warden from the images at hand. For the
IMS with J-UNIWARD [18], the payloads estimated from the
stego images are nearly identical to the payloads computed
from covers. This small estimation error has basically no effect
on the detection accuracy. For the detector-aware MDS, the
payloads need to be estimated from the response curves of
the sender’s detector. Since the Warden will generally not have
access to this detector, there will always be an estimation error.
Per our experiments, and in line with the findings reported
in [12], this estimation error has a negligible effect on the
detection accuracy. Hence, in all our experiments, we assume
the worst case scenario for the sender and set α̂i = αi.

We have also experimented with the max pooling strategy
πMAX(Y) = maxi d(Y (i)) as well as machine learning
poolers trained as Gaussian support vector machines for each
bag size separately but do not report on them because the
max pooler performed very poorly, while the learned poolers
performed essentially the same as the average and the corre-
lator when adding the payloads to the feature vector formed
by outputs of the SID.

The implementation details of the MDS and both SIDs
appear in Section IV-A.

IV. EXPERIMENTAL SETUP

For compatibility with our previous work [12], all exper-
iments were executed on ALASKA II dataset with 75,000
images split into three parts (Split 1, 2, and 3), each containing
25,000 images further divided into 22k, 1k, and 2k images for
training, validation, and testing. The images were developed as
in [19] and then compressed with scipy.dct with a range
of quality factors. The splits are used to study the impact of
a mismatched training set for training Warden’s detector and
for training poolers. Alice uses the test set of Split 1 to send
her secret messages in bags of size B by sampling B images
without replacement. To conduct the evaluation, we utilize a
specific number of test bags for each bag size. We use 2000
test bags for bag sizes 1 to 10, 1000 test bags for bag sizes
15, 20, 30, and 250 test bags for bag sizes 60 and 120.

Our study includes JPEG qualities 98, 95, 90, 85, and
75 and two payload constraints to show how the bag gain
depends on the quality factor and the way an average payload
is maintained over time. Because of the sheer amount of
possible combinations of the steganographer’s detector, the
Warden’s detector, stego schemes, communication rates r,

bag sizes, and spreading / pooling strategies, we limit our
exposition to one content-adaptive steganographic scheme, the
J-UNIWARD [18]. The average communication rate r was
selected to best demonstrate the bag gain phenomenon and
avoid degenerate cases when the detection is too close to
random guessing or almost perfect.

A. Implementation details

For spreading, the MDS uses a single-image detector (SR-
Net1) trained on Split 1. Splits 2 and 3 are used by the
Warden who trains her SID as another instance of SRNet
(SRNet2) on Split 2. Both network detectors were pre-trained
on a binary task of steganalyzing J-UNIWARD [18] (JIN
pre-training [20]). The binary classifier SID was trained by
drawing stego images embedded with relative payloads in
terms of bpnzac selected uniformly at random from the set

P = 0.05, 0.1, 0.2, . . . , 0.9, 1. (8)

The quantitative detector, which we abbreviate qSID, is also
another instance of SRNet (SRNet2) pre-trained on a binary
task of steganalyzing J-UNIWARD [18]. However, the qSID
was trained using an L2 loss by generating stego images in a
similar manner to SID on a refined payload grid (minibatches
were formed by uniformly randomly sampling images with
payloads from Pfine ∪ {0})

Pfine = 0.01, 0.02, ..., 0.09, 0.1, 0.2, . . . , 0.9, 1. (9)

We use this form of the qSID rather than the previous state
of the art [21] since the end-to-end training and architecture
simplifies the computational cost of experiments. Since the
design of quantitative detectors is not the subject of our current
work, we refrain from including a more extensive comparison
between these two quantitative detectors. We do note that when
compared with the bucket estimator from [21] in the spatial
domain using the same settings as described in [21], our end-
to-end trained estimator achieved 10% better performance in
terms of MSE and MAE (mean absolute error) scores.

The IMS was implemented by considering a given bag of
B images each with N DCTs as a single large image into
which the total payload was embedded using an embedding
simulator. The costs were pre-computed from single images.

For MDS implementation, we employ a logistic model of
response curves exactly as described in the original publica-
tion [12]. Response curves were estimated from a fine fixed
grid of payloads in terms of bpnzac (9) (and thus variable
from image to image in terms of bpc). We also capped the
capacity of all images at 1 bpnzac because this payload is
very detectable in our cover source.

Since the maximal capacity of each image is 1 bpnzac, to
avoid problems with satisfying the payload constraint in bpc
for small bag sizes, we ensure all images in the bag have
a sufficient number of non-zero AC coefficients to meet the
desired rate. Images with not enough non-zero AC coefficients
are excluded from the bag formation process. Typically, this
eliminates less than 1% of images from the test set of Split 1.



V. RESULTS

In Figure 2, we show the pooler’s weighted Area Under
the Curve (wAUC) [19] on the test set as a function of the
bag size B for two quality factors, two senders, two payload
constraints, and two poolers with SID and qSID. In agreement
with the analysis in [16], the bag gain is larger for the larger
quality factor because higher-quality JPEGs are more likely
to have flatter response curves (and thus be able to hold large
payloads). The bag gain is also larger for the MDS because
it assigns payloads more aggressively than IMS. Interestingly,
maintaining a fixed bpc per bag leads to larger bag gain than
bpnzac. This effect is explained in the appendix from the same
bivariate model of response curves as in [16]. Furthermore,
we note that SID outperforms qSID in all configurations. We
attribute it to the fact that qSID lacks accuracy for smaller
payloads. Therefore, going forward we only employ poolers
equipped with the binary SID.

Figure 3 shows the bag gain as a function of JPEG quality
for the IMS and MDS for both payload constraints when
steganalyzed with the best pooler. The gain is generally smaller
for IMS than for MDS and significantly smaller for the payload
constraint in bpnzac. We explain this using a model in the
appendix. Additionally, we observed that the bag size where
the bag gain occurs is larger for MDS than for IMS for both
forms of the payload constraint.

The bag gain does not manifest for rates that are too large
(the detectability monotonically increases with B) or too small
as in this case the dip “drowns” in statistical fluctuations
because poolers perform as random guessers for small B.
In Figure 4, we show the bag gain for quality 95, the bpc
payload constraint, the MDS, and the best pooler to show the
dependence on the rate r. Similar trends can be observed for
other quality factors and the IMS.

It is difficult if possible to contrast the JPEG domain
with the spatial domain because the embedding algorithm is
different and so is the cover source. Relating to Figure 11
from [12], the bag gain for the MDS in the spatial domain
with HILL as the stego scheme is significantly larger than for
the IMS. In contrast, the difference between IMS and MDS
is much smaller in the JPEG domain. This is because the
IMS with J-UNIWARD is comparable in its aggressivity to
assign payloads with the MDS (unlike the IMS with HILL). To
substantiate this claim, in Figure 5, we plot the distribution of
the maximal payload assigned by IMS and MDS in bag sizes
corresponding to the bag gain in two different domains. The
top histogram corresponds to HILL at 0.3 bpp and bag size
B = 16 while the bottom histogram shows the distribution
for J-UNIWARD at 0.1 bpc for quality factor 95 and bag size
B = 15. The IMS with HILL in the spatial domain does
not assign the largest payloads nearly as aggressively as the
MDS. In contrast, the IMS and MDS with J-UNIWARD are
more similar in terms of payload assignment aggressivity.

VI. CONCLUSIONS

When a batch sender maintains a fixed communication rate
and assigns payloads to images based on detectability, the

security is maximal when the payload is spread among a
certain number of images. This gain in security is called the
bag gain. In the current paper, we study this phenomenon in
the JPEG domain. Our experimental findings are supported
with analysis from a simple source model. In particular, the
bag gain is more significant for larger JPEG qualities and
for batch senders that assign the payload chunks to images
in a more aggressive manner. Also, the bag gain is more
pronounced when the sender maintains a fixed rate in terms of
bits per DCT coefficient than per non-zero AC DCT coefficient
because the latter constraint decreases the diversity of stego
bags. The bag gain and the optimal bag size depend on the
rate and the type of the batch sender. For the image merging
sender, the gain can be up to 0.04 in terms of wAUC of the
pooled detector (for high qualities) and up to 0.065 for the
minimum deflection sender. Since the optimal bag size ranges
from 2 to 8, the results are relevant for practitioners.

The bag gain largely disappears for very low JPEG qualities
because the embedding is generally more detectable in such
images and there are not enough images that are complex
enough to safely hold large payloads.
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APPENDIX

EFFECT OF PAYLOAD CONSTRAINT ON BAG GAIN

As shown in [16], many experimentally observed trends in
detectability as a function of bag size for the MDS can be
explained with a linear model of response curves (5),

%i(αi)− %i(0) = biαi, bi ≥ 0 (10)

and a bivariate model of slopes bi ∈ {ε, 1}

P(bi = ε) = p

P(bi = 1) = 1− p, (11)

where 0 < ε � 1 and p ∈ [0, 1]. In other words, the cover
source consists of two types of images—easy to steganalyze
images with slope b = 1 and difficult images with slope ε,
which can hold a large payload with a virtually unchanged
detector response. Due to the different statistical makeup of
small and large bags, the detectability initially decreases, then
levels off, and eventually increases due to the square root law.
The advantage of the simple model (10) and (11) is a closed
form2 for MDS payloads

αi =
r × c(X)

b2i
∑B
k=1

1
b2k

, (12)

that minimize the deflection (4). Denoting the number of
images with slope ε in bag X with Cε ∈ {0, 1, . . . , B},

2This is because we minimize a function quadratic in αi with a linear
payload constraint. Technically, the solution requires the payloads to be
unbounded.
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∑B
k=1

1
b2k

= ε−2Cε + B − Cε and the deflection ∆2(X) =

1/σ2
∑B
i=1 b

2
iα

2
i becomes

∆2(X) =
r2c2(X)

σ2(ε−2Cε +B − Cε)
. (13)
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pooler.

Note that Cε follows a binomial distribution on its support
across bags X. As shown in [16], when c(X) = B the trends
exhibited by the expected deflection with respect to B, ε,
and p qualitatively match experiments on real datasets. The
bag gain will manifest as long as larger bags contain enough
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hard-to-steganalyze images on average and the batch sender
is aggressive enough in assigning the payload (IMS or MDS).
The reader is referred to [16] for a detailed analysis of the
above model and its ability to explain many interesting trends
in detectability observed in experiments.

To understand why the bag gain is less pronounced for the
payload constraint in bpnzac, note that the response curve is
generally steeper (has a larger slope b) for images with fewer
non-zero DCTs as such images are smoother. In contrast,
highly textured / noisy images, which are more difficult to
steganalyze, will have smaller slopes and a larger number of
non-zero DCTs Ni. Hence, there is an approximate inverse
proportionality between bi and Ni: Ni ∝ 1/bqi for some q > 0.
We note that for q = 0, c(X) ∝

∑B
i=1 1/bqi = B, which

corresponds to the payload constraint in bpc (1). If we model
the relationship for bpnzac with q = 2, c(X) = 1

N

∑B
i=1Ni ∝∑B

k=1
1
b2k

, and (13) simplifies

∆2(X) ∝
B∑
i=1

b2i
c2(X)

b4i

(∑B
k=1

1
b2k

)2 (14)

∝
B∑
i=1

1

b2i
= ε−2Cε + (B − Cε). (15)

Since Cε has a binomial distribution, the expectation of the de-
flection increases monotonically w.r.t. bag size B, suppressing
the manifestation of the bag gain.
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