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Explaining the Bag Gain in Batch Steganography
Eli Dworetzky and Jessica Fridrich, Fellow, IEEE

Abstract—In batch steganography, the sender distributes the
secret payload among multiple images from a “bag” to decrease
the chance of being caught. Recent work on this topic described
an experimentally discovered phenomenon, which we call the
“bag gain”: for fixed communication rate, pooled detectors
experience a decrease in statistical detectability for initially
increasing bag sizes, providing an opportunity for the sender
to gain in security. The bag gain phenomenon is universal in the
sense of manifesting under a wide spectrum of conditions. In this
paper, we explain this experimental observation by adopting a
statistical model of detector response. Despite the simplicity of
the model, it does capture observed trends in detectability as a
function of the bag size, the rate, and cover source properties.
Additionally, and surprisingly, the model predicts that in certain
cover sources the sender should avoid bag sizes that are too small
as this can lead to a bag loss.

Index Terms—Batch Steganography, Pooled Steganalysis

I. INTRODUCTION

The problem of batch steganography and pooled steganal-
ysis has been introduced by Ker in 2006 [16] and has since
been a subject of intense research [17], [19], [22], [13], [20],
[24], [26], [27], [25], [32], [31], [30]. Batch steganography
deals with the situation when the sender spreads her payload
among multiple covers (a bag of cover images) to decrease
the Warden’s chances of detecting the use of this stealth
communication channel. As formulated in the original work of
Ker [16], if the steganographer is allowed to spread payload
among multiple images, the Warden (or steganalyst) is free to
pool evidence from the same multitude of images to detect the
use of steganography, a process known as pooled steganalysis.
In particular, the Warden uses a so-called pooled detector (or
“pooler”) to decide whether a bag of images in its entirety is
stego.

Intuitively, to improve security images that are harder to
steganalyze should receive a larger payload and vice versa.
Such batch senders have originally been studied in [26]. Most
notably, the authors studied the so-called Image Merging
Sender that assigns payloads to images from the bag by con-
sidering their union as a single larger image in which a mes-
sage is embedded with some content-adaptive steganographic
algorithm. This sender has also been studied in [27], [1] and
most recently in [30]. In particular, our previous work [30]
considered the scenario where both the sender and the Warden
use feedback from a single-image steganography detector. Two
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Figure 1. The universal trend of a pooled detector’s accuracy as a function
of bag size B when a fixed positive communication rate is maintained. In
the small bag regime, it is possible for the steganographer to gain security by
spreading payload among BGain cover images. In the large bag regime, the
detectability monotonically increases with bag size.

batch methods were introduced to exploit the information
gain from a detector’s feedback and were compared with the
detector-agnostic Image Merging Sender, bringing insight into
the practical design of detector-informed senders and poolers.
Importantly, we [30] experimentally observed a surprising and
counter-intuitive phenomenon for all studied batch senders
when maintaining a positive average communication rate
across bags. It is advantageous for the sender to use a bag
size that is neither too big nor too small to minimize the
chances of being caught. Figure 1 is an illustrative example of
this phenomenon showing the accuracy of Warden’s pooled
detector as a function of number of images sent (the bag
size B). When pooling evidence from a bag of B images
the pooled detector’s accuracy as a function of B initially
decreases with increasing B, then levels off, and eventually
increases as the Square-Root Law (SRL) [18], [21] inevitably
engages since the sender maintains a positive communitation
rate. The maximal drop in detectability, which we call the
bag gain, has been observed for all batch senders studied
in [30] and for all types of pooled detectors built upon various
single-image detectors in the form of rich models as well
as convolutional neural networks. It thus appears as a robust
phenomenon.

The effect of bag size on security was also previously
studied in [27] within the context of Gaussian embedding
extended to batch senders. While the authors briefly note
what appears to be the bag gain in their experiments, it
is not clear how and whether their observation, which was
obtained with a single-image source detector, extends to a
pooled detector. Indeed, as argued below in this paper and
as acknowledged by the authors of [27], to properly assess
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the performance of batch steganography with pooled detectors,
one needs to consider the variability of images within bags,
which necessitates adopting a model of cover source diversity,
an element missing from [27] as well as [1].1 Finally, we note
that the bag gain did not manifest in previous art [26] because
all senders studied in this work embed a variable payload per
bag (the rate is maintained only in expectation) based on tags
assigned to all images from the cover source computed from
an infinitely large bag.

In this paper, we provide an explanation of the bag gain
by adopting a model for the soft output of a steganography
detector. By suitably simplifying the problem, we become
able to analytically study how the bag gain is affected by
the detector response, batch sender, cover source, bag size,
and communication rate. In a nut shell, the bag gain fol-
lows from the square root law, which states that, when the
sender maintains a fixed communication rate, the detectability
increases with the number of images sent (the bag size). Due
to the variability of images across bags, however, the law
engages differently in bags of different sizes.2 The bag gain
phenomenon is important for practitioners because the sender
can gain on security by spreading the message across multiple
images by properly selecting their number (the size of the bag).
This gain can be significant and it occurs for bag sizes that
can be used in practice.

In the next section, we describe the general setup for batch
steganography and pooled steganalysis as considered in this
paper. The purpose of Section III is to adopt suitable modeling
assumptions that allow us to derive a closed form expression
for the performance of Warden’s optimal pooled detector. We
also describe the batch sender analyzed in this paper. To
capture the diversity of images across bags, in Section IV we
adopt a model for the response of a single-image steganogra-
phy detector on stego images. This model is the key element
of our approach as it permits analytic study of the bag gain
in Section V, which holds the main bulk of our theoretical
results. In particular, we derive a closed-form expression for
statistical detectability as a function of the bag size and other
parameters describing the cover source and detector response.
The derived formulas are contrasted with the performance of
a machine learning based pooled detector on real images in
Section VI. The model correctly predicts the initial drop in
detectability with increasing B. It also captures experimentally
obtained trends in detectability vs. the communication rate
(Section V-B3). The model additionally predicts a possible bag
loss for bag sizes that are too small, which is experimentally
confirmed in real datasets. In Section VII, we extend our
analysis to a parametrized family of batch senders to study
how the bag gain depends on how strongly the senders adapt
the payloads to images from the bag. In Section VIII, we
contrast our work with relevant prior art on adaptive bag size.
The paper is concluded in Section IX.

Throughout this paper, we use N (µ, σ2) to denote a
normal (Gaussian) distribution with mean µ and variance

1More on the relationship between [27], [1] and our work appears in
Section VIII.

2Detailed analysis and explanation of the bag gain appears in Section V-A
with a summary in plain language presented in the conclusions (Section IX).

σ2. The standard normal tail probability function is denoted
Q(x) =

∫∞
x

(2π)−1/2e−z
2/2dz. Symbols P and E are used

for probability and expectation. For a logical statement P , the
indicator function, denoted 1P , is equal to 1 when P is true
and 0 when P is false. The operation of flooring (rounding to
the nearest integer k ≤ x) is denoted bxc.

II. BATCH STEGANOGRAPHY FORMULATION

Let X denote the set of all possible cover images of some
fixed size. A cover bag of size B, X = (X

(1)
0 , . . . , X

(B)
0 ),

is formed by independently selecting B cover images
X

(1)
0 , . . . , X

(B)
0 ∈ X according to some probability distribu-

tion over X . This means that in this paper we do not consider
batch senders that select specific covers for embedding since
such senders skew the cover source distribution, which would
be detectable on its own.

To simplify our analysis and without loss on generality of
our conclusions, we will assume that each image from X can
be embedded at full capacity of log2 3 bits per pixel (bpp) with
a ternary steganographic scheme. In other words, we assume
that images do not contain “wet” pixels [9].

We assume that the steganographer maintains a fixed com-
munication rate r ∈ [0, log2 3] bpp. This assumption is
reasonable as a steganographic channel is likely to be used
repetitively in practice. For a fixed positive rate r expressed
in terms of bits per pixel (bpp), the sender will eventually be
caught due to the square root law (SRL) [18], [21].

A batch spreading strategy S is a mapping αr,S : XB →
[0, log2 3]B that determines the relative payloads (in bpp)
embedded in the B images.3 When r, S, and X are clear
from context, we simply write αi ∈ [0, log2 3] to denote the
ith component of αr,S(X), i.e., the relative payload embedded
in the ith image. The map αr,S must satisfy the payload
constraint

∑B
i=1 αi = rB. The steganographer produces the

ith stego image X(i)
αi by embedding cover X(i)

0 with payload
of size αi bpp using a ternary steganographic scheme.

Next, we provide a general formulation of pooled ste-
ganalysis. Given an intercepted bag of B images Y =
(Y (1), . . . , Y (B)), the Warden infers whether steganography is
being used by performing the following composite hypothesis
test:

H0 : r = 0

H1 : r > 0.
(1)

The Warden “pools” the evidence Y together by using a
pooled detector (or “pooler”). We assume the Warden’s deci-
sion is solely informed by the collection of outputs of a single-
image steganography detector, which is a mapping d : X → R
that assigns to each image a scalar referred to as the soft output
(or response) of the detector. Formally, the Warden’s pooler is
of the form π : RB → R, and she infers whether the sender
uses steganography by computing d(Y (i)) for all i = 1, . . . , B
and comparing π(d(Y (1)), . . . , d(Y (B))) against a threshold
determined by some application-dependent requirements, such
as controlling the false alarm.

3Notice that the mapping is deterministic as we are not considering
randomized spreading strategies in this paper.
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In the next two sections, we simplify the formulation above
in order to study the bag gain phenomenon analytically. Our
approach is detector-centric in the sense that we

1) impose statistical models on the response of the detector
d on cover and stego images and let all actors share
information (next section)

2) model the diversity of bags with a suitably simplified sta-
tistical model of the so-called detector response curves
that express the dependence of the detector output on
message length (Section IV).

III. MODELING ASSUMPTIONS

This paper’s goal is to analytically capture and intuitively
explain the experimentally observed bag gain phenomenon.
This necessitates a rather significant simplification of the setup
described in the previous section in terms of what knowledge
is available to all actors and in terms of modeling assumptions
to facilitate an analytically tractable analysis. To this end,
we introduce the concept of acquisition oracle and make
specific assumptions about statistical properties of a single-
image detector when applied to cover and stego images. We
also introduce the batch sender studied in this paper.

The act of taking an image with a digital camera introduces
randomness into the image due to numerous acquisition noise
sources, such as the shot (photonic) noise, the readout noise,
and thermal noise [15]. Thus, taking multiple images of the
exact same scene with the same camera would produce slightly
different images that follow a statistical distribution, which
we call in this paper an acquisition oracle, a concept that
found many uses in steganography in the past [2], [10], [11],
[28], [29]. Given a collection of cover images indexed by
i = 1, . . . , B, we consider the specific cover image X(i)

0 used
by the sender as a sample from the oracle.4 This oracle will
provide us with the means to narrow down the distribution
of d(Y (i)) under both hypotheses. As will become apparent
in the next section, in this paper we will only need to
make assumptions on the distribution of detector outputs on
the realizations of the oracle, avoiding thus the potentially
complex task of modeling the oracle itself.

A. Gaussianity and local shift hypothesis

First, we take advantage of the fact that, for each i, the
distribution of the ith cover image X(i)

0 is concentrated on a
small subset of X (multiple images of the same ith scene taken
with the same camera differ only slightly). Since differentiable
non-linear functions are approximately linear on sufficiently
small neighborhoods, we can employ the central limit theorem
(CLT) so that5

d(X
(i)
0 ) ∼ N (µi, σ

2
i ), (2)

where µi and σ2
i are the expected value and variance of

d on cover images generated by the acquisition oracle for
the ith scene. Since stego schemes try to preserve statistical

4Note that the oracle is a conditional distribution describing the distribution
of images (acquisitions) of a specific scene.

5Modern single-image detectors d are often neural networks with differen-
tiable structure.

properties of X(i)
0 , the embedding process will also preserve

the concentration. Therefore, by the same argument we assume
that d(X

(i)
αi ) is also Gaussian6

d(X(i)
αi

) ∼ N (µi + si(αi), σ
2
i ) (3)

with an additional assumption that only the mean is affected
by embedding but not the variance. This local shift hypothesis
is a much weaker assumption than the shift hypothesis [26]
about the global distribution of detector response which is not
satisfied for modern steganalyzers in the form of rich models
and CNNs (see Sec. 3.2 in [30]).

Technically, the variance of d(X
(i)
αi ) also depends on αi

because of the added randomness in the form of the stego
key selection and the message itself. We do not consider this
dependence in order to further simplify the modeling and also
because the acquisition noise dominates the statistical spread
because it is stronger than the stego noise.

Finally, to avoid modeling the distribution of the variances
σ2
i across images from X and the oracle itself, we assume all

variances are the same across scenes σ2
i = σ2.

B. Uniformity of response increase

The response curve (RC) for image X(i)
0 and detector d is

the function %i : [0, log2 3]→ R defined by

%i(α) = E[d(X(i)
α )|X(i)

0 ]. (4)

Given the payload size α and a fixed cover X(i)
0 , %i(α) is the

expected value of the response d(X
(i)
α ) when embedding X(i)

0

with random messages and stego keys.
Since the detector is trained to be sensitive to embedding

changes but not acquisition noise, we assume the expected
increase in detector response is uniform across all possible
acquisitions

%i(α)− %i(0) = si(α) (5)

for all realizations of X(i)
0 . This assumption allows us to

compute the expected shift si(α) from a specific cover image,
which simplifies analysis and practical implementations.

C. Warden’s test
Equipped with a single-image detector d that adheres to the

assumptions above, the Warden’s hypothesis test (1) becomes:

H0 : d(Y (i)) ∼ N (µi, σ
2) for all i

H1 : d(Y (i)) ∼ N (µi + si(αi), σ
2) for all i,

(6)

where Y (i) are the images from a bag under inspection by the
Warden and αi is the payload residing in the ith image.

Assuming the parameters of the distributions in the hy-
pothesis test (6) are known to the Warden, the test becomes
simple and the Warden’s most powerful pooled detector is the
likelihood ratio test. The detectability of steganography in a
single bag is determined by the deflection coefficient

∆2(X) =

B∑
i=1

s2
i (αi)

σ2
=

B∑
i=1

(%i(αi)− %i(0))
2

σ2
, (7)

6The random variable X(i)
αi

is generated by 1) sampling X
(i)
0 from the

oracle and 2) embedding a random message with a random stego key.
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where si(αi) can be computed via %i(αi) − %i(0) given any
oracle realization X(i)

0 .

D. Minimum deflection sender

As a batch sender for our study, we selected the detector-
informed Minimum Deflection Sender (MDS) introduced
in [30] because it is the most amenable to analysis within the
context of a statistical model of the detector. As will be argued
in Section VII, the bag gain generally manifests for batch
senders that minimize the risk of being detected by assigning
larger payloads to images that are difficult to steganalyze and
smaller payloads to images in which the embedding is more
detectable. In particular, the bag gain has also been observed
for the detector-agnostic Image Merging Sender (IMS) [26]
and detector-aware Shift Limited Sender (SLS) [30].

The MDS makes use of a single-image detector, which we
will assume is the same as the one used by the Warden.
Given a bag of images X, the MDS selects payloads αi that
minimize the deflection (7). Formally, αi are found by solving
the following optimization problem

minimize ∆2(X),

s.t.

B∑
i=1

αi = rB, αi ∈ [0, log2 3] ∀i, (8)

where r ∈ [0, log2 3] is a chosen embedding rate in bpp. A
general solution is given in Appendix B.

Granting the Warden and the MDS access to the same
detector d makes the MDS the optimal batch sender—it
minimizes the power of the Warden’s most powerful detector.

E. Discussion

Our setup assumes the actors are omniscient. Among other
things, the Warden knows the steganographic method used by
the sender, the payloads αi possibly embedded in each image,
the communication rate r, and the bag size B. Moreover,
the sender and the Warden share the same single-image
detector. While it is certainly of interest to study more relaxed
setups and perhaps even probabilistic strategies within game
theory, such scenarios would require adopting and justifying
additional models on how accurately the Warden can estimate
the payloads αi, on the nature of the mismatch between the
detectors, etc. The fact that our conclusions regarding the bag
gain based on the simplified setup do capture trends observed
in real-life situations testify to their relevance.

Having said this, we wish to point out to the reader that
the bag gain has been observed in experiments under much
more relaxed conditions, including different pooling strategies,
mismatched and qualitatively different detectors built using
various machine-learning paradigms, and when the Warden
needs to estimate the embedded payloads from the images at
hand. The reader is advised to inspect Section 7 in [30] for
more details.

IV. RESPONSE CURVE MODEL

In order to analyze the trends of detectability w.r.t. the
bag size B and possibly the communication rate r, we must
somehow obtain a model of ∆2(X) over bags since X has an
underlying distribution. We must be careful with our modeling
assumptions to preserve the essential complexities of Eq. (1)
so that the bag gain can properly manifest. Due to the form of
the deflection ∆2(X) in Eq. (7), it is sufficient to model the
response curves across images, which is easier than modeling
natural images and also keeps a tighter connection between
the model and practice. In particular, we make the following
two assumptions about response curves.

A. Linear response curves

We first assume the response curves are linear in payload

%i(αi)− %i(0) = biαi, (9)

where αi ∈ [0, log2 3] and bi ∈ [0,∞) is the slope of
the linear response curve. This significantly simplifies the
problem, permitting a closed-form expression for the payloads
αi embedded by the MDS and its extension in Section VII.
Even though the response curves of typical detectors built with
machine learning are not linear (see, e.g., Figure 3 in [30]),
they are approximately linear when %i(αi)− %i(0) is small.

B. Binomial model for slopes

Arguably, if all images from the cover source had similar
response curves, the MDS would spread payload nearly uni-
formly, at which point the detectability would need to increase
with B from the beginning due to the SRL. The reason for
the bag gain is source diversity and the fact that the counts
of images that contain very small payloads and those that
are embedded nearly fully fluctuate across bags. Thus, in
order to simplify the modeling but preserve the essence we
adopted a two-valued range for the response curve slopes bi:
P(bi = ε) = p and P(bi = 1) = 1 − p where 0 < ε � 1
and p ∈ [0, 1]. Let Cε denote the number of response curves
with slope ε in a bag of size B. Assuming the images are
drawn randomly from the cover source, Cε follows a binomial
distribution on {0, 1, . . . , B}.

The linear model of response curves and the binomial model
of slopes was adopted to simplify the problem and permit the
subsequent analysis. In real life, the batch sender can of course
use real response curves and minimize (7) numerically. In fact,
this is exactly how the sender was implemented in our previous
work [30] that lead to the discovery of the bag gain.

It is easy to show that if all B images have uniform slope
b, the deflection

∑
b2α2

i is minimal when all images receive
uniform payload αi = α. In a bag of two images with
different slopes, they both start receiving non-zero payload
when embedding a message of any length. More generally via
a water filling algorithm (see Appendix B), with increasing
rate r all images in the bag start receiving payload until the
ones with slope ε saturate at log2 3. From there, the images
with slope 1 absorb the remaining payload.
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C. Pooled detector performance measure

The deflection coefficient ∆2(X) (7), which depends on
ε, r, B, and Cε, informs us about the performance of the
likelihood ratio detector in a specific bag of images. For fixed
ε, r, B, the Receiver Operating Characteristic curve (ROC) of
the pooled detector expressing the probability of correct stego
bag detection PD as a function of the probability of false alarm
PFA is the expectation over bags

PD(PFA) = E[Q(Q−1(PFA)−∆(X))] (10)

=

∞∑
k=0

(−1)kck
k!

Q(k)(Q−1(PFA)− E[∆(X)]),

where ck is the kth central moment of ∆(X) ,
√

∆2(X) as
shown in Appendix A. Keeping only the terms up to k = 2 in
the sum provides a rather accurate approximation for typical
values of our modeling parameters (note that c1 = 0).

In this paper, our reasoning is based on the expecta-
tion of the deflection coefficient because it is significantly
easier to analyze than the ROC (10). While the expected
deflection informs us about the ROC over bags indirectly
(as seen from (10)), many qualitative properties observed
for the expected deflection do propagate to common scalar
ROC measures, such as the weighted Area Under the Curve
(wAUC) [6].

V. EXPLAINING THE BAG GAIN

In this section, we explain the performance trends using the
binomial linear model for response curves. We begin by simply
assuming that images can hold an arbitrarily large amount
of payload. As we progress through this section, we will
incorporate more realistic constraints in order to capture which
pieces of the model are responsible for certain phenomena we
observe in practice.

A. Unbounded embedding capacity

First, we analyze the case of unbounded embedding capacity
for all images from the bag. We believe it is useful to start
with this case as it 1) clearly captures important trends in the
small bag regime, 2) is analytically tractable, and 3) serves to
build the reader’s intuition as to why a bag gain should occur
in the first place. Studying the unbounded case will also help
underscore the impact of finite embedding capacity on the
observed trends later seen in Section V-B.

Based on Eq. (44) in Appendix B, the MDS payloads for
the unbounded case are given, for all i, by

αi =
rB

b2i
∑B
k=1

1
b2k

=
rBε2

b2i (Cε + (B − Cε)ε2)
, (11)

since
B∑
k=1

1

b2k
= Cεε

−2 + (B − Cε). (12)

Utilizing (11) and (12), the deflection simplifies to

∆2(X) =
1

σ2

B∑
i=1

b2iα
2
i =

r2B2ε2

σ2(Cε + (B − Cε)ε2)
. (13)

In this case, the expected deflection becomes

E[∆2(X)] =
r2B2ε2

σ2

B∑
k=0

(
B
k

)
pk(1− p)B−k

k + (B − k)ε2
, (14)

which can be further simplified using Stirling’s formula (see,
e.g., page 147 in [8]) as B →∞(

B

pB

)
∼ 2BH2(p)

⇒
(
B

pB

)
ppB(1− p)(1−p)B ∼ 2BH2(p) × 2−BH2(p) = 1

⇒ E[∆2(X)] ∼ r2ε2B

σ2(p+ ε2(1− p))
. (15)

Here, H2 is the binary entropy function, and ∼ means the
ratio of both sides tends to 1 as B →∞.

Figure 2 shows the expected deflection E[∆2(X)] as a
function of the bag size B with the dashed lines drawn to
show asymptotic trends 15. The figure also shows wAUC of
Eq. (10) as a function of B. For small p, the detectability
initially grows due to the SRL because the bags are small and
most do not contain any images with slope ε. The growth is
steep because it is driven primarily due to payload embedded
in images with slope 1. As the bag size increases, however,
the detectability starts dropping since the bags are more likely
to contain images with small slopes which absorb most of
the payload with only a slight contribution to the deflection.
The deflection eventually levels off and then linearly increases.
This time, the growth is less steep because of the presence
of images with small slope ε. Thus, the existence of the
local maximum and global minimum of expected deflection is
fundamentally a consequence of the SRL switching its growth
rate.

As depicted in Figure 2, the unbounded capacity model
predicts two critical bag sizes that depend primarily on p and
ε. One is associated with a local maximum, Bmax, while the
other, Bmin, corresponds to minimal expected deflection. We
do not talk about these critical bag sizes as corresponding to
bag loss and bag gain yet because we define these concepts
for the more realistic bounded capacity case using an easily
interpretable performance measure (wAUC) in the next sec-
tion. The closed form for the expected deflection as a function
of bag size allows us to study the critical points and obtain
insight into the conditions under which the local maximum
and the minimum can occur and how they depend on ε and
p. Figure 2 tells us that we can then implicitly (but indirectly)
draw conclusions about wAUC since the relationships closely
transfer as visually portrayed.

Since our model is only defined for positive integers B ≥ 1
(actual bag sizes), we begin by simplifying the expression in
Eq. (14) by using Eq. (15) (the dominant term in the large bag
regime) along with the k = 0 term (the dominant term in the
small bag regime when ε is small) :

E[∆2(X)]
.
=
r2B

σ2

(
(1− p)B +

ε2

p+ ε2(1− p)

)
. (16)

Notice that Eq. (16) can be defined on the real numbers B ∈
R. Using mild simplifying assumptions, we can derive closed
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Figure 2. Unbounded capacity model of pooled detector performance. Top
row is E[∆2(X)] as a function of B (solid) with the line (dashed) drawn to
show asymptotic trends (15). Bottom row is wAUC of Eq. (10) as a function
of B. Left column shows trends w.r.t. p (ε = 0.05 fixed) and right column
shows trends w.r.t. ε (p = 0.4 fixed). We have r = 0.3 and σ2 = 1 fixed.

form approximations for both critical bag sizes. Specifically,
using Eq. (16) and the fact that (1−p)B = eB ln(1−p), we can
approximate the optima by finding solutions to

∂

∂B
E[∆2(X)]

.
=

(
eB ln(1−p) +

ε2

p+ ε2(1− p)

)
(17)

+B ln(1− p)eB ln(1−p) = 0. (18)

Since ln(1−p) < 0, for small B the term proportional to ε2 is
small compared to the other two terms. Setting ε2

(p+ε2(1−p)) ≈
0, we obtain an approximate formula for the first critical bag
size corresponding to the local maximum7

0 = eB ln(1−p) (1 +B ln(1− p))

⇔Bmax
.
=

−1

ln(1− p)
. (19)

For larger bag sizes, the term proportional to ε2 cannot be
ignored. We rearrange the terms and take log of both sides
(keep in mind that ln(1− p) < 0)

ε2

(p+ ε2(1− p))
= −eB ln(1−p) (1 +B ln(1− p))

⇔ B ln(1− p) = ln

(
ε2

p+ ε2(1− p)

)
(20)

− ln (−1−B ln(1− p)) . (21)

Since the second term on the r.h.s. of this equation is small
with respect to the l.h.s., we obtain a first order approximation

7The fact that Bmax corresponds to a local maximum can be verified by
computing the second derivative.

for the second critical bag size8

Bmin
.
=

ln
(

ε2

p+ε2(1−p)

)
ln(1− p)

. (22)

From (19), we can deduce that the initial growth associated
with the local maximum ceases to manifest with sufficiently
large prior probability p of images with small slopes. In partic-
ular, Bmax < 1 for p ? 0.63 in approximate agreement with
Figure 2 when working with the exact expected deflection.
Additionally, Eq. (22) encapsulates how Bmin depends on p
and ε (it increases as ε or p decrease). This makes intuitive
sense as smaller ε means the images can hold larger payload,
making the SRL take longer to finish switching its growth rate.
Similarly, with a smaller fraction p of such images, it takes
larger bags to see their effect on detectability.

B. Bounded embedding capacity

We now show the effect of bounding the embedding capac-
ity to A = log2 3 bpp and also formally define the bag loss
and bag gain. Images with bi = ε achieve embedding capacity
αi = A when (c.f. Eq. (11))

rB

Cε + (B − Cε)ε2
≥ A, (23)

which holds iff

T :=
r/A− ε2

1− ε2
B ≥ Cε. (24)

If T < Cε, then ∆2(X) is given by Eq. (13). However, if
T ≥ Cε, we have

αi =

{
rB−ACε

B−Cε
bi = 1

A bi = ε
(25)

and so

∆2(X) =
Cεε

2A2

σ2
+

(rB − CεA)2

σ2(B − Cε)
. (26)

Thus, we have in expectation

E[∆2(X)] = E[∆2(X)1T<Cε ] + E[∆2(X)1T≥Cε ]

=
1

σ2

r2B2ε2
B∑

k=bTc+1

(
B
k

)
pk(1− p)B−k

k + (B − k)ε2

+

bTc∑
k=0

(
B

k

)
pk(1− p)B−k

×
(
kε2A2 +

(rB − kA)2

B − k

)]
. (27)

In Figure 3, we show the wAUC of Eq. (10) (instead of
expected deflection) for various combinations of ε, r, p since
we intend to contrast the performance of the model with real
life detectors.

8A more precise argument can be made here based on iterative root finding
for the equation B = f(B) by showing that |f ′(B)| < 1 for convergence.
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1) Bag gain and bag loss: While the exact trend of wAUC
w.r.t. B depends on ε, r, and p, one can roughly say that
(ignoring for now the small oscillations commented upon in
the next section): 1) wAUC can either grow right from B = 1,
or 2) grow, reach a local maximum, decrease, reach a global
minimum (bag gain), and then increase, or 3) exhibit a global
minimum without the initial increase. Fundamentally, the local
maximum and the global minimum of wAUC are due to the
varying statistical makeup of small bags as already commented
for the unbounded capacity case. Eventually, for large enough
B wAUC will approach 1. How fast this happens depends on
whether large enough bags contain enough images with small
slopes to avoid embedding substantial payload in images with
a large slope. This occurs approximately when p log2 3 > r, at
which point wAUC approaches 1 only very slowly, depending
on the value of ε. This is why the global minimum appears
quite shallow for some combinations of the parameters.

Formally, we define the bag gain γ as the maximum
decrease in a chosen detectability measure the batch sender
can enjoy by bagging. Since we use wAUC,

γ = max
B≥1

[wAUC(1)− wAUC(B)] , (28)

where wAUC(B) is the wAUC of the pooled detector on bags
of size B. Notice that the bag gain can be observed for most
combinations of the parameters in Figure 3 but disappears for
large enough rates and for larger ε. This is intuitively correct
as larger rates force the detectability to grow faster as do larger
values of ε.

Besides the global minimum corresponding to the bag gain,
wAUC as a function of B may exhibit a local maximum for
small bags (for p ≤ 0.3 in the figure). When the bag gain is
positive (γ > 0), we define bag loss as

ν = max
BGain>B≥1

[wAUC(B)− wAUC(1)] , (29)

where BGain is the bag size corresponding to the bag gain.9 In
words, bag loss is the increase in detectability when the sender
selects the worst bag size instead of the optimal BGain. Based
on our definition, bag loss is not defined if there is no positive
bag gain. Similar to the bag gain, bag loss may not manifest
for certain combinations of the parameters.

2) Local oscillations: As shown in Figure 3, the wAUC
experiences a transient oscillating / periodic behavior for
smaller bag sizes, which can be explained by analyzing
expected deflection. The oscillations appear when considering
images with bounded capacity and are ultimately due to the
quantization of T when computing the bounds for the sums
in Eq. (27). In particular, since ε2 is small, T ≈ rB/A
which implies bT c increments whenever B ≈ Ak/r for some
positive integer k. In other words, bT c is fixed for intervals
of length A/r. For example, for r = 0.3 we have A/r ≈ 5
which is approximately the period shown in the corresponding
plot in Figure 3. Within each interval, E[∆2(X)] (and wAUC)
changes in a continuous manner and may contain local optima
due to the upper sum E[∆2(X)1T<Cε

].

9BLoss will denote the bag size corresponding to the bag loss.

3) Trends w.r.t rate: In the unbounded case, we see that
the expected deflection is linearly proportional to r2 (15).
However, in the bounded capacity case, the rate has a non-
trivial affect on the performance curves (in terms of wAUC)
as seen in Figure 3 and, in particular, the location of BLoss

and BGain. For example, as r increases we see that BGain

decreases for ε = 0.06 and p = 0.2, but BGain increases for
ε = 0.02 and p = 0.4. Note that if T < 1, then approximately
rB < A which makes Eq. (27) degenerate to the unbounded
model Eq. (14).

VI. OBSERVING TRENDS IN REAL IMAGES

In this section, we contrast the trends in detectability w.r.t.
bag size from experiments with real images and detectors with
those obtained from the model. We measure the performance
with wAUC. First, we describe our experimental setup, includ-
ing the dataset and a single-image detector used by some batch
senders and for pooled steganalysis. As mentioned in [30],
the embedding algorithm (whether cost-based or model-based)
does not have a significant effect on the bag gain manifesting,
so we limit our experiments to the cost-based HILL [23].
All experiments were done on the image dataset ALASKA
II [6] developed as in [6] without the final JPEG compression
step.10 We consider two disjoint subsets of ALASKA II images
denoted split1 and split2, containing 25,000 images each.
Split1 is used to train the shared single-image detector and
Warden’s pooled detector while split2 is used to assess the
performance of batch senders.

The detector-aware senders use a single-image detector d in
the form of an SRNet [4] pre-trained on ImageNet with the
binary task of steganalyzing J-UNIWARD [12] (the so-called
JIN pre-training exactly as described in [5]). The refinement
to detect HILL was done on a diverse stego source created
using split1 with relative payloads randomly drawn from the
uniform distribution on the set of relative payloads

P = {0.05, 0.1, 0.2, . . . , 1.4, 1.5}. (30)

In particular, split1 was partitioned into further subsets of
22k, 1k, and 2k images for training, validation, and testing,
respectively. The detector-aware senders use the logit as the
detector’s response.

The Warden is given the sender’s detector d for steganalysis.
She is also assumed clairvoyant and given the knowledge
of the payloads αi. The reader is referred to [30] for a
comprehensive analysis of the situation when the Warden
estimates αi from the images at hand and when she trains
her own single-image detector that is possibly different as
well as trained on a different dataset from the same source. In
particular, as shown in this prior art, the trends of detectability
vs. bag size appear to be robust and unaffected by Warden’s
choices.

Three batch senders are tested: the Image Merging Sender
(IMS) and the detector-aware Shift Limited Sender (SLS) and
MDS. The IMS treats each bag as one big image and lets
the given stego algorithm decide what payload chunk each

10The authors note that the bag gain was observed on other datasets, such
as BOSSbase [7] and BOWS2 [3] (not shown in this paper).
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Figure 3. Bounded capacity model of optimal pooled detector performance (wAUC) as a function of B for various combinations of ε, r, p. Rows correspond
to fixed ε, columns correspond to fixed p, and colors correspond to fixed r.

image will hold. The SLS finds the payloads by requiring
that the embedding induces the same shift in the detector
response. The MDS, which is described in Section III-D, was
implemented using a projected gradient descent method to
find optimal payloads since response curves for real images
are non-linear. We refer the reader to the original publication
for more details [30]. We did not include the batch sender
proposed in [27] because it is equivalent to the IMS with an
embedding scheme adjusted as in Gaussian embedding.

The optimal pooled detector described in Section III-C was
used to analytically study and explain the bag gain trends;
however, such a pooler is infeasible in practice due to the
difficulty of estimating the parameters of the distributions
in (6). Thus, all experiments on real images use the LRT
pooler, πLRT, as thoroughly studied in [30]. The Warden tests
whether the detector output for the ith image of the bag is
consistent with the distribution of the detector fαi on stego
images all embedded with the same relative payload αi:

H0 : d(Y (i)) ∼ f0 for all i

H1 : d(Y (i)) ∼ fαi
for all i

(31)

with the optimal detector being the log-likelihood ratio

πLRT(Y) =

B∑
i=1

log
fαi

(
d(Y (i))

)
f0

(
d(Y (i))

) . (32)

The distributions fαi
are estimated empirically using the test

set of split1.11 Both spreading and pooling is done on split2.
We note that [30] investigated three other pooled detectors,

including situations when the Warden trained the detector on
a different dataset and/or used a different neural architecture
or even a qualitatively different detector, such as a rich model.
The bag gain was generally observed under all circumstances.
For a comprehensive look at bag gain trends across poolers in
general, we refer the reader to [30].

A. Trends seen in ALASKA II

Our focus is on trends of detectability w.r.t. bag size B and
rate r for multiple batch senders. Figure 4 shows the detection
performance of the LRT pooler πLRT. For each fixed B, r, and
sender, we independently form 2000 bags sampled without
replacement from split2. The wAUC is computed from the
ROC formed by the 2000 samples of bags.

First, notice that all senders exhibit a bag gain, including
the detector-agnostic IMS. The steganographer can use the bag
gain to decrease the statistical detectability by up to ~0.15 in
pooled detector performance, which can significantly benefit
the steganographer in practice. Second, the initial decrease
in detectability engages quickly so even using bags of size

11Using SciPy’s gaussian_kde function
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Figure 4. Trends in the performance of πLRT across batch senders for
ALASKA II (top left IMS, top right SLS, bottom left MDS). For the lower
payloads of SLS and MDS, the SRL requires a much larger bag size to take
effect.

5, e.g., as opposed to using a single-image is signficiantly
advantageous for the steganographer.

Despite the differences between response curves under the
binomial model and real image response curves, the trends
predicted by our model and shown in Figure 3 provide valuable
insight. In particular, the model correctly predicts that for large
enough payloads the bag gain disappears. Furthermore, the
optimal bag size BGain increases with decreased rate r except
for the smallest value of ε (cover source with images with
basically flat response curves). Our model additionally predicts
that this increase is smaller in cover sources with fewer hard-
to-steganalyze images (smaller p).

One of the clearest differences between IMS and the two
detector-aware senders that can be seen in Figure 4 is that
the SRL engages a lot sooner for IMS. The main contribut-
ing factor is that the two detector-aware senders are more
aggressive in utilizing difficult images by embedding them
with larger payloads because they are aware of the impact on
detectability. Batch senders that are even less aggressive than
IMS will eventually not exhibit the bag gain. In the extreme
case of a batch sender that assigns the same payloads to all
images, the detectability will monotonically increase as per
the large bag regime’s SRL. In Section VII, we will explain
this behavior from a model by introducing a family of batch
senders parametrized by a scalar parameter (the Hölder sender)
that encompass the uniform sender, the SLS, and MDS.

Finally, as seen in Figure 3 for some combinations of ε, p,
and r our model predicts oscillations in wAUC for small bag
sizes and an initial bag loss (local maximum in wAUC) for
very small bag sizes. While these higher-order effects were
not observed in our experiments on ALASKA II, in the next
section we demonstrate that they are real phenomena that can
manifest in other datasets with the right diversity of images.

B. Bimodal ALASKA II

As commented on in the previous section, our binomial
model of slopes predicts that, for small bag sizes and certain
combinations of ε, p, and r, wAUC should exhibit a local
maximum, the bag loss, and oscillations that decay with
larger bag sizes. Such higher-order effects are neither seen
in our experiments nor in the prior art [30] because the real
distribution of response curves in images from ALASKA II is
not close enough to the binomial model of slopes. Of course,
it does not mean that bag loss cannot occur in other datasets.

In order to investigate whether these phenomena can man-
ifest for real images, we construct multiple versions of ap-
proximately “bimodal” ALASKA II consisting of two groups
of images: 1) easy-to-steganalyze images with steep response
curves and 2) hard-to-steganalyze images with almost flat
response curves. Such approximately bimodal distribution can
realistically occur, for example, in a landscape photographer’s
portfolio when the majority of the source is low ISO images,
which would be the case of images taken during daylight,
while the remainder is high ISO images taken during the night
(astrophotography).

We propose the following stochastic procedure based on
rejection sampling to enforce a distribution of slopes on
ALASKA II that more closely matches our model. This will
also allow us to parameterize the dataset by p, a source
diversity parameter, so we can feasibly observe trends across
sources with a varying proportion of easy-to-steganalyze and
hard-to-steganalyze images.

First, we perform what we call “ε/M binning” on ALASKA
II. Given four non-negative constants `ε ≤ uε ≤ `M ≤ uM ,
we say image X has an ε-type RC %X if for all α ∈ P ,
`εα ≤ %X(α)−%X(0) ≤ uεα. Similarly, we say image X has
an M -type RC if for all α ∈ P , `Mα ≤ %X(α) − %X(0) ≤
uMα. These response curves can be thought of as having a
kind of “Lipschitz” condition on their derivatives since the
ε-type, e.g., are contained within the cone formed by `εα
and uεα. Figure 5 provides examples of response curves that
meet the ε/M binning criteria. Next, when Alice is forming
her bag from this artificial ALASKA II source, she samples
(uniformly) an image with ε-type RC with probability p and
samples an image with M -type RC with probability 1− p. In
the previous sections, our binomial model had M = 1 fixed for
notational simplicity in the derivations; note that the equations
in Section V can be easily generalized to consider arbitrary
M > ε.

As seen in Figure 6, if we take ε (and M ) as the sample
average of the ’RC slopes at α = 0’ of the ε/M -type RCs
where the slope is estimated using the first three points

b̂X =
1

2

(
%X(0.05)− %X(0)

0.05− 0
+
%X(0.1)− %X(0)

0.1− 0

)
, (33)

we observe similar behaviors in the size of the bag gain
(the maximal drop in detectability), the frequency of local
oscillations, and the value of B where the SRL regime roughly
begins (seen by the decay of the amplitude oscillations and
increase in detectability for increasing B). See the values of
’avg ε/M ’ in Table I for these sample averages of slopes.
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Table I
PARAMETERS FOR NARROW AND WIDE ε/M BINNING ON SPLIT2. THE #ε

AND #M ARE THE NUMBER OF RCS FROM SPLIT2 THAT QUALIFY AS
ε/M -TYPE. THE AVG ε AND AVG M ARE THE SAMPLE AVERAGES OF THE

ESTIMATED SLOPES b̂X AT α = 0 (SEE EQ. (33)) FOR ε/M -TYPE RCS,
RESPECTIVELY.

`ε uε `M uM #ε #M avg ε avg M
Narrow 0 0.08 0.8 3.2 873 1767 0.016 1.564
Wide 0 0.15 0.5 9.5 1358 9149 0.027 3.167
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Figure 5. Left column shows examples of response curves %X(α)− %X(0)
of bimodal ALASKA II images (narrow binning). Slopes of dashed lines are
found in Table I (top row). Right column shows distribution of estimated
slopes b̂X . Top row is M -type and bottom row is ε-type.

Additionally, Figure 5 shows the distribution of the estimated
slopes b̂X for both ε/M -type RCs.

In Figure 7, observe that there is still a bag loss even
when the rejection sampling uses much wider ε/M bins.
This confirms the robustness of a bag loss occurring even
in a source that contains a diverse spectrum of real image
response curves (which is very different from binomial linear
response curves). If easy-to-steganalyze images are common
and hard-to-steganalyze images are rare in an image source, it
is important to be aware that a bag loss will likely manifest.
Thus, it is important for the steganographer in practice to
avoid using bag sizes corresponding to the bag loss to prevent
becoming more vulnerable to detection in such cover soucres.

VII. GENERALITY OF THE BAG GAIN

In order for the bag gain to occur, the batch sender must
prefer embedding more payload in hard-to-steganalyze im-
ages and less payload in easy-to-steganalyze images. In the
case of the binomial model, this is equivalent to the batch
sender putting more payload in images with near flat response
curves. This property holds true for the detector-agnostic IMS,
Distortion-Limited Sender (DiLS), and Detectability-Limited
Sender (DeLS) studied in [26], as well as the detector-aware

SLS and MDS. The IMS / DiLS / DeLS are not as extreme
as the detector-aware senders since they are not designed
to explicitely make use of response curves. However, their
spreading still correlates with this preference since content-
adaptive steganographic schemes put more payload in regions
of complex content which give difficulty to detectors. In situ-
ations where the steganographers and Warden are knowledge
limited as in [30], even a weak preference to embed more in
hard-to-steganalyze images (w.r.t. the Warden’s detector) can
cause the bag gain to manifest.

In this section, we introduce a parametrized family of
senders with the parameter controlling how aggressively the
sender assigns the payload based on the response curves,
including the case when the payload is spread uniformly
across all images. By varying this parameter, we can show
that the bag gain eventually disappears for sufficiently weak
preferences for embedding more payload in harder images.

The Hölder sender can be thought of as a generalization of
the MDS (11) as it assigns the following payloads to images:

αi =
rB

bqi
∑B
k=1

1
bqk

, (34)

where q ∈ R is a parameter. For q = 2 and q = 1, this sender
corresponds to the MDS and SLS, respectively. When q = 0,
the payload is spread uniformly across all images.

Following the same steps as in Section V-B, the deflection
coefficient for the Hölder sender is

∆2(X) =

 r2B2ε2

σ2

(
Cε+ε2q−2(B−Cε)
(Cε+εq(B−Cε))2

)
Tq < Cε

Cεε
2(log2 3)2

σ2 + (rB−Cε log2 3)2

σ2(B−Cε) Tq ≥ Cε
(35)

where Tq = rB
(1−εq) log2 3 −

εqB
1−εq . Substituting (35) into

Eq. (10), we can compute the bag gain γ as given by Eq. (28).
Figure 8 shows γ as a function of the exponent q for a range
of the parameters p (left) and ε (right). As q decreases from
q = 2 (MDS), the payload assignment is less polarized and
the bag gain starts decreasing. It eventually becomes zero and
is always zero for uniform spreading (q = 0).

VIII. RELATIONSHIP TO PRIOR WORK

In this section, we contrast our contribution with previous
work [27] that studies optimal bag size in batch steganography
and its recent extension to the JPEG domain and pooled
steganalysis [1]. We do so in order to highlight the differences
and also to briefly discuss possible future directions by com-
bining both approaches. The authors of [27] extended Gaussian
Embedding (GE) to batch steganography. Granting the Warden
the knowledge of the underlying distributions, a closed-form
expression has been derived for the performance of Warden’s
likelihood ratio test in a specific collection of bags of images.
This was used to implement a batch sender with an adaptive
batch size called adaBIM.

The first and the main difference between [27] and this
paper is the lack of pooled steganalysis. The authors use a
performance measure, which is the minimal total detection
error PE under equal priors of a single-image detector that
distinguishes between the cover source and a stego source
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whose images contain variable payload “tags” determined by
partitioning the dataset into batches and applying GE version
of an existing embedding algorithm to the union of all images
from the bag to obtain the tags. Furthermore, the effect of
bag size in [27] is only studied in asymptotic limits of zero or
infinite payloads (Theorem 2). For small payloads, the optimal
single-image source detector has highest detection error PE

when the bag size is equal to the entire image dataset. For large
payloads, the highest PE occurs when payloads are assigned
using bag size 1. This theorem thus only hints at the existence
of optimal bag size w.r.t. PE and a fixed set of bags. The
optimal bag size w.r.t. a single-image detector observed in
experiments is merely discussed in words without quantitative
results.

This work is extended to JPEG images in [1], where the
authors also derive the optimal pooled detector for a given bag.
To assess the performance of the pooled detector across bags,
however, one needs to consider the variability of bags, which
would necessitate adopting a meta-model on the source. In the
case of the GE as studied in [27], [1], it would likely have to be
the distribution of the product of cover image pixel variances,
which opens the possibility to use, e.g., a similar binomial
model within the context of GE. We plan to investigate this
direction in the future.

In contrast, the approach taken in this paper allowed us to
relate all essential aspects of a steganographic channel—the
cover source diversity, detector response, payload, and bag
size—to security under pooled steganalysis. We also believe
that working with detector output models leads to a tighter
correspondence between the detectability derived from the
model and the one obtained experimentally. After all, the
model correctly predicts completely new phenomena, such as
the bag loss and local oscillations in the small bag regime.

IX. CONCLUSIONS

In batch steganography, the secret payload is spread among
multiple cover images forming a bag. Within the context
of content-adaptive steganography, many batch senders were
proposed and studied in the past, such as the image merg-
ing sender [26], [27] and the deflection/distortion limited
senders [26], as well as two detector-aware senders, the shift
limited sender and the minimum deflection sender [30]. When
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a fixed relative payload is communicated in each bag, batch
senders that embed larger payloads in difficult-to-steganalyze
images and smaller payloads in easy images exhibit similar
trends in terms of detectability vs. the bag size. In this paper,
we analyze these trends from the simplest model that captures
their essence by considering only two types of images that are
“easy” and “difficult” to steganalyze. While the trends depend
on the cover source diversity, detector response characteristics,
batch sender, and the communication rate, our work offers a
simple intuitive explanation.

The square root law states that, when the sender maintains
a fixed communication rate, the detectability increases with
the number of images sent (the bag size). Due to variability
of images across bags, however, the law engages differently
in bags of different sizes. Assuming that difficult images that
can hold large payloads are rare, as the bag size increases,
initially the detectability as measured with pooled detectors
increases due to square root law because only a small fraction
of bags contains the difficult images that can carry large
payloads without triggering a detector – the square root law
thus engages based on embedding primarily in easy images.
Once the bag size becomes large enough to contain difficult
images with high probability, they hold most of the payload
and the detectability begins to decrease. Due to the square root
law, the detectability eventually levels off, reaching a global
minimum, and once more increases but at a speed slower than
the initial rise depending on the ratio of easy and difficult
images in the cover source and the communication rate. The
maximum initial rise in detectability is called the bag loss
while the global minimum corresponds to a bag gain. Both
phenomena essentially manifest because the average statistical
make up of bags differs between small and large bags, which
affects how the square root law engages.

While the bag gain was observed experimentally in previ-
ous art [30], it was a mere experimental fact that was left
unexplained. Our work provides theoretical insight into the
manifestation of the bag gain and quantifies how it depends
on cover source diversity, detector response, batch sender, and
communication rate. The predicted trends closely match exper-
iments with real images. The predicted bag loss, together with
some higher-order oscillations, are experimentally confirmed
in datasets with suitable diversity. Furthermore, we provide
evidence that these phenomena manifest for batch senders that
generally assign payloads based on detectability of embedding
in individual images sufficiently strongly as bag loss and gain
are not observed for uniform batch senders.

On the practical side, our work shows that it is important
to be aware of the existence of the bag gain and bag loss for
practitioners who need to avoid combinations of bag sizes and
communication rates that lead to bag loss and select the bag
size that corresponds to bag gain as this will make the covert
communication less detectable to an adversary.

APPENDIX

A. ROC for pooled detector

A pooled detector makes a decision on bags—either it
contains cover or stego images. Since the images from each

bag are randomly selected from a cover source, some bags
will be easier to detect than others, depending on the value
of the deflection coefficient ∆2. In this section, we derive an
expression for the ROC of the pooled detector over bags based
on the distribution of the deflection coefficient.

For a fixed false-alarm PFA, the probability of correct stego
bag detection is

PD(PFA) = E[Q(Q−1(PFA)−∆)], (36)

the expectation taken over bags. In this paper, ∆ is dis-
crete, attaining values from a finite set D. The derivation
below, however, is also valid for a continuous-valued ∆. Let
p∆(x), x ∈ D, be the probability mass function of ∆ and
let µ = E[∆]. Then, using Taylor expansion of Q(x) at
Q−1(PFA) − µ with the Lagrange form for the remainder,
the expected ROC (36) can be written as

PD(PFA) =
∑
x∈D

Q(Q−1(PFA)− x)p∆(x)

=
∑
x∈D

[n−1∑
k=0

(µ− x)k

k!
Q(k)(Q−1(PFA)− µ)

+
(µ− x)n

n!
Q(n)(Q−1(PFA)− x∗)

]
p∆(x)

=

n−1∑
k=0

(−1)kck
k!

Q(k)(Q−1(PFA)− µ)+ (37)

∑
x∈D

(µ− x)n

n!
Q(n)(Q−1(PFA)− x∗)p∆(x)︸ ︷︷ ︸,

Rn

(38)

where ck is the kth central moment of ∆ and x∗ ∈ (µ, x).
Next, we leverage the following bound on the nth derivative
of the Q function

|Q(n)(x)| ≤
√
n!

2π
for all x, (39)

which follows from the fact that Q(n)(x) = 1√
2π
pn(x)e−x

2/2,
where pn(x) is the statistician’s Hermite polynomial (the
physicist’s Hermite polynomial is Hn(x) = 2n/2pn(

√
2x)),

and Cramér inequality [14] for Hermite function de-
fined using physicist’s Hermite polynomials Ψn(x) =
(2nn!

√
π)−1/2e−x

2/2Hn(x) ≤ π−1/4 for all x and all n.
Hence

|Rn| ≤
cn
n!

√
n!

2π
=

cn√
2πn!

. (40)

B. General form of the MDS

Let r ∈ [0, log2 3] be a chosen embedding rate in bpp,
and assume the response curves are linear with slopes bi ∈
[0,∞) for all i. Optimal payloads for the MDS are found
by minimizing ∆2(X) under constraints

∑B
i=1 αi = rB

and αi ∈ [0, Ai] ∀i where Ai ≤ log2 3 is the embedding
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capacity of the ith image (accounting for wet pixels [9]). The
Lagrangian has the form

L =

B∑
i=1

b2iα
2
i − λ

(
B∑
i=1

αi − rB

)

−
B∑
i=1

`iαi −
B∑
i=1

ui(αi −Ai), (41)

where `i and ui are KKT multipliers that satisfy the lower
and upper inequality constraints on αi, respectively. To be a
stationary point, the tuple (α1, . . . , αB) must satisfy

αi = 0,
λ

2b2i
, or Ai ; ∀i. (42)

Let L and U denote the sets of indices for which αi =
0 or Ai, respectively. Let I = (L∪U)c be the set of remaining
indices where 0 < αi < Ai. From the payload constraint

rB =
∑
k∈L

0 +
∑
k∈I

λ

2b2k
+
∑
k∈U

Ai

⇒ λ =
rB −

∑
k∈U Ai

1
2

∑
k∈I

1
b2k

⇒ αi =
rB −

∑
k∈U Ai

b2i
∑
k∈I

1
b2k

, (43)

for all i ∈ I. The optimal payload is found numerically by
searching over the combinations of L, I, and U .

Note that when Ai = ∞ for all i (unbounded embedding
capacity), we have U = L = ∅ and (43) simplifies to

αi =
rB

b2i
∑B
k=1

1
b2k

. (44)
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