
Steganography via Codes for Memory with

Defective Cells

Jessica Fridricha, Miroslav Goljana, and David Soukalb

aDepartment of Electrical and Computer Engineering,
bDepartment of Computer Science

SUNY Binghamton, Binghamton NY 13902-6000, USA
{fridrich,mgoljan,david.soukal}@binghamton.edu

ABSTRACT

Steganography is the art of covert (undetectable) communication in which secret data is
embedded in innocuous looking messages by slightly modifying them. The detectability
of secret data is influenced, besides other factors, by the placement of embedding changes
within the message and by the embedding efficiency—the number of bits embedded per
one embedding change. In this paper, we first show that codes for memory with defective
cells enable steganographic communication without sharing the placement of embedding
changes. This allows construction of a new class of steganographic schemes with improved
security. We then describe an efficient coding method for memory with defective cells
based on the LT process that is suitable for steganographic applications. In the second
part of the paper, we explore a different approach based on random linear codes on small
blocks with the goal to decrease the number of embedding changes. The embedding
efficiency of this approach is compared to theoretically achievable bounds.

Keywords: steganography, memory with defective cells, embedding efficiency, LT codes,
random linear codes.

1. INTRODUCTION

Steganography was originally formalized by Simmons [1] as the prisoners problem. Alice
and Bob are prisoners in separate cells who want to develop an escape plan. They are
allowed to exchange messages, but their communication is monitored by a warden looking
for suspicious activity. Alice and Bob resort to steganography and hide the details of the
escape plot in innocuous looking messages. The prisoners’ goal is to hide the secret data
so that the warden cannot tell whether the exchanged messages are genuine or contain
hidden data. In the simplest case (treated in this paper), the warden is passive in that
he just observes the traffic and does not interfere with the communication.

For concreteness, we may visualize that the messages exchanged by the prisoners are dig-
ital images. Most steganographic schemes for digital images hide secret data by slightly
perturbing the values representing the numerical values of individual pixel colors. For
example, the secret data may be communicated in the least significant bits (LSB) of
colors of selected pixels.

The main requirement of any steganographic technique is undetectability—the warden
should not be able to distinguish between cover objects (original unmodified messages)
and stego objects (cover embedded with data) with success better than random guessing
given a complete knowledge of the steganographic algorithm and the source of cover
objects (so called Kerckhoffs’ principle). The detectability of data hidden in a stego
object is mainly influenced by four factors—the choice of the cover object, the selection
rule used to identify individual elements of the cover that could be modified during
embedding, the type of embedding operation that modifies the cover elements, and the
number of embedding changes.

The placement of embedding changes in the cover is called the selection channel. It is
in the interest of both communicating parties to reveal as little as possible about the
selection channel as this knowledge can help the warden [2]. Trying to to minimize the
detectability of the hidden data, the sender may construct the selection channel using
information that is in principle unavailable to the warden. For example, the sender may
utilize a high-resolution (or unquantized) version of the cover [3]. Alternatively, the
sender may determine the best selection channel by iteratively running known steganal-
ysis algorithms on the stego object. However, an obvious problem with these approaches
is that now not only the warden but also the recipient does not have access to the in-
formation that determines the selection channel and is thus unable to read the secret
data.

The problem of such non-shared selection channels in steganography is equivalent to
writing in memory with defective cells [4]. Again, using a grayscale digital image as an
example, the set of LSBs of all pixels in the image is the array of binary cells. The LSBs
of pixels carrying the secret data (the selection channel) correspond to functioning cells,
while the LSBs of unused pixels are cells that are permanently stuck at either 0 or 1.
The sender (the writing device) knows the locations and status of the stuck cells. The
task is to write into the memory so that the reading device (the recipient), that does not
have any information about the stuck cells (the selection channel), can correctly read the
secret data.

The possibility to use non-shared selection channels is very empowering as it allows the
sender to incorporate arbitrary side information into the embedding process and even use
an element of true randomness. It is important, however, that the coding method allows
the use of a shared secret between both prisoners (the stego key), otherwise the warden
can always try to blindly extract secret data from every image the prisoners exchange.
In Section 2, we start with a straightforward approach to memory with defective cells
based on variable rate random linear codes. An efficient implementation suitable for
steganographic applications based on irregular low density parity check codes (LDPC),
the LT codes, is described in Section 3.

The second attribute of steganographic schemes studied in this paper is the embedding
efficiency, which is the number of bits embedded per one embedding change. Assuming
two steganographic methods share the same source of cover objects, the same selection
channel and embedding operation, the one that introduces fewer embedding changes will
be less detectable as it decreases the chance that any statistics used by the warden will
be sufficiently disturbed to mount a successful steganalysis attack.

It has been established by Crandall [5] and Bierbrauer [6] and independently by Galland
et al. [7] that the concept of embedding efficiency is closely related to the covering radius

of codes. In particular, a linear code can be used to construct an embedding scheme
whose embedding capacity is the code redundancy, while the covering radius corresponds
to the maximal number of embedding changes necessary for embedding. With the goal to
improve the embedding efficiency, in Section 4, we describe and analyze a simple approach
to memory with defective cells using random linear codes on small blocks. Its embedding
efficiency is studied in Section 5, where it is compared to theoretically achievable bounds.
Results of experiments are interpreted in Section 6. Finally, the paper is concluded in
Section 7.

2. STEGANOGRAPHY USING CODES FOR MEMORY

WITH DEFECTIVE CELLS

The defective memory is a special case of the Gel’fand-Pinsker channel with informed
sender [8]. The Shannon capacity of defective memory with n − k stuck cells is asymp-
totically k/n per cell and per channel use, a fact that is also easily established using
random binning (see, for example [9]). A generalized version of this channel that allows
for randomly flipped cells in addition to stuck cells was studied by Heegard et al. [10,11]
who proposed partitioned linear block codes, later recognized as instances of nested lin-
ear codes [9], and proved that these codes achieve Shannon capacity. In passive warden
steganography, which is the subject of this paper, we will only need codes for the noise-
free case.

For memory cells drawn from an alphabet of q symbols, maximum distance separable
(MDS) codes can be used to construct a partitioned linear code achieving the channel
capacity [9]. This approach, however, would be inefficient for binary cells. By grouping
bits into q-ary symbols, the number of stuck symbols could drastically increase when the
number of stuck bits is large, which is often the case in steganographic applications.

There are several differences between coding for defective memory and coding for steganog-
raphy. First, in steganography the number of stuck cells can be quite large (e.g., 90% or
more). Second, the number of stuck cells varies significantly with the stego method and
for different instances of the cover object. Thus, imposing bounds on the rate r = k/n
would result in a decreased embedding capacity. Third, fortunately, steganographic ap-
plications are often run off line and do not require real time performance. While it is
quite acceptable to spend 2 seconds to embed a 10, 000-bit payload, it is not acceptable
to spend this time writing data into memory.

2.1. Syndrome coding

Without loss of generality, we will assume that the cover objects are grayscale digital im-
ages. Let us assume that the cover image x consists of n pixels xi, xi ∈ {0, 1, . . . , 255}, i =
1, 2, . . . , n. The sender selects k changeable pixels xj, j ∈ J ⊂ {1, 2, . . . , n}, |J | = k,
which is the selection channel. The changeable pixels may be used and modified indepen-
dently from each other by the sender to communicate a secret message to the recipient,
while the remaining pixels corresponding to stuck cells are not modified during embed-
ding.

It is further assumed that the sender and the recipient agree on a mapping

b : {0, 1, . . . , 255} → {0, 1},

for example, b(x) = the LSB of x. During embedding, the sender either leaves the
changeable pixels xj, j ∈ J , unmodified or replaces xj with yj to modify its bit from
b(xj) to b(yj). The vector of cover image bits bx = (b(x1), . . . , b(xn))t changes to
by = (b(y1), . . . , b(yn))t, where xt denotes the transpose of x. To communicate m bits
m ∈ F

m
2 , the sender modifies some changeable pixels xj, j ∈ J , so that

Dby = m, (1)

where D is an m×n binary matrix shared by the sender and the recipient. Equation (1)
can be further rewritten to

Dv = m − Dbx (2)

using the variable v = by − bx with non-zero elements corresponding to the pixels the
sender must change to satisfy (1). In (2), there are k unknowns vj, j ∈ J , while the
remaining n − k values vi, i /∈ J , are zeros. Thus, on the left hand side, the sender can
remove from D all n − k columns di, i /∈ J , and also remove from v all n − k elements
vi with i /∈ J . Keeping the same symbol for v, (2) now becomes

Hv = s, (3)

where H is an m × k matrix consisting of those columns of D corresponding to indices
J , v is an unknown k × 1 vector, and s = m − Dbx is the m × 1 right hand side.

The task of finding the vector v amounts to solving a system of m linear equations with k
unknowns in F2. Minimizing the number of embedding changes means finding a solution
v with the minimal weight. Both tasks could be efficiently solved by considering H as a
parity check matrix of some [k, k − m] linear code and imposing structure on H. Thus,
solving (3) with minimal number of embedding changes is equivalent to finding the coset
leader v for syndrome s. However, the matrix H is obtained from D as a column sub-
matrix defined by the selection channel. Because the selection channel can be arbitrary,
e.g., even random or dependent on the cover, it is difficult to impose structure on D that
would be inherited by H and that would help us incorporate the apparatus of structured
codes. Moreover, we need a whole class of good codes for various values of n, k, and m.

What we need is a binary matrix D whose k-column submatrices are regular with high
probability and have the smallest possible covering radius. A natural step here is to look
at random linear codes because they are optimal in both respects with increasing code
length and fixed relative message length α = m/k.

We first address the task of finding a computationally efficient method for solving (3),
postponing the issue of minimizing the number of embedding changes to Section 4. We
quote below the result obtained for variable rate random linear codes that appeared
in [12]. Assuming that the sender always tries to embed as many bits as possible by
adding rows to D while (3) still has a solution, for random binary matrices whose elements
are i.i.d. realizations of a random variable uniformly distributed in {0, 1}, the expected
value of the maximum message length mmax that can be communicated in this manner
is

mmax = k + O(2−k/4) (4)

as k → ∞, k < n. Thus, variable-rate random linear codes asymptotically achieve the
maximal embedding capacity.

Without any structure in H, the sender might attempt to solve (3) simply using Gaussian
elimination. Assuming that the maximal length message (m = k) is sent, the complexity
of Gaussian elimination is O(k3), which would lead to impractical performance for large
payloads. In [12], the authors proposed to divide the cover object into n/nB disjoint
random subsets (determined from the shared stego key) of a fixed predetermined size nB

and then perform the embedding for each subset separately. In this case, the complexity
of embedding is proportional to n/nB × (knB/n)3 = nr3n2

B, where r = k/n. Assuming
fixed r, the complexity is linear in the number of cover object elements n, albeit with a
large constant.

By imposing a special stochastic structure on the columns of D, we show in the next
section that it is possible to use the LT process to solve (3) in a much more efficient
manner with a simpler implementation that fits well the requirements for steganographic
applications.

3. MEMORY WITH DEFECTIVE CELLS USING LT

PROCESS

3.1. LT codes

LT codes are universal erasure codes with low encoding and decoding complexity that
asymptotically approach the Shannon capacity of the erasure channel. For simplicity,
we only use binary symbols noting that the codes can work without any modification
with l-bit symbols. The best way to describe the encoding process is using a bipartite
graph (see an example in Fig. 1) with w message bits on the left and W encoding bits
on the right. Each encoding bit is obtained as an XOR of approximately O(ln(w/δ))
randomly selected message bits that are connected to it in the graph. The graph is
generated randomly so that the degrees of encoding nodes follow so-called robust soliton
distribution (RSD). The probability that an encoding node has degree i, is (ρi + τi)/β,
where

ρi =

{

1
w

i = 1
1

i(i−1)
i = 2, . . . , w

, τi =











R
iw

i = 1, . . . w/R − 1
R ln(R/δ)

w
i = w/R

0 i = w/R + 1, . . . , w

, β =

w
∑

i=1

ρi + τi,

and R = c ln(w/δ)
√

w for some suitably chosen constants δ and c. It is possible to
uniquely determine all w message bits with probability better than 1−δ from an arbitrary
set of W encoding bits as long as

W > βw = w + O(
√

w ln2(w/δ)). (5)

The encoding bits can also be obtained from message bits using matrix multiplication
with the bi-adjacency binary matrix A (Fig. 1). The decoding can be obviously done
by solving a system of W linear equations with w unknowns—the message bits. The
RSD allows solving the linear system by repeating the following simple operation (the
LT process):

PSfrag replacements

M1

M2

M3

M4

M5

E1

E2

E3

E4

E5

E6

E7

E8

w = 5

W = 8

A =



































1 0 1 0 0

0 1 0 0 1

1 1 0 0 0

0 1 1 1 0

1 0 0 1 0

0 0 0 1 1

0 0 1 0 0

0 1 0 0 1



































Figure 1. Left: Bipartite graph with 5 message symbols and 8 encoding symbols. Right: Its
bi-adjacency matrix.

Find an encoding bit that has a single edge (encoding bit E7 in Fig. 1). Its
associated message bit (M3) must be equal to this encoding bit. As the message
bit is now known, we can XOR it with all encoding bits that are connected to it
(E1 and E4) and remove it and all its edges from the graph. In doing so, new
encoding nodes of degree one (E1) may be created. This process is repeated till
all message bits are recovered.

The decoding process fails if, at some point, there are no encoding bits of degree 1,
while there are still some undetermined message bits. The RSD was derived so that the
probability of failure of the LT process to recover all message bits is smaller than δ. The
decoding requires on average O(w ln(w/δ)) operations.

3.2. Matrix LT process

We can consider the LT process as a method for a fast solution of an over-determined
system of equations Ax = y with a random matrix A for which the Hamming weights
of its rows follow the RSD. However, we cannot use it directly to solve (3) because (3)
is under-determined and we are seeking one solution, possibly out of many solutions.
In addition, because H was obtained from D by removing columns, H inherits the dis-
tribution of Hamming weights of columns from D but not the distribution of its rows.
However, as explained in detail below, the LT process can be used to quickly bring H to
the upper triangular form simply by permuting its rows and columns. Once in this form,
(3) is solved using a back substitution.

The LT process on the bipartite graph induces the following row/column swapping pro-
cess on its bi-adjacency matrix A. For an n-dimensional binary vector r, let wj(r) denote
the Hamming weight of (rj, . . . , rn) (e.g., w1(r) ≡ w(r) is the usual Hamming weight of
r). We first find a row r in A with w1(r) = 1 (say, the 1 is in the j1-th column) and
exchange it with the first row. Then, we exchange the 1st and the j1-th unknowns
(swapping the 1st and j1-th columns). At this point in the LT process, the value of the
unknown No. 1 is determined from the first equation. In the matrix process, however, we
do not evaluate the unknowns because we are only interested in bringing A to a lower

k Gauss LT β P

1,000 0.023 0.008 1.098 43%

10,000 17.4 0.177 1.062 75%

30,000 302 0.705 1.047 82%

100,000 9320 3.10 1.033 90%

Table 1. Running time (in seconds) for solving k×k and k×βk linear systems using Gaussian
elimination and matrix LT process (c = 0.1, δ = 5); P is the probability of a successful pass.

triangular form by permuting its rows and columns. Continuing the process, we search
for another row r with w2(r) = 1 (say, the 1 is in the j2-th column). If the LT process
proceeds successfully, we must be able to do so. We swap this row with the second row
and swap the 2nd and j2-th columns. We continue in this way, now looking for a row r

with w3(r) = 1, etc. Assuming the process finishes successfully, at the end the permuted
matrix A will be lower diagonal with ones on its main diagonal.

Returning to the problem of solving the system Hv = s with m equations for k unknowns,
m < k. By applying the above process of row and column permutations to Ht, we bring
H to the form [U,H′], where U is a square m × m upper triangular matrix with ones
on its main diagonal and H′ is a binary m× (k −m) matrix. We can work directly with
H if we replace in the algorithm above the word ‘row’ with ‘column’ and vice versa. We
now require, however, that the Hamming weights of columns of H follow the RSD and
the message length m satisfies (from (5))

k > βm = m + O(
√

m ln2(m/δ)). (6)

This means that there is a small capacity loss in exchange for solving (3) quickly using
the matrix LT process. This loss depends on the public parameters c and δ. Since
the bounds in Luby’s analysis are not tight, we experimented with a larger range for δ,
ignoring its probabilistic interpretation. We discovered that it was advantageous to set δ
to a much larger number (e.g., δ = 5) and, if necessary, repeat the encoding process with
a slightly larger matrix D till a successful pass through the LT process is obtained. For
c = 0.1, the capacity loss was about 10% (β = 1.1) of k for k = 1500 with probability
of successful encoding about 50%. This probability increases and capacity loss decreases
with increasing k (see Table 1).

To assess the encoding and decoding complexity, let us assume that the maximal length
message is sent, m ≈ k/β. The density of 1s in D (and thus in H) is O(ln(k/δ)/k). There-
fore, the complexity of embedding implemented using the LT process is O(n ln(k/δ) +
k ln(k/δ)) = O(n ln(k/δ)). The first term arises from evaluating the product Dbx,
while the second term is the complexity of the LT process. This is a significant sav-
ings compared to solving (3) using Gaussian elimination. The decoding complexity is
O(n ln(k/δ)), which corresponds to evaluating the product Dby.

The performance comparison between solving (3) using Gaussian elimination and the
matrix LT process is shown in Table 1. The steeply increasing complexity of Gaussian
elimination necessitates dividing the cover object into subsets as in [12]. The LT pro-
cess, however, enables solving (3) for the whole object at once, which greatly simplifies
implementation and decreases computational complexity at the same time.

4. CODING ON SMALL BLOCKS

In the previous section, we showed that LT codes can be used to construct compu-
tationally efficient data hiding algorithms. We now address the issue of the number
of embedding changes because the embedding efficiency is an important attribute of
steganographic schemes.

Ideally, the sender should choose a solution v to (3) with the smallest Hamming weight
(the coset leader). On the other hand, we would like to do so using a computationally
efficient process similar to the LT process. In fact, there are several degrees of freedom in
the matrix LT process that can be used to decrease the Hamming weight of the solution
v. However, our attempts to adjust the LT process were only moderately successful when
compared to theoretically achievable bounds (Section 4.2 in [13]). It is possible, though,
that other stochastic properties may be imposed on D that will allow finding solutions
of (3) with small weight efficiently.

Another possibility would be to use existing decoding algorithms for LDPCs based on
belief propagation. However, the decoding algorithms are poor quantizers when the
syndrome is selected randomly (the iterative algorithms do not converge).

Therefore, we turned our attention to random codes of small length where fast exhaustive
searches are computationally feasible. In this case, however, we need to study how much
is lost on optimality of coding as random codes are only asymptotically optimal.

4.1. Meet-in-the-middle algorithm

We remind that the cover image has n pixels and k changeable pixels and that we wish
to communicate m message bits. The sender and receiver agree on a small integer p (e.g.,
p < 20) and using the stego key divide the cover image into nB = m/p disjoint pseudo-
random blocks of cardinality n/nB = pn/m (for simplicity we assume the quantities
above are all integers). Each block will contain on average k/n × pn/m = pk/m = p/α
changeable pixels, where α = m/k, 0 ≤ α ≤ 1, is the relative message length. The sender
will use a pseudo-random binary p × pn/m matrix D for embedding up to p bits. The
matrix D can be different or the same in each block and may also depend on a secret
stego key. Note that since duplicates and zero columns in D do not help, as long as∗

n/nB = pn/m < 2p, we can generate D so that its columns are non-zero and mutually
different.

As described in Section 2, in each block the sender forms a binary sub-matrix H of D

and calculates the syndrome s. The matrix H will have exactly p rows and, on average,
p/α columns. Let C1 ⊂ F

p
2 be the set of all columns of H, and Ci+1 = C1 + Ci − (C1 ∪

· · · ∪Ci)− {0}, for i = 1, . . . , p− 1. Note that Ci = ∅ for i > R, where R is the covering
radius of H. Also note that Ci is the set of syndromes that can be obtained by adding i
columns of H but no less than i (equivalently, Ci is the set of all coset leaders of weight
i).

Let s = hj1 + · · · + hjr be the minimal number of columns of H adding up to s, r ≤ R.
Then, s+hj1 + · · ·+hjbr/2c

= hjbr/2c+1
+ · · ·+hjr , which implies (s+Cjbr/2c

)∩Cjr−jbr/2c
6= ∅

∗This will be satisfied for embedding in typical digital media files because we use p ≈ 20
(see below).

Algorithm 1 Meet-in-the-middle algorithm for finding coset leaders

1. If s ∈ C1, vj1 = 1 and vj = 0 otherwise. Stop.
Else l = 1, r = 1

2. If (s + Cl) ∩ Cr 6= ∅ then there is a solution v of weight l + r determined by any
vector from the intersection. Stop.
Else {if l = r, r = r + 1 else l = l + 1}

3. Go to 2

and v with zeros everywhere except for indices j1, . . . , jr solves (3). This leads to the
Algorithm 1 for finding the coset leaders.

After the solution v is found, the sender modifies the pixels in the block accordingly—the
non-zero elements of v determine pixels xi within the block where embedding changes
must take place to change their bit values b(xi). We remind that the modified block of
pixels in the stego image is denoted y.

The extraction algorithm is very simple. The recipient knows n from the stego image
and knows p as this is a publicly shared parameter. Since the message length m is used
in dividing the image into blocks, it needs to be communicated in the stego image as
well. This can be arranged in many different ways, for example, by isolating from the
image a small subset (using the stego key) and embedding dlog2 me bits in it using simple
Gaussian elimination. Knowing m, the recipient uses the secret stego key and partitions
the rest of the stego image into the same disjoint blocks as the sender and extracts p
message bits m from each block of pixels y as m = Dy.

Before we analyze the proposed algorithm and describe other implementation issues, in
the next section we briefly review known bounds on embedding efficiency.

4.2. Bounds on embedding efficiency

The embedding efficiency of a steganographic method is defined as the number of random
message bits embedded per one embedding change. Let R ≤ k/2 be the covering radius
of a linear [k, k − m] code C with m × k parity check matrix H. This means that every
syndrome can be generated by adding at most R columns of H. Because there are

(

k
i

)

different sums of i columns of H, we have the sphere-covering bound

2m ≤
R

∑

i=0

(

k

i

)

= V (k, R) ≤ 2kH(R/k), (7)

where V (k, R) is the volume of a ball of radius R in F
k
2 and H(x) = −x log2 x − (1 −

x) log2(1 − x) is the binary entropy function. The second inequality is a frequently used
bound in coding (e.g., Lemma 2.4.3 in [14]).

We define the lower embedding efficiency e as the ratio e = m/R, which is the number
of embedded bits per embedding change in the worst case when we have to make all R
changes.

For practical purposes, steganographers are more interested not in the worst case but the
expected number of embedding changes for messages uniformly distributed in F

m
2 , which

is the average weight of all coset leaders. It is easy to see that this quantity is equal to
the “average covering radius” Ra defined as

Ra =
1

2k

∑

x∈F
k
2

d(x, C), (8)

where C is the set of all codewords and d(x, C) = miny∈C d(x,y) is the distance between
x and the code C. Thus, we define the embedding efficiency as e = m/Ra.

Obviously, e ≤ e, which is why e is called the lower embedding efficiency. The inequality
(7) enables us to derive an upper bound on e and eventually on e.

From (7),

α = m/k ≤ H(R/k)

H−1(α) ≤ R/k

e =
m

R
≤ α

H−1(α)
, (9)

where H−1(x) is the inverse of H(x) on [0, 1/2]. Thus, we have obtained an upper bound
on the lower embedding efficiency for a fixed relative message length α. It is possible to
show that α

H−1(α)
is also an asymptotic upper bound on e for linear codes [k, k − αk] as

k → ∞. The proof of this statement can be found in [15].

Furthermore, it is known that the upper bound is asymptotically achievable using almost
all random linear codes [k, k − αk] with k → ∞ (see Theorem 12.3.5. in [14], page 325).

4.3. Algorithm complexity and implementation issues

In Algorithm 1, in the worst case, we need to calculate all sets C1, . . . , CdR/2e. The cardi-
nalities of Ci increase with i, achieve a maximum for i ≈ Ra, and then quickly fall off to
zero for i > Ra. With increasing length of the code (or increasing p) and fixed α, Ra → R.
This means that the Meet-in-the-middle algorithm avoids computing the largest of the
sets Ci. Nevertheless, we will need to keep in memory the sets Ci, i = 1, . . . , dR/2e
and the indices j1, . . . , ji for each element of Ci. Because on average |C1| = p/α, we
have on average |Ci| ≤

(

p/α
i

)

. Thus, the total memory requirements are bounded by

O
(

R/2 ·
(

p/α
R/2

)

)

≈ O
(

p · 2p/αH(Rα/2p)
)

≈ O
(

p2βp
)

, where β = H(H−1(α)/2)
α

< 1, be-

cause R ≈ p/αH−1(α) for large p from (9). For example, for α = 1/2, β = 0.61.
To obtain a bound on the computational complexity, note that we need to compute
C1 + Ci for i = 1, . . . , R/2. Thus, the computational complexity is also bounded by

O
(

R/2 · p/α ·
(

p/α
R/2

)

)

≈ O
(

p2βp
)

.

At this point, we note that we studied other fast approaches for finding coset leaders, such
as the method based on non-expurgated syndrome trellis proposed by Wadayama [16].
Because the computational complexity of Wadayama’s method is O(p2p), it is asymptot-
ically slower than the Meet-in-the-middle method.

m/k 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m′/k 0.3 0.4 0.5 0.591 0.660 0.696 0.698

Table 2. Decrease of embedding capacity due to non-solvability of (3) as a function of the
relative message length m/k. The values were obtained experimentally for a cover image with
n = 106 pixels, k = 50, 000 randomly selected changeable pixels, and p = 18.

We now comment on the solvability of (3). The equation Hv = s will have a solution
for all s ∈ F

p
2 if and only if rank(H) = p. The probability of this is 1 − O(2p(1−k/m)), as

this is the probability that a random binary matrix with dimension p × p/α, α = m/k,
will have full rank (see, for example, [17]). This probability quickly approaches 1 with
decreasing message length m or with increasing p (for fixed m and k) because m < k.

For k/m close to 1 (m ∼ k), the probability that rank(H) < p may become large enough
to encounter a failure to embed all p bits in some blocks. For example, for p = 18 and
k/m = 2, n = 106, k = 50, 000, the probability of failure is about 0.0043. The fact that
the number of columns in H varies from block to block also contributes to failures. We
note that the probability of failure exponentially quickly decreases to zero with increasing
k/m.

To make the method applicable to as wide range of the parameters k, n, and m as possible,
the encoder needs to communicate the number of bits embedded in each block. Let us
assume k, n, and m are fixed. For the i-th block, let pi be the largest integer for which the
first pi rows of H form a matrix of rank pi. Furthermore, let f(q), q = 0, . . . , p−1, p, be the
probability distribution of pi over the blocks and random matrices H. The information
necessary to communicate pi is H(f), the entropy of f . Denoting by E{f} the expected
value of the distribution f , the average number of bits that can be encoded per block is
thus E{f} − H(f) ≤ p. Therefore, the pure payload m′ = m(E{f} − H(f))/p that can
be embedded is slightly smaller than m. From Table 2, we show the embedding capacity
loss for selected values of m/k. We see that while this loss is negligible for m/k < 0.6,
it imposes a limit on the maximal relative message length that can be embedded using
this method to αmax = m′/k < 0.698. In other words, payloads longer than roughly 70%
of the maximal embeddable message cannot be embedded using this approach.

From the practical point of view, the sequence pi should be compressed† and then em-
bedded, for example, one bit per block, as the first bit in each block. The decoder first
extracts p bits from each block, decompresses the bit sequence formed by the first bits
from each block, reads pi for all blocks, and then discards p−pi bits from the end of each
block message chunk together with the first bit.

In general, the embedding efficiency improves‡ with the increasing value of p. However, a
practical limit on the largest usable p is imposed by the exponentially increasing complex-
ity and memory requirements. Table 3 shows the embedding time for a one-mega-pixel
image (image with n = 106 pixels), for k = 50, 000 changeable pixels, for various values of

†In practice, the compressed bit-stream will be slightly larger than H(f). Since f is not
known to the decoder beforehand, adaptive coders, such as adaptive arithmetic coder, should
be used.

‡Detailed analysis of how the embedding efficiency depends on p is in Section 5.

m/k 0.1 0.2 0.25 0.33 0.5

p = 17 0.73 2.29 2.3 2 2.24

p = 18 1.17 4.58 4.19 3.58 3.8

p = 19 5.28 10.35 7.99 6.59 9.05

p = 20 15.74 17.37 12.82 10.19 18.68

Table 3. Embedding time in seconds for messages of different relative length for various values
of p. The values were obtained experimentally for a cover image with n = 106 pixels, k = 50, 000.

p on a PC equipped with a 3.4 MHz Intel Pentium IV processor. From our simulations,
we recommend p ≤ 19 to keep the embedding time of the order of seconds.

5. EMBEDDING EFFICIENCY

With increasing code length and fixed relative message length, random linear codes
asymptotically achieve the theoretical upper bound (9) on embedding efficiency. How-
ever, the computational complexity of the proposed coding method imposes a limit on
the practically usable code length. In this section, we calculate the embedding efficiency
of the proposed method, referring to [18] for more details.

Given two integers p and n, let H(p, n) be the ensemble of all binary matrices of dimension
p × n with n different non-zero columns. The average number of embedding changes for
a given matrix H ∈ H(p, n) is the average covering radius Ra of H (here calculated in
the syndrome space using the sets Ci defined in Section 4.1)

Ra = 2−p(|C1| + 2|C2| + · · ·+ R|CR|). (10)

Let ci(p, n), i = 1, . . . , p, be the expected value of |Ci|/2p over matrices H drawn uni-
formly from H(p, n). The expected value of Ra over matrices H drawn uniformly from
H(p, n) is denoted ra(p, n) =

∑p
i=1 ici(p, n). An approximate but sufficiently accurate

expression for ci(p, n) has been derived in [18].

The expected number of embedding modifications of the algorithm 1 can be calculated
as follows. The number of changeable pixels in each block is a random variable κ that
follows hyper-geometric distribution

Pr(κ = j) =

(

k
j

)(

n−k
n/nB−j

)

(

n
n/nB

) , j = 0, . . . , n/nB. (11)

Thus, the average number of embedding changes is

Ra(p) = E{ra(p, κ)} = E

{

p
∑

i=1

ici(p, κ)

}

=

n/nB
∑

j=1

p
∑

i=1

ici(p, j) Pr(κ = j). (12)

Finally, the expected value of the embedding efficiency is

e(p) = p/Ra(p). (13)

PSfrag replacements

relative message length α

e(
p
)

bound
p = 20
p = 19
p = 18
p = 17
p = 16
p = 15
p = 14
p = 13

p = 12
p = 11
p = 10
p = 9
p = 8
p = 7
p = 6
p = 5
p = 4

1/2 1/4 1/6 1/8 1/10 1/12 1/14 1/16 1/18 1/20
2

3

4

5

6

7

8

9

Figure 2. Embedding efficiency e(p) as a function of relative message length α for p = 4, . . . , 20
averaged over 100 embeddings in a one-megapixel image.

6. EXPERIMENTS AND THEIR INTERPRETATION

Figure 2, shows the embedding efficiency as a function of the ratio α−1 = k/m for n = 106,
k = 50, 000, and for p = 4, . . . , 20. It was obtained by averaging over 100 embeddings in
a cover object with the same parameters k, n, and m. The solid curve is the asymptotic
upper bound (9).

For a fixed p, the efficiency increases with shorter messages (decreasing α). Once the
number of changeable pixels in each set exceeds 2p, the embedding efficiency starts satu-
rating at p/(1− 2−p), which is the value that all curves in Figure 2 reach asymptotically
with decreasing α. This is because the p/α columns of H eventually cover the whole space
F

p
2 and thus we embed every non-zero syndrome s 6= 0 using one embedding change (when

s = 0 no embedding changes are necessary).

Notice that for fixed α, the embedding efficiency increases in a curious non-monotone
manner with increasing p. To see this interesting phenomenon more clearly, we plot
e as a function of p for various fixed relative message lengths α. The result is shown
in Figure 3. The diagram shows the expected value of embedding efficiency obtained
from (13) as a function of p = 4, . . . , 80. Each curve corresponds to a different value of
α = 1/2, 1/3, . . . , 1/200.

We see from Figure 3 that with increasing value of p the embedding efficiency increases
and reaches the asymptotic value given by the bound (9). However, this increase is not
monotone. In fact, it is not always true that increasing p will improve the embedding
efficiency. For p = 19 and α = 1/10 (embedding at 10% of embedding capacity), we
obtain an improvement only after we increase p beyond 24. Without this knowledge, we
may increase p from 19 to 22 hoping to improve the performance because, in general,
increasing p improves embedding efficiency. However, in this case we only increase the
embedding time while the embedding efficiency, in fact, decreases!

PSfrag replacements

e(
p
)

λ
(α

)

α = 1/2

α = 1/3

α = 1/4

α = 1

200
λ(α) λ(α)

y = x/3

y = x/2
y = x

p
0 10 20 30 40 50 60 70 80

2

3

4

5

6

7

8

9

10

11

12

Figure 3. Embedding efficiency e(p) as a function of p for α = 1/2, 1/3, . . . , 1/200.

PSfrag replacements

p

e(
p
)

30 32 34 36 38 40 42 44 46 48 50
10

10.5

11

11.5

1

2

3

4

5

6

7

Figure 4. Enlarged portion of e(p) for p ∈ [30, 50] for α = 1/200.

We now provide brief qualitative explanation of the origin of the non-monotone behavior
as well as some quantitative description of the diagram. Due to space limitations, details
of the exposition are sometimes omitted, only outlining the main ideas.

For H ∈ H(p, p/α) and i ≤ p, |Ci| ≤
(

p/α
i

)

≤ 2
p
α

H(iα/p). For any ε > 0, let i(ε) =
(1 − ε) p

α
H−1(α). Thus,

|Ci(ε)| ≤ 2
p
α

H((1−ε)H−1(α)) = 2p2−
p
α

εH′(ξ),

where ξ ∈ (H−1(α) − ε, H−1(α)) from Taylor expansion of H(x) at H−1(α). Thus, with
p → ∞ we have ci(ε)(p, p/α) ≤ 2−

p
α

εH′(α) → 0 because H ′(x) > 0 is decreasing on [0, 1/2).
A little more careful argument can be made to show that E{ci(ε)(p, κ)} → 0, where κ is
the random variable (11).

As the upper bound on ci(ε) is exponential in p and because we know that
∑p

i=1 ci = 1,
we can say that with increasing p, the peak of the distribution ci moves to

k
.
=

p

α
H−1(α), (14)

which is the asymptotic covering radius of matrices from H(p, p/α). This also implies
that the embedding efficiency e = p/Ra(p) → α

H−1(α)
= λ with p → ∞.

The wave character of e(p) is caused by the corresponding wave character exhibited by
Ra. To obtain an insight, inspect Figure 4, which shows a zoomed portion of one “wave”
exhibited by e(p) for α = 1/200 and the corresponding distribution ci(p, p/α). Note that
the local maxima (the circled points No. 1, 7 in the figure) attained for p = 34 and
p = 47 correspond to cases when c3(p, p/α) ≈ 1 and c4(p, p/α) ≈ 1, respectively. In these
cases, the average covering radius Ra is very close to an integer and the distribution ci

undergoes very small changes. As a result, the growth in Ra is the smallest and thus
the ratio p/Ra experiences a peak. With p increasing from p = 34 to 47, Ra quickly
starts moving from 3 to 4. Because e = p/Ra, the decrement in e is largest when the
increment in Ra is the largest (point No. 3), which occurs when the peaks switch their
places. After they switch places, the changes to the distribution ci become very subtle
again and during this period e experiences growth.

Because the local peaks in e correspond to cases when Ra is an integer, the peaks lie
on lines y = p/k for k integer. The lines for k = 1, 2, and 3 are shown in the figure.
Finally, because for large p, Ra ≈ R ≈ p/αH−1(α) = p/λ, and because at the peaks
Ra is an integer, the peaks will asymptotically occur at pk = kλ, which gives an asymp-
totic expression for the “wavelength” pk+1 − pk → λ. This completes the quantitative
explanation of Figure 3.

7. CONCLUSIONS

In this paper, we showed an application of codes for memory with defective cells in
steganography with side information available only to the sender. Steganography with
side information at the sender’s side allows for construction of new schemes with better
security because the selection channel—the placement of embedding changes—does not
have to be shared with the receiver and can thus be derived from information in principle

unavailable to the receiver and thus any attacker (elements of true randomness obtained
from an external source, or higher-quality version of the cover media).

Random codes and, specifically, low density parity check codes can be used for cod-
ing with memory with defective cells. Asymptotically, random codes are optimal: the
actual capacity of the scheme (exponentially) quickly achieves the Shannon capacity.
Even though random codes perform well from the theoretical stand point, an efficient
implementation must be addressed. In this paper, we showed how to use the process of
decoding LT codes (a special class of irregular low density parity check codes) to quickly
find a codeword that is compatible with the memory defects.

Even though steganographic schemes based on coding for memory with defective cells
generally improve security since the attacker does not know where the embedding changes
took place, we can improve security further by trying to reduce the number of changes
we make (increase embedding efficiency). This is a problem of finding a codeword with
minimal Hamming weight. We showed that by restricting our attention to blocks that are
small enough, we can solve this problem by an exhaustive search (the Meet-in-the-middle
algorithm). We compared the performance of this algorithm to theoretically achievable
bounds.

The experiments with embedding efficiency of the Meet-in-the-middle algorithm revealed
somewhat surprising behavior of the actual embedding efficiency. The embedding ef-
ficiency increases in a non-monotone matter with increasing block length. This phe-
nomenon and its consequences were quantitatively explained it the last section of this
paper.

In our future effort, reflecting on our previous work on application of LT codes to
steganography, we plan to investigate low density parity check codes and their iterative
decoding algorithms with the intention to obtain good quantizers suitable for steganog-
raphy with non-shared selection channels with improved embedding efficiency.

8. ACKNOWLEDGEMENTS

The work on this paper was supported by Air Force Research Laboratory, Air Force Mate-
rial Command, USAF, under the research grants number FA8750-04-1-0112 and F30602-
02-2-0093. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation there on. The views
and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of Air Force
Research Laboratory, or the U.S. Government. Special thanks belong to Petr Lisoněk
and Alexander Barg for many useful discussions.

REFERENCES

1. G. Simmons, “The prisoners’ problem and the subliminal channel,” in CRYPTO83—
Advances in Cryptology, pp. 51–67, Aug 22–24 1984.

2. A. Westfeld and R. Böhme, “Exploiting preserved statistics for steganalysis,” in Pre-
Proceedings, Information Hiding: 6th International Workshop, IH 2004, J. Fridrich, ed.,
Lecture Notes in Computer Science 3200, Springer-Verlag, (Toronto, Canada), May 23–
25 2004.

3. J. Fridrich, M. Goljan, and D. Soukal, “Perturbed quantization steganography using wet
paper codes,” in MM&Sec ’04: Proceedings of the 2004 multimedia and security workshop
on Multimedia and security, J. Dittmann and J. Fridrich, eds., Proceedings of ACM, ACM
Press, (New York, NY, USA), Dec. 6 2004.

4. A. Kuznetsov and B. Tsybakov, “Coding in a memory with defective cells,” 10, pp. 132–
138, 1974.

5. R. Crandall, “Some notes on steganography.” Posted on Steganography Mailing List. http:
//os.inf.tu-dresden.de/~westfeld/crandall.pdf, 1998.

6. J. Bierbrauer, “On Crandall’s problem.” Personal communication, 1998.

7. F. Galand and G. Kabatiansky, “Information hiding by coverings,” in Proc. ITW2003,
pp. 151–154, (Paris, France), 2003.

8. S. I. Gel’fand and M. S. Pinsker, “Coding for channel with random parameters,” in Pered.
Inform. (Probl. Inform. Trans.), 9(1), pp. 19–31, 1980.

9. R. Zamir, S. Shamai, and U. Erez, “Nested linear/lattice codes for structured multitermi-
nal binning,” in IEEE Trans. Inf. Th., 48(6), pp. 1250–1276, 2002.

10. C. Heegard, “Partitioned linear block codes for computer memory with ‘stuck-at’ defects,”
in IEEE Trans. Inf. Th., 29, pp. 831–842, 1983.

11. C. Heegard and A. El-Gamal, “On the capacity of computer memory with defects,” in
IEEE Trans. Inf. Th., 29, pp. 731–739, 1983.

12. J. Fridrich, M. Goljan, P. Lisoněk, and D. Soukal, “Writing on wet paper,” in to appear
in IEEE Trans. on Sig. Proc. (Special Issue on Media Security), T. Kalker and P. Moulin,
eds., 2005.

13. J. Fridrich, M. Goljan, and D. Soukal, “Efficient Wet Paper Codes,” in Proceedings, In-
formation Hiding: 7th International Workshop, IHW 2005, Lecture Notes in Computer
Science, Springer-Verlag, (Barcelona, Spain), 2005.

14. G. D. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes, vol. 54, Elsevier,
North-Holland Mathematical Library, 1997.

15. J. Fridrich and D. Soukal, “Matrix embedding for large payloads,” in submitted to IEEE
Transactions on Information Security and Forensics, 2005.

16. T. Wadayama, “An algorithm for calculating the exact bit error probability of a binary
linear code over the binary symmetric channel,” pp. 331–337.

17. R. Brent, S. Gao, and A. Lauder, “Random Krylov spaces over finite fields,” in SIAM J.
Discrete Math., 16(2), pp. 276–287, 2003.

18. J. Fridrich, M. Goljan, and D. Soukal, “Wet paper codes with improved embedding
efficiency,” in submitted to IEEE Transactions on Information Security and Forensics,
July 2005.

