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What is a Wavelet Transform?

• Decomposition of a signal into constituent parts
• Note that there are many ways to do this. Some are:

– Fourier series: harmonic sinusoids; single integer index
– Fourier transform (FT): nonharmonic sinusoids; single real index
– Walsh decomposition: “harmonic” square waves; single integer index
– Karhunen-Loeve decomp: eigenfunctions of covariance; single real index
– Short-Time FT (STFT): windowed, nonharmonic sinusoids; double index 

• provides time-frequency viewpoint
– Wavelet Transform: time-compacted waves; double index

• Wavelet transform also provides time-frequency view
– Decomposes signal in terms of duration-limited, band-pass components

• high-frequency components are short-duration, wide-band
• low-frequency components are longer-duration, narrow-band

– Can provide combo of good time-frequency localization and orthogonality
• the STFT can’t do this

– More precisely, wavelets give time-scale viewpoint
• this is connected to the multi-resolution viewpoint of wavelets
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General Characteristics of Wavelet Systems

• Signal decomposition: build signals from “building blocks”, where the 
building blocks (i.e. basis functions) are doubly indexed.

• The components of the decomposition (i.e. the basis functions) are 
localized in time-frequency

– ON can be achieved w/o sacrificing t-f localization 
• The coefficients of the decomposition can be computed efficiently (e.g., 

using O(N) operations).

Specific Characteristics of Wavelet Systems
• Basis functions are generated from a single wavelet or scaling function 

by scaling and translation
• Exhibit multiresolution characteristics: dilating the scaling functions 

provides a higher resolution space that includes the original
• Lower resolution coefficients can be computed from higher resolution 

coefficients through a filter bank structure
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Fourier Development vs. Wavelet Development
• Fourier and others:

– expansion functions are chosen, then properties of transform are found
• Wavelets

– desired properties are mathematical imposed
– the needed expansion functions are then derived

• Why are there so many different wavelets
– the basic desired property constraints don’t use all the degrees of freedom
– remaining degrees of freedom are used to achieve secondary properties

• these secondary properties are usually application-specific
• the primary properties are generally application-nonspecific

• What kinds of signals are wavelets and Fourier good for?
– Wavelets are good for transients

• localization property allows wavelets to give efficient rep. of transients
– Fourier is good for periodic or stationary signals
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Why are Wavelets Effective?
• Provide unconditional basis for large signal class

– wavelet coefficients drop-off rapidly
– thus, good for compression, denoising, detection/recognition
– goal of any expansion is

• have the coefficients provide more info about signal than time-domain
• have most of the coefficients be very small (sparse representation)

– FT is not sparse for transients
• Accurate local description and separation of signal characteristics

– Fourier puts localization info in the phase in a complicated way
– STFT can’t give localization and orthogonality

• Wavelets can be adjusted or adapted to application
– remaining degrees of freedom are used to achieve goals

• Computation of wavelet coefficient is well-suited to computer
– no derivatives of integrals needed
– turns out to be a digital filter bank



6

Multiresolution Viewpoint
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Multiresolution Approach
• Stems from image processing field

– consider finer and finer approximations to an image
• Define a nested set of signal spaces 

• We build these spaces as follows:
• Let      be the space spanned by the integer translations of a 

fundamental signal φ(t), called the scaling function:  

that is, if f(t) is in      then it can be represented by:

• So far we can use just about any function φ(t), but we’ll see that to get 
the nesting only certain scaling functions can be used.
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Multiresolution Analysis (MRA) Equation
• Now that we have how do we make the others and ensure that they 

are nested?
• If we let     be the space spanned by integer translates of φ(2t) we get 

the desired property that      is indeed a space of functions having 
higher resolution.

• Now how do we get the nesting?
• We need that any function in      also be in     ; in particular we need 

that the scaling function (which is in     ) be in      , which the requires 
that

where the expansion coefficient is          
• This is the requirement on the scaling function to ensure nesting: it 

must satisfy this equation
– called the multiresolution analysis (MRA) equation
– this is like a differential equation that the scaling function is the solution to
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The h(n) Specify the Scaling Function
• Thus, the coefficients h(n) determine the scaling function

– for a given set of h(n), φ(t)
• may or may not exist
• may or may not be unique

• Want to find conditions on h(n) for φ(t) to exist and be unique, and also:
– to be orthogonal (because that leads to an ON wavelet expansion)
– to give wavelets that have desirable properties
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Whence the Wavelets?
• The spaces Vj represent increasingly higher resolution spaces
• To go from Vj to higher resolution Vj+1 requires the addition of “details”

– These details are the part of Vj+1 not able to be represented in Vj

– This can be captured through the “orthogonal complement of Vj w.r.t Vj+1

• Call this orthogonal complement space Wj
– all functions in Wj are orthogonal to all functions in Vj

– That is: 

• Consider that V0 is the lowest resolution of interest
• How do we characterize the space W0 ?

– we need to find an ON basis for W0, say               where the basis functions 
arise from translating a single function (we’ll worry about the scaling part 
later):
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Finding the Wavelets
• The wavelets are the basis functions for the Wj spaces

– thus, they lie in Vj+1

• In particular, the function        lies in the space V1 so it can be 
expanded as

• This is a fundamental result linking the scaling function and the wavelet
– the h1(n) specify the wavelet, via the specified scaling function
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Wavelet-Scaling Function Connection
• There is a fundamental connection between the scaling function and its 

coefficients h(n) , the wavelet function and its coefficients h1(n):

h1(n)
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Relationship Between h1(n) and h(n) 

• We state here the conditions for the important special case of
– finite number N of nonzero h(n)
– ON within V0:
– ON between V0 and W0 : 

• Given the h(n) that define the desired scaling function, then the h1(n) 
that define the wavelet function are given by

• Much of wavelet theory addresses the origin, characteristics, and 
ramifications of this relationship between h1(n) and h(n) 

– requirements on h(n) and h1(n) to achieve ON expansions
– how the MRE and WE lead to a filter bank structure
– requirements on h(n) and h1(n) to achieve other desired properties
– extensions beyond the ON case
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The Resulting Expansions
• Let f(t) be in L2(R)
• There are three ways of interest that we can expand f(t)

1 We can give an limited resolution approximation to f(t) via

– increasing j gives a better (i.e., higher resolution) approximation

– this is in general not the most useful expansion
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The Resulting Expansions (cont.)

2 A low-resolution approximation plus its wavelet details

– Choosing j0 sets the level of the coarse approximation

– This is most useful in practice:  j0 is usually chosen according to application
• Also in practice, the upper value of j is chosen to be finite
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The Resulting Expansions (cont.)

3 Only the wavelet details

– Choosing  j0=-∞ eliminates the coarse approximation leaving only details

– This is most similar to the “true” wavelet decomposition as it was originally 
developed

– This is not that useful in practice:  j0 is usually chosen to be finite according 
to application
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The Expansion Coefficients cj0
(k) and dj(k)

• We consider here only the simple, but important, case of ON expansion
– i.e., the φ’s are ON, the ψ’s are ON, and the φ’s are ON to the ψ’s 

• Then we can use standard ON expansion theory:

• We will see how to compute these without resorting to computing inner 
products

– we will use the coefficients h1(n) and h(n) instead of the wavelet and scaling 
function, respectively

– we look at a relationship between the expansion coefficients at one level 
and those at the next level of resolution
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Summary of Multiresolution View
• Nested Resolution spaces: 

• Wavelet Spaces provide orthogonal complement between resolutions

• Wavelet Series Expansion of a continuous-time signal f(t):

• MR equation (MRE) provides link between the scaling functions at
successive levels of resolution:

• Wavelet equation (WE) provides link between a resolution level and its 
complement
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Summary of Multiresolution View (cont.)
• There is a fundamental connection between the scaling function and its 

coefficients h(n) , the wavelet function and its coefficients h1(n):

h1(n)
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Filter Banks and DWT



21

Generalizing the MRE and WE
• Here again are the MRE and the WE:

• We get:
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Linking Expansion Coefficients Between Scales 
• Start with the Generalized MRA and WE:
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Convolution-Decimation Structure
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Summary of Progression to Convolution-
Decimation Structure 
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Computing The Expansion Coefficients
• The above structure can be cascaded: 

– given the scaling function coefficients at a specified level all the lower 
resolution c’s and d’s can be computed using the filter structure

LPF 
h0(-n)

HPF 
h1(-n)

cj+1(k)

cj(k)

dj(k)
↓2

↓2

LPF 
h0(-n)

HPF 
h1(-n)

cj-1(k)

↓2

↓2

LPF 
h0(-n)

HPF 
h1(-n)

cj-2(k)

↓2

↓2

dj-1(k)

dj-2(k)

Vj+1

Vj

Vj-1

Vj-2

Wj

Wj-1

Wj-2
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Filter Bank Generation of the Spaces

LPF 
h0(-n)

HPF 
h1(-n) ↓2

↓2

LPF 
h0(-n)

HPF 
h1(-n) ↓2

↓2

LPF 
h0(-n)

HPF 
h1(-n) ↓2

↓2

Vj+1

Vj

Vj-1

Vj-2

Wj

Wj-1

Wj-2

WjWj-1Wj-2Vj-2

Vj+1

ππ/2π/4π/8
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Time
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DISCRETE FOURIER TRANSFORM
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Time
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WAVELET TRANSFORM
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Q256

Q1

Q2
8-Level
Wavelet

Transform

h1(1) to h1(8)

h1(9) to h1(16)

l8(1) to l8(8)

h1q(1) to h1q(8)

h1q(9) to h1q(16)

l8q(1) to l8q(8)

Side Info

s(t)

• Bits allocated to quantizers to minimize MSE
• Then allocations less than Bmin are set to zero

» Eliminates negligible cells
• Side info sent to describe allocations

WT-BASED COMPRESSION EXAMPLE
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