Wavelet Transform Theory

Prof. Mark Fowler
Department of Electrical Engineering
State University of New York at Binghamton

What is a Wavelet Transform?

- Decomposition of a signal into constituent parts
- Note that there are many ways to do this. Some are:
- Fourier series: harmonic sinusoids; single integer index
- Fourier transform (FT): nonharmonic sinusoids; single real index
- Walsh decomposition: "harmonic" square waves; single integer index
- Karhunen-Loeve decomp: eigenfunctions of covariance; single real index
- Short-Time FT (STFT): windowed, nonharmonic sinusoids; double index
- provides time-frequency viewpoint
- Wavelet Transform: time-compacted waves; double index
- Wavelet transform also provides time-frequency view
- Decomposes signal in terms of duration-limited, band-pass components
- high-frequency components are short-duration, wide-band
- low-frequency components are longer-duration, narrow-band
- Can provide combo of good time-frequency localization and orthogonality
- the STFT can't do this
- More precisely, wavelets give time-scale viewpoint
- this is connected to the multi-resolution viewpoint of wavelets

General Characteristics of Wavelet Systems

- Signal decomposition: build signals from "building blocks", where the building blocks (i.e. basis functions) are doubly indexed.
- The components of the decomposition (i.e. the basis functions) are localized in time-frequency
- ON can be achieved w/o sacrificing t-f localization
- The coefficients of the decomposition can be computed efficiently (e.g., using $O(N)$ operations).

Specific Characteristics of Wavelet Systems

- Basis functions are generated from a single wavelet or scaling function by scaling and translation
- Exhibit multiresolution characteristics: dilating the scaling functions provides a higher resolution space that includes the original
- Lower resolution coefficients can be computed from higher resolution coefficients through a filter bank structure

Fourier Development vs. Wavelet Development

- Fourier and others:
- expansion functions are chosen, then properties of transform are found
- Wavelets
- desired properties are mathematical imposed
- the needed expansion functions are then derived
- Why are there so many different wavelets
- the basic desired property constraints don't use all the degrees of freedom
- remaining degrees of freedom are used to achieve secondary properties
- these secondary properties are usually application-specific
- the primary properties are generally application-nonspecific
- What kinds of signals are wavelets and Fourier good for?
- Wavelets are good for transients
- localization property allows wavelets to give efficient rep. of transients
- Fourier is good for periodic or stationary signals

Why are Wavelets Effective?

- Provide unconditional basis for large signal class
- wavelet coefficients drop-off rapidly
- thus, good for compression, denoising, detection/recognition
- goal of any expansion is
- have the coefficients provide more info about signal than time-domain
- have most of the coefficients be very small (sparse representation)
- FT is not sparse for transients
- Accurate local description and separation of signal characteristics
- Fourier puts localization info in the phase in a complicated way
- STFT can't give localization and orthogonality
- Wavelets can be adjusted or adapted to application
- remaining degrees of freedom are used to achieve goals
- Computation of wavelet coefficient is well-suited to computer
- no derivatives of integrals needed
- turns out to be a digital filter bank

Multiresolution Viewpoint

Multiresolution Approach

- Stems from image processing field
- consider finer and finer approximations to an image
- Define a nested set of signal spaces

$$
\cdots \subset V_{-2} \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \subset \cdots \subset L^{2}
$$

- We build these spaces as follows:
- Let V_{0} be the space spanned by the integer translations of a fundamental signal $\phi(t)$, called the scaling function:
that is, if $f(\mathrm{t})$ is in V_{0} then it can be represented by:

$$
f(t)=\sum_{k} a_{k} \phi(t-k)
$$

- So far we can use just about any function $\phi(t)$, but we'll see that to get the nesting only certain scaling functions can be used.

Multiresolution Analysis (MRA) Equation

- Now that we have V_{0} how do we make the others and ensure that they are nested?
- If we let V_{1} be the space spanned by integer translates of $\phi(2 t)$ we get the desired property that V_{1} is indeed a space of functions having higher resolution.
- Now how do we get the nesting?
- We need that any function in V_{0} also be in V_{1}; in particular we need that the scaling function (which is in V_{0}) be in V_{1}, which the requires that

$$
\phi(t)=\sum_{n} h(n) \sqrt{2} \phi(2 t-n)
$$

where the expansion coefficient is $h(n) \sqrt{2}$

- This is the requirement on the scaling function to ensure nesting: it must satisfy this equation
- called the multiresolution analysis (MRA) equation
- this is like a differential equation that the scaling function is the solution to

The $h(n)$ Specify the Scaling Function

- Thus, the coefficients $h(n)$ determine the scaling function
- for a given set of $h(n), \phi(t)$
- may or may not exist
- may or may not be unique
- Want to find conditions on $h(n)$ for $\phi(\mathrm{t})$ to exist and be unique, and also:
- to be orthogonal (because that leads to an ON wavelet expansion)
- to give wavelets that have desirable properties

Whence the Wavelets?

- The spaces V_{j} represent increasingly higher resolution spaces
- To go from V_{j} to higher resolution V_{j+1} requires the addition of "details"
- These details are the part of V_{j+1} not able to be represented in V_{j}
- This can be captured through the "orthogonal complement of V_{j} w.r.t V_{j+1}
- Call this orthogonal complement space W_{j}
- all functions in W_{j} are orthogonal to all functions in V_{j}
- That is:

$$
<\phi_{j, k}(t), \psi_{j, l}(t)>=\int \phi_{j, k}(t) \psi_{j, l}(t) d t=0 \quad \forall j, k, l \in \mathbf{Z}
$$

- Consider that V_{0} is the lowest resolution of interest
- How do we characterize the space W_{0} ?
- we need to find an ON basis for W_{0}, say $\left\{\psi_{0, k}(t)\right\}$ where the basis functions arise from translating a single function (we'll worry about the scaling part later):

$$
\psi_{0, k}(t)=\psi(t-k)
$$

Finding the Wavelets

- The wavelets are the basis functions for the W_{j} spaces
- thus, they lie in V_{j+1}
- In particular, the function $\psi(t)$ lies in the space V_{1} so it can be expanded as

$$
\psi(t)=\sum_{n} h_{1}(n) \sqrt{2} \phi(2 t-n), \quad n \in \mathbf{Z}
$$

- This is a fundamental result linking the scaling function and the wavelet
- the $h_{1}(n)$ specify the wavelet, via the specified scaling function

Wavelet-Scaling Function Connection

- There is a fundamental connection between the scaling function and its coefficients $h(n)$, the wavelet function and its coefficients $h_{1}(\mathrm{n})$:

Relationship Between $h_{1}(n)$ and $h(n)$

- We state here the conditions for the important special case of
- finite number N of nonzero $\mathrm{h}(\mathrm{n})$
- ON within V_{0} :
$\int \phi(t) \phi(t-k) d t=\delta(k)$
$\int \psi(t) \phi(t-k) d t=\delta(k)$
- Given the $h(n)$ that define the desired scaling function, then the $h_{1}(n)$ that define the wavelet function are given by

$$
h_{1}(n)=(-1)^{n} h(N-1-n)
$$

- Much of wavelet theory addresses the origin, characteristics, and ramifications of this relationship between $h_{1}(n)$ and $h(n)$
- requirements on $h(n)$ and $h_{1}(n)$ to achieve ON expansions
- how the MRE and WE lead to a filter bank structure
- requirements on $h(n)$ and $h_{1}(n)$ to achieve other desired properties
- extensions beyond the ON case

The Resulting Expansions

- Let $f(t)$ be in $L^{2}(R)$
- There are three ways of interest that we can expand $f(t)$

1 We can give an limited resolution approximation to $f(t)$ via

$$
f_{j}(t)=\sum_{k} a_{k} 2^{j / 2} \phi\left(2^{j}{ }^{j}-k\right)
$$

- increasing j gives a better (i.e., higher resolution) approximation

$$
\cdots \subset V_{-2} \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \subset \cdots \subset L^{2}
$$

- this is in general not the most useful expansion

The Resulting Expansions (cont.)

2 A low-resolution approximation plus its wavelet details

$$
f(t)=\underbrace{\sum_{k} c_{j_{0}}(k) 2^{j_{0} / 2} \phi\left(2^{j_{0}} t-k\right)}_{\begin{array}{c}
\text { Low-Resolution } \\
\text { Approximation }
\end{array}}+\underbrace{\sum_{k} \sum_{j=j_{0}}^{\infty} d_{j}(k) 2^{j / 2} \psi\left(2^{j} t-k\right)}_{\text {Wavelet Details }}
$$

- Choosing j_{0} sets the level of the coarse approximation

$$
L^{2}=V_{j_{0}} \oplus W_{j_{0}} \oplus W_{j_{0}+1} \oplus W_{j_{0}+2} \oplus \cdots
$$

- This is most useful in practice: j_{0} is usually chosen according to application
- Also in practice, the upper value of j is chosen to be finite

The Resulting Expansions (cont.)

3 Only the wavelet details

$$
f(t)=\sum_{k} \sum_{j=-\infty}^{\infty} d_{j}(k) 2^{j / 2} \psi\left(2^{j} t-k\right)
$$

- Choosing $\mathrm{j}_{0}=-\infty$ eliminates the coarse approximation leaving only details

$$
L^{2}=\cdots \oplus W_{-2} \oplus W_{-1} \oplus W_{0} \oplus W_{1} \oplus W_{2} \oplus \cdots
$$

- This is most similar to the "true" wavelet decomposition as it was originally developed
- This is not that useful in practice: j_{0} is usually chosen to be finite according to application

The Expansion Coefficients $\mathbf{c}_{\mathrm{i}_{0}}(\mathbf{k})$ and $\mathrm{d}_{\mathrm{j}}(\mathbf{k})$

- We consider here only the simple, but important, case of ON expansion
- i.e., the ϕ 's are ON, the ψ 's are ON, and the ϕ 's are ON to the ψ 's
- Then we can use standard ON expansion theory:

$$
\begin{gathered}
c_{j_{0}}(k)=\left\langle f(t), \varphi_{j_{0}, k}(t)\right\rangle=\int f(t) \varphi_{j_{0}, k}(t) d t \\
d_{j}(k)=\left\langle f(t), \psi_{j, k}(t)\right\rangle=\int f(t) \psi_{j, k}(t) d t
\end{gathered}
$$

- We will see how to compute these without resorting to computing inner products
- we will use the coefficients $h_{1}(n)$ and $h(n)$ instead of the wavelet and scaling function, respectively
- we look at a relationship between the expansion coefficients at one level and those at the next level of resolution

Summary of Multiresolution View

- Nested Resolution spaces:

$$
\cdots \subset V_{-2} \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \subset \cdots \subset L^{2}
$$

- Wavelet Spaces provide orthogonal complement between resolutions

$$
L^{2}=V_{j_{0}} \oplus W_{j_{0}} \oplus W_{j_{0}+1} \oplus W_{j_{0}+2} \oplus \cdots
$$

- Wavelet Series Expansion of a continuous-time signal $f(t)$:

$$
f(t)=\sum_{k} c_{j_{0}}(k) 2^{j_{0} / 2} \phi\left(2^{j_{0}} t-k\right)+\sum_{k} \sum_{j=j_{0}}^{\infty} d_{j}(k) 2^{j / 2} \psi\left(2^{j} t-k\right)
$$

- MR equation (MRE) provides link between the scaling functions at successive levels of resolution:

$$
\phi(t)=\sum_{n} h(n) \sqrt{2} \phi(2 t-n), \quad n \in \mathbf{Z}
$$

- Wavelet equation (WE) provides link between a resolution level and its complement

$$
\psi(t)=\sum_{n} h_{1}(n) \sqrt{2} \phi(2 t-n), \quad n \in \mathbf{Z}
$$

Summary of Multiresolution View (cont.)

- There is a fundamental connection between the scaling function and its coefficients $h(n)$, the wavelet function and its coefficients $h_{1}(n)$:

Filter Banks and DWT

Generalizing the MRE and WE

- Here again are the MRE and the WE:

- We get:

MRE

$$
\phi\left(2^{j} t-k\right)=\sum_{m} h(m-2 k) \sqrt{2} \phi\left(2^{j+1} t-m\right)
$$

Connects V_{j} to $\mathrm{V}_{\mathrm{j}+1}$

WE

$$
\begin{aligned}
\psi\left(2^{j} t-k\right)= & \sum_{m} h_{1}(m-2 k) \sqrt{2} \phi\left(2^{j+1} t-m\right) \\
& \text { Connects } \mathbf{W}_{\mathrm{j}} \text { to } \mathrm{V}_{\mathrm{j}+1}
\end{aligned}
$$

Linking Expansion Coefficients Between Scales

- Start with the Generalized MRA and WE:

$$
\begin{gathered}
\phi\left(2^{j} t-k\right)=\underbrace{\sum_{m} h(m-2 k) \sqrt{2} \phi\left(2^{j+1} t-m\right)}_{c_{j}(k)=\left\langle f(t), \varphi_{j, k}(t)\right\rangle} \psi\left(2^{j} t-k\right)=\sum_{m} h_{1}(m-2 k) \sqrt{2} \phi\left(2^{j+1} t-m\right) \\
c_{j}(k)=\sum_{m} h(m-2 k)\left\langle f(t), 2^{(j+1) / 2} \varphi\left(2^{j+1} t-m\right)\right\rangle \\
c_{j}(k)=\sum_{j}(k)=\left\langle f(t), \psi_{j, k}(t)\right\rangle \\
c_{j}(k)=\sum_{m} h(m-2 k) c_{j+1}(m)
\end{gathered}
$$

Convolution-Decimation Structure

New Notation For Convenience: $h(n) \rightarrow h_{0}(n)$

$$
c_{j}(k)=\sum_{m} h_{0}(m-2 k) c_{j+1}(m)
$$

$$
d_{j}(k)=\sum_{m} h_{1}(m-2 k) c_{j+1}(m)
$$

$$
\begin{aligned}
y_{0}(n) & =c_{j+1}(n) * h_{0}(-n) \\
& =\sum_{m} h_{0}(m-n) c_{j+1}(m)
\end{aligned}
$$

Convolution

$$
\begin{aligned}
y_{1}(n) & =c_{j+1}(n) * h_{1}(-n) \\
& =\sum_{m} h_{1}(m-n) c_{j+1}(m)
\end{aligned}
$$

Summary of Progression to ConvolutionDecimation Structure

MRE

$$
\phi\left(2^{j} t-k\right)=\sum_{m} h(m-2 k) \sqrt{2} \phi\left(2^{j+1} t-m\right)
$$

WE

$$
\psi\left(2^{j} t-k\right)=\sum_{m} h_{1}(m-2 k) \sqrt{2} \phi\left(2^{j+1} t-m\right)
$$

Computing The Expansion Coefficients

- The above structure can be cascaded:
- given the scaling function coefficients at a specified level all the lower resolution c's and d's can be computed using the filter structure

Filter Bank Generation of the Spaces

Discrete Fourier Transform

Time

Wavelet Transform

WT-BASED COMPRESSION EXAMPLE

Time

