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What is a Wavelet Transform?

« Decomposition of a signal into constituent parts
* Note that there are many ways to do this. Some are:

Fourier series: harmonic sinusoids; single integer index

Fourier transform (FT): nonharmonic sinusoids; single real index

Walsh decomposition: “harmonic” square waves; single integer index

Karhunen-Loeve decomp: eigenfunctions of covariance; single real index

Short-Time FT (STFT): windowed, nonharmonic sinusoids; double index
» provides time-frequency viewpoint

Wavelet Transform: time-compacted waves; double index

« Wavelet transform also provides time-frequency view

Decomposes signal in terms of duration-limited, band-pass components
* high-frequency components are short-duration, wide-band
» low-frequency components are longer-duration, narrow-band

Can provide combo of good time-frequency localization and orthogonality
« the STFT can’t do this

— More precisely, wavelets give time-scale viewpoint

 this is connected to the multi-resolution viewpoint of wavelets



General Characteristics of Wavelet Systems

Signal decomposition: build signals from “building blocks”, where the
building blocks (i.e. basis functions) are doubly indexed.

The components of the decomposition (i.e. the basis functions) are
localized in time-frequency

— ON can be achieved w/o sacrificing t-f localization
The coefficients of the decomposition can be computed efficiently (e.g.,
using O(N) operations).

Specific Characteristics of Wavelet Systems

Basis functions are generated from a single wavelet or scaling function
by scaling and translation

Exhibit multiresolution characteristics: dilating the scaling functions
provides a higher resolution space that includes the original

Lower resolution coefficients can be computed from higher resolution
coefficients through a filter bank structure



Fourier Development vs. Wavelet Development

Fourier and others:
— expansion functions are chosen, then properties of transform are found
Wavelets
— desired properties are mathematical imposed
— the needed expansion functions are then derived
Why are there so many different wavelets
— the basic desired property constraints don’t use all the degrees of freedom
— remaining degrees of freedom are used to achieve secondary properties
» these secondary properties are usually application-specific
« the primary properties are generally application-nonspecific
What kinds of signals are wavelets and Fourier good for?
— Wavelets are good for transients
 |ocalization property allows wavelets to give efficient rep. of transients
— Fourier is good for periodic or stationary signals



Why are Wavelets Effective?

Provide unconditional basis for large signal class
— wavelet coefficients drop-off rapidly
— thus, good for compression, denoising, detection/recognition
— goal of any expansion is
* have the coefficients provide more info about signal than time-domain
» have most of the coefficients be very small (sparse representation)
— FT is not sparse for transients
Accurate local description and separation of signal characteristics
— Fourier puts localization info in the phase in a complicated way
— STFT can't give localization and orthogonality
Wavelets can be adjusted or adapted to application
— remaining degrees of freedom are used to achieve goals
Computation of wavelet coefficient is well-suited to computer

— no derivatives of integrals needed
— turns out to be a digital filter bank



Multiresolution Viewpoint



Multiresolution Approach

Stems from image processing field
— consider finer and finer approximations to an image

Define a nested set of signal spaces

..0OV_, OV, OV, 0V, 0V, O---0L2

We build these spaces as follows:

Let Vo be the space spanned by the integer translations of a
fundamental signal @(t), called the scaling function:

that is, if f(t) is in Vy then it can be represented by:

f(t) = Z a, ot — k)

So far we can use just about any function ¢(t), but we’ll see that to get
the nesting only certain scaling functions can be used.



Multiresolution Analysis (MRA) Equation

Now that we have Vy how do we make the others and ensure that they
are nested?

If we let V; be the space spanned by integer translates of ¢@(2t) we get
the desired property that V; is indeed a space of functions having
higher resolution.

Now how do we get the nesting?

We need that any function in Vg also be in Vi ; in particular we need
that the scaling function (which is in Vy) be in Vi , which the requires
that

() = Z h(n)v/2¢(2t - n)

where the expansion coefficient is h(n)v/2
This is the requirement on the scaling function to ensure nesting: it
must satisfy this equation

— called the multiresolution analysis (MRA) equation

— this is like a differential equation that the scaling function is the solution to



The h(n) Specify the Scaling Function

« Thus, the coefficients h(n) determine the scaling function
— for a given set of h(n), @(t)
* may or may not exist
e may or may not be unique
 Want to find conditions on h(n) for @(t) to exist and be unigue, and also:
— to be orthogonal (because that leads to an ON wavelet expansion)

— to give wavelets that have desirable properties

MRA
Equation

h(n) must
satisfy
conditions



Whence the Wavelets?

The spaces V, represent increasingly higher resolution spaces

To go from V; to higher resolution V,,, requires the addition of “details”
— These details are the part of Vj,; not able to be represented in V,
— This can be captured through the “orthogonal complement of V; w.r.t V,;
Call this orthogonal complement space W,
— all functions in W, are orthogonal to all functions in V;
— Thatis:

<@ ()., (1) >:I¢j,k ty;,t)dt=0 0Oj,k10Z

Consider that V, is the lowest resolution of interest

How do we characterize the space W, ?

— we need to find an ON basis for W, say o« (®)} where the basis functions
arise from translating a single function (we’ll worry about the scaling part
later):

Yok () =(t-k)
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Finding the Wavelets

The wavelets are the basis functions for the W; spaces
— thus, they lie in V,;
In particular, the function ¢(t) lies in the space V, so it can be

expanded as
bO = (nv2@2t-n), nOZ

This is a fundamental result linking the scaling function and the wavelet
— the hy(n) specify the wavelet, via the specified scaling function

Wavelet
Equation
(WE)

h;(n) must
satisfy

conditions
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Wavelet-Scaling Function Connection

 There is a fundamental connection between the scaling function and its
coefficients h(n) , the wavelet function and its coefficients h,(n):

MR
Equation
(MRE)

How are h,(n) and
h(n) related?
‘ 1y

Wavelet
Equation
(WE)

]
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Relationship Between h,(n) and h(n)

We state here the conditions for the important special case of

— finite number N of nonzero h(n)

— ON within V. Ico(t)co(t —k)dt =o(k)

— ON between V, and W : J'Lp(t)qa(t —k)dt = 5(k)
Given the h(n) that define the desired scaling function, then the h,(n)
that define the wavelet function are given by

hy(n) =(-D"h(N -1-n)

Much of wavelet theory addresses the origin, characteristics, and
ramifications of this relationship between h,(n) and h(n)
— requirements on h(n) and h,(n) to achieve ON expansions
— how the MRE and WE lead to a filter bank structure
— requirements on h(n) and h,(n) to achieve other desired properties
— extensions beyond the ON case
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The Resulting Expansions

o Letf(t) be in L2(R)
 There are three ways of interest that we can expand f(t)

1 We can give an limited resolution approximation to f(t) via
(1) = Zakzj’ch(zit—k)

— increasing j gives a better (i.e., higher resolution) approximation

--OV_, 0V, 0OV, 0V, 0V, 0---0 L%

— this is in general not the most useful expansion
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The Resulting Expansions (cont.)

2 A low-resolution approximation plus its wavelet details

f(t) = ZCjO (k)21 220t — k) + Z Zdj(k)zi’Zw(th k)
K J=)o

— /
—~ — '

Low-Resolution Wavelet Detalls
Approximation

— Choosing j, sets the level of the coarse approximation
2 _
L —Vjo DWJ-O DWJ-O+1 DWJ-O+2 [---

— This is most useful in practice: j, is usually chosen according to application
« Also in practice, the upper value of j is chosen to be finite
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The Resulting Expansions (cont.)

3 Only the wavelet details

f(t) = Z idj(k)Zjlzw(th -k)

j==o

— Choosing j,=- eliminates the coarse approximation leaving only details
2 _
L= =---OW_, OW_, OW, OW; OW, [T ---

— This is most similar to the “true” wavelet decomposition as it was originally
developed

— This is not that useful in practice: |, is usually chosen to be finite according
to application
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The Expansion Coefficients Cjo(k) and d;(k)

We consider here only the simple, but important, case of ON expansion
— l.e., the @'s are ON, the y’s are ON, and the ¢@'s are ON to the ’s
Then we can use standard ON expansion theory:

i, ()= (F(1).¢), k(1) = [TO8, kOt

dj(k)=(f @O0k )= [ O

We will see how to compute these without resorting to computing inner
products

— we will use the coefficients h;(n) and h(n) instead of the wavelet and scaling
function, respectively

— we look at a relationship between the expansion coefficients at one level
and those at the next level of resolution
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Summary of Multiresolution View

Nested Resolution spaces:
-.OV_, 0V, 0V, 0V, 0V, 0---0 L%

Wavelet Spaces provide orthogonal complement between resolutions
2 _
L= =V, OW; OW; 4 OWj 4o O
Wavelet Series Expansion of a continuous-time signal f(t):
f(t) = cho(k)zio“go(ziw—k) + Z Zdj(k)ZJ”?w(zit—k)
1=lo

MR equation (MRE) provides link between the scaling functions at
successive levels of resolution:

o(t) = Z h(nW2p(2t -n), nOZ

Wavelet equation (WE) provides link between a resolution level and its
complement

wit) = Z h(nV2p(2t-n), nOZ
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Summary of Multiresolution View (cont.)

« There is a fundamental connection between the scaling function and its
coefficients h(n) , the wavelet function and its coefficients h,(n):

MR
Equation
(MRE)

{ How are h,(n) and }

h(n) related?

]

‘ Ty

Wavelet
Equation
(WE)

19



Filter Banks and DWT
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Generalizing the MRE and WE

* Here again are the MRE and the WE:

@)= h(n2e(2t -n) WO =y h2g(2t-n)
t 4 t t 4 $
scale & translate: replace t - 2/t-k
« We get:
MRE
. N

(2l —k) = Z h(m - 2k)v2(21 1t — m)

Connects V; to Vi,

- /
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Linking Expansion Coefficients Between Scales
o Start with the Generalized MRA and WE:

(21t k) = Z h(m-2KW292 Mt -m)  wElt-k) = Z hy(m = 2k)v2¢(2 )"t — m)
Mn n

Y ~ T ~
v v
¢j () = ()04 (0)) dj (0 ={f @O0, ®)

= =

Y Y

¢;(k) = Z h(m - 2k)< f(t),207D/2 2+ - m)> d;(k) = Z hy(m - 2k)< (1), 207072 (2141 - m)>
! N\ J ! . J
- -

[c 00='3 h(m—2k)e j+1(m)} L dj(0=" ha(m~2c j+1(mﬂ

22




Convolution-Decimation Structure

New Notation For Convenience: h(n) - hgy(n)

{c j00=3 ho(m - 2K)e ,-+1(m)J [ dj(0 =" ha(m-2 ,-+1<mﬂ

Convolution

Yo(n) = Cj41(n) Ohg(—n) y1(n) = Cj41(n) Oy (-=n)
= z ho(m=n)c;41(m) = z hy(m = n)cjq (M)
m m
Decimation

O @6 6 0 6 06 06 0 0 O

n=0 1 2 3 4 5 6 7 8 9

® O €6 O € O 6 O @ O
k=0 1 2 3 4
n=2k=0 2 4 6 8
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Summary of Progression to Convolution-
Decimation Structure
MRE WE

{qo(zjt -k) = Z h(m - 2k)v/2¢(2 /1t - m)} =

e |

U

{ cj(k) = Z h(m - 2k)c ,-+1(m)} { d;(k) = Z hy(m - 2k)c j+1(m)}

(K
| HPF | /9 19k}

hy(-n)
Ciea(K) 1
R |, 9,
hy(-n)
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Computing The Expansion Coefficients

« The above structure can be cascaded:

— given the scaling function coefficients at a specified level all the lower
resolution ¢’'s and d’s can be computed using the filter structure

d.(k)
.| HPF P i
h,(-n) W.
Ci+1(K) .

(k d_,(k
| LPF ¢k [ HPF 1K)
hg(-n) v, | L_hyCn) W,

Ll LPF 1K HPF di-o(k)
hy(-n) Vi hy(-n) Wi,

(K
NN IR 2(K)
hy(-n) Vi




Filter Bank Generation of the Spaces

A Via

> w
> Vj+1 >
TU8 TUV4 TV2 TT
HPF
B —> 12
hy(-n)
LPF HPF
— > —» 12 g —> 12
ho(-n) h,(-n)
LPF HPF
> —> 12 g —> 12
ho(-n) h,(-n)
LPF
> —> 12
ho(-n)




DISCRETE FOURIER TRANSFORM

Freq

Time

Av



WAVELET TRANSFORM

QT

Al
st alvalrale




Frequency

W T-BASED COMPRESSION EXAMPLE

Side Info >
h,(1) to h,(8) Nig(1) 10 1 (8)
s(t) h,(9) to h,(16) hy(9) to h,,(16)

l5(1) t0 15(8)

q(1) 10 15(8)

* Bits allocated to quantizers to minimize MSE

 Then allocations less than B, are set to zero
» Eliminates negligible cells

« Side info sent to describe allocations
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