
Embedded Image Coding Using Zerotrees
of Wavelet Coefficients

J. M. Shapiro, IEEE Trans. Signal Processing, December 1993

Abstract

The embedded zerotree wavelet algorithm (EZW) is a simple, yet remarkably
effective, image compression algorithm, having the property that the bits in the bit stream
are generated in order of importance, yielding a fully embedded code. The embedded
code represents a sequence of binary decisions that distinguish an image from the “null”
image. Using an embedded coding algorithm, an encoder can terminate the encoding at
any point thereby allowing a target rate or target distortion metric to be met exactly.
Also, given a bit stream, the decoder can cease decoding at any point in the bit stream
and still produce exactly the same image that would have been encoded at the bit rate
corresponding to the truncated bit stream. In addition to producing a fully embedded bit
stream, EZW consistently produces compression results that are competitive with
virtually all known compression algorithms on standard test images. Yet this
performance is achieved with a technique that requires absolutely no training, no pre-
stored tables or codebooks, and requires no prior knowledge of the image source.
 The EZW algorithm is based on four key concepts: 1) a discrete wavelet
transform or hierarchical subband decomposition, 2) prediction of the absence of
significant information across scales by exploiting the self-similarity inherent in images,
3) entropy-coded successive-approximation quantization, and 4) universal lossless data
compression which is achieved via adaptive arithmetic coding.

Why Wavelets?
• Traditional DCT & subband coding: trends “obscure” anomalies that carry info

− E.g., edges get spread, yielding many non-zero coefficients to be coded
• Wavelets are better at localizing edges and other anomalies

− Yields a few non-zero coefficients & many zero coefficients
− Difficulty: telling the decoder “where” the few non-zero’s are!!!

• Significance map (SM): binary array indicating location of zero/non-zero coefficients
− Typically requires a large fraction of bit budget to specify the SM
− Wavelets provide a structure (zerotrees) to the SM that yields efficient coding

Zerotree Coding
• Every wavelet coefficient at a given scale can be related to a set of coefficients at the

next finer scale of similar orientation
• Zerotree root (ZTR) is a low scale “zero-valued” coefficient for which all the related

higher-scale coefficients are also “zero-valued”
• Specifying a ZTR allows the decoder to “track down” and zero out all the related

higher-scale coefficients
• See figures in the printed out Web Page attached at the end of this handout

EZW Algorithm
Uses successive approximation quantization together with zerotree coding to provide
embedded bit stream for image.

Sequence of Decreasing Thresholds: To, T1, . . . , TN-1

with Ti = Ti-1/2 and |coefficients| < 2 To

Maintain Two Separate Lists:

• Dominant List
− coordinates of those coefficients not yet found to be significant

• Subordinate List
− magnitudes of those coefficients found to be significant

For each threshold, perform two passes: Dominant Pass followed by Subordinate Pass

Dominant Pass (Significance Pass)

• Coefficients w/ coordinates on the Dominant List are compared to Ti to
determine significance and, if significant, their sign

• The resulting significance map is zero-tree coded and sent
− Code using four symbols:

< zerotree root
< isolated zero
< positive significant
< negative significant

− Entropy code using adaptive AC, and send
− For each coefficient coded as significant (pos. or neg.)

< put its magnitude on the Subordinate List
< remove it from the Dominant List

Subordinate Pass (Refinement Pass)

• Provide one more bit on the magnitudes on the Subordinate List as follows
− Halve the quantizer cells
− If magnitude is in upper half of old cell, provide “1”
− If magnitude is in lower half of old cell, provide “0”

• Entropy code sequence of 1’s and 0’s using adaptive AC, and send

Stop when bit budget is exhausted. Encoded stream has embedded in it all lower-rate
encoded versions. Thus, encoding/decoding can be terminated prior to reaching the full-
rate version.

EZW Encoder Pseudocode

Note: stop at any point where bit budget is exceeded

Initialize
T0 = 2og2(max coeff)
k=0
Dominant List = All Coefficients
Subordinate List = Empty

Significance Pass
For each entry w(m) in Dominant List (note: scan using any appropriate order)

If |w(m)| ≥ Tk [i.e. w(m) is significant]
If w(m) is positive

Output symbol sp
Else [i.e., w(m) is negative]

Output symbol sn
Endif on sign
Put w(m) on the Subordinate List
Remove w(m) from the Dominant List

Else [i.e., |w(m)| < Tk ; insignificant]
Case #1: w(m) is a non-root part of a zerotree

Don’t Code – it is “predictably insignificant”
Case #2: w(m) is a zerotree root

Output symbol zr
Case #3: w(m) is an isolated zero

Endif on significance
Entropy code symbols using adaptive AC (Optional, but recommended)
Send bits

End loop through Dominant List

Refinement Pass
For each entry w(m) in Subordinate List

If w(m) ∈ Bottom Half of [Tk, 2Tk]
Output L (“L” for “low”)

Else [i.e., w(m) ∈ Top Half of [Tk, 2Tk]]
Output H (“H” for “high”)

Endif on “bottom/top”
Entropy code H’s and L’s using adaptive AC (Optional, but recommended)
Send bits

End loop through Subordinate List

Update
Tk+1 = Tk/2
k=k+1
Go to Significance Pass

	Embedded Image Coding Using Zerotrees
	Abstract
	Why Wavelets?
	Zerotree Coding
	EZW Algorithm

	Dominant Pass (Significance Pass)
	Subordinate Pass (Refinement Pass)
	
	EZW Encoder Pseudocode

	Initialize
	T0 = 2(og2(max coeff)(
	k=0
	Dominant List = All Coefficients
	Significance Pass
	For each entry w(m) in Dominant List (note: scan using any appropriate order)
	If |w(m)| (Tk [i.e. w(m) is significant]
	Refinement Pass
	Update

