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• Estimate τ21 Using Cross-Correlation:

CROSS-CORRELATION FOR TDOA
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• After correlation:

• TDOA accuracy:

TDOA ACCURACY
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DATA COMPRESSION

• Intercept several signal pairs received at separate sites
» Estimate Time-Difference-of-Arrival (TDOA) via Cross-Correlation
» Emitter location found by fusing several TDOA estimates

• Requires transferring signal data between sites
• Link rate often insufficient to transfer within time limit

!Use Compression to meet link requirements
!Assess via Rate-Distortion Analysis
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THREE NEW APPROACHES

• Quantize each sample to 
small # of bits

• Simple, but performance 
is limited

Wavelet Transform
& Quantization

Wavelet Transform
& Quantization

Decimation
& Quantization
Decimation

& Quantization

• Allocate bits to T-F cells
• Minimize Mean-Square Error (MSE)
• Larger CR/Similar Accuracy

• Optimally trades dec. &  quant.
• Non-MSE Approach
• Outperforms quantization only

• Goal: T-F cell 
selection based 
on RMS widths
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• For each block, apply to real and imaginary parts:
» Scale samples 
» Quantize 

R/I QUANTIZATION
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See M. L. Fowler, “Coarse Quantization for Data Compression in 
Coherent Location Systems,” in IEEE Transactions on Aerospace and 
Electronic Systems, Oct. 2000.

• Performance measured by SNR after compression



COMBINED QUANTIZATION & DECIMATION

M. L. Fowler, “Decimation vs. Quantization for Data Compression in TDOA Systems,”
Conference on Mathematics and Applications of Data/Image Coding, Compression, and 
Encryption III, San Diego, July 30 – August 4, 2000 .
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SIGNAL MODEL

• Complex Equivalent Lowpass signal, BW = B Hz
» Representing RF signal with RF BW = B Hz

• Sampled at Fs=B complex samples/sec
• Quantized to 2b bits/complex sample

» b for real part
» b for imaginary part

• Fixed Collection Time T sec
• Total Bits: 2bBT
• Simplifying Assumption: Flat Spectrum –B/2 to B/2

» Simplifies analysis, yet allows insight

» 2ππππBrms = 1.8B
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NON-MSE DISTORTION CRITERION

• Past efforts have focused on MSE Distortion
» Control impact of compression on SNRq and hence SNRcc and hence σTDOA

• This ignores exploitable structure of signal
» Namely, Brms also impacts σTDOA

» How can we exploit this for compression in TDOA Systems?
− Simple Way: Quantize (SNRcc ) and Decimate (Brms )
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• Combine Quantization & Decimation
• Optimize Under Rate Constraint

ADC
)(ˆ ts

Filter ↓↓↓↓M Quantize
)(ˆ ks )(ˆ ksc

BW = B Hz
Fs = B sps
bits = bADC
SNR = SNR1

BW = Wf   Hz
Fs = Wf sps
bits = bADC
SNR = SNR1

BW = Wf   Hz
Fs = Wf sps
bits = b < bADC
SNR = SNR1c< SNR1

PROCESSING MODEL
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RATE CONSTRAINT

• Goal: Minimize σσσσTDOA for fixed Effective Link Rate

• Requirements: Fixed link time Tl

Available link rate of Rl
Fixed signal collection time T

• !!!! Rate Constraint:

Effective Rate
R= Rl (Tl / T)

Effective Rate
R= Rl (Tl / T)

2bBT ≤≤≤≤ Rl Tl
or

2bB = R

2bBT ≤≤≤≤ Rl Tl
or

2bB = R

Fully Utilize Link
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QUANTIZATION AND DECIMATION

• Goals: 1. Find optimal trade-off for Dec vs. Quant
2. Compute R-D Curves

• Optimally Choose: 2b bits/complex sample
Filtered BW Wf Hz 
Decimated Fs = Wf complex sps
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LOW SNR: PERFORMANCE FACTOR 
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M. L. Fowler, “Data Compression for Emitter Location,” Conference on 
Information Sciences and Systems, Princeton University, March 15-17, 2000.

WAVELET METHODS
• MSE-Based Method
• Non-MSE Method

M. L. Fowler, “Exploiting RMS Time-frequency Structure For Data Compression 
In Emitter Location Systems,” National Aerospace & Electronics Conference, 
Dayton, Ohio, October 10-12, 2000.
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Q256

Q1

Q2
8-Level
Wavelet

Transform

h1(1) to h1(8)

h1(9) to h1(16)

l8(1) to l8(8)

h1q(1) to h1q(8)

h1q(9) to h1q(16)

l8q(1) to l8q(8)

Side Info

s(t)

• Bits allocated to quantizers to minimize MSE
• Then allocations less than Bmin are set to zero

» Eliminates negligible cells
• Side info sent to describe allocations

WT-BASED COMPRESSION
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MSE Approach
• Allocate bits to quantizers to minimize MSE
• Then allocations less than Bmin are set to zero

» Eliminates negligible cells

Non-MSE Approach Experiment
• First Perform MSE-Based Allocation (w/ Bmin )
• Then throw away “white cells” on checkerboard

» Effective at preserving RMS Widths
» Increases Compression Ratio

WT METHODS: MSE VS. NON-MSE
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SUMMARY

• Pointed out Importance of Non-MSE Criteria
• Optimal trade-off between decimation vs. quantization

» Outperforms Quantization-Only & Decimation-Only
» Points out usefulness of non-MSE Distortion approach

• Proposed MSE-Based Wavelet Approach
» Allocates bits across T-F cells to minimize MSE
» Outperforms Time-Domain (Quantization) MSE-Based Approach

• Explored non-MSE Wavelet Approach
» Simple Experiment Shows Potential

!Can discard WT coefficients with negligible effect on RMS widths
!Improved CR by 67%
!However, did degrade accuracy
!But, not as much as one would expect by looking at reconstructed signal

• What Next?
» Optimal method for discarding WT Coefficients


