JPEG2000 Notes

Based on the papers:

- 1. D. Taubman and M. Marcellin, "JPEG2000: Standard for Interactive Imaging," *Proc. of the IEEE*, Vol. 90, No. 8, pp. 1336 1357, August 2002.
- 2. C. Christopoulos, A. Skodras, and T. Ebrahimi, "The JPEG2000 Still Image Coding System: An Overview," *IEEE Trans. Cons. Elect.*, Vol. 46., No. 4, pp. 1103 1127, Nov. 2000.

JPEG2000 Overview [1]

- A New Standard:
 - efficient, flexible, interactive
- Big emphasis on providing a <u>scalable</u> data stream:
 - an embedded set of smaller streams, where each sub-stream gives an efficient R-D compression of the image
- Other JPEG2000 Advantages include:
 - Better R-D performance than past standards
 - Progressive lossy-to-lossless stream
 - Can resequence compressed stream
 - Can crop in compressed domain
 - Can define regions of interest (ROI) to have better quality
 - Can work with "truly enormous" images

Scalability [1]

- JPEG2000 provides four types of scalability
 - Resolution Scalability
 - As the stream progresses you first get low resolution data, then medium resolution, etc.
 Res. 0
 New Details
 New Details
 - Distortion (or SNR) Scalability
 - As the stream progresses you first get low SNR version, then medium SNR, etc.

for Res. 2

for Res. 1

– Spatial Scalability

- As the stream progresses you first get a specific spatial region, then an expanded spatial region, etc.
- Component Scalability
 - Example: As the stream progresses you first get gray-scale image, then color, etc.
- Can have combinations of these types

Advantages of Scalability [1]

- "Compress Once... Decompress in Many Ways"
 - At compression... no need to know consumer's needs
- Can distribute to multiple clients with different:
 - display resolutions, regions of interest, communication rates
- Can send to a single client interactively:
 - Dynamically change ROI, resolution, SNR.... as client's interest or link speed changes
- Elegant solution to transmission-time limited cases:
 - Truncate stream when deadline occurs
 - You get the best quality image possible within that deadline

Basic JPEG2000 Architecture [1,2]

- Discrete Wavelet Transform (DWT)
 - Provides Multiresolution Decomposition
 - Enables Resolution Scaling
 - Each lower resolution level: dimensions of subband images are halved

- DWT for JPEG2000
 - Two different filter pairs used: 5/3 and 9/7
 - Symmetric PR filters of odd length must differ in length by two
 - 5/3 is used to ensure integer sample values get transformed to integer wavelet values → allows lossless wavelet-based coding
 - DWT is implemented using so-called "lifting" method
 - Lifting is essential to enabling lossless wavelet-based coding
 - It also enables computational and memory savings

- Form "Code-Blocks" ۲
 - Each subband is partitioned into code-blocks:
 - typical block sizes are 32×32 or 64×64
 - Each code-block is coded separately ____
 - Code-blocks constitute one aspect of Embedding
 - Enables resolution scaling
 - Enables spatial scaling

- Scalar Quantizer viewed as Embedded Quantizers w/ Dead-Zone
 - <u>Embedded Coders</u> necessarily call for <u>Embedded Quantizers</u> :
 - Embedded Quantizers lead to idea of "Bit Planes"
 - Dead-Zone (or "fat zero") useful for image coding
 - The commonly small high-frequency coefficients get quantized to zero and lead to lots of insignificant coefficients
 - This structure gets exploited in the Arithmetic Coder

This figure is based on Fig. 13 in [1]

Coarser quantization is obtained by keeping the most significant bits and sign of the sample

Bit-Plane Viewpoint

EBCOT Bit-Plane Coding Procedure

EBCOT = Embedded Block Coding with Optimized Truncation $\underline{Each} code-block is optimally embedded coded$

This figure is Fig. 14 in [1]

EBCOT Fractional Bit-Plane Coding

- The above coding allows truncation only at bit-plane end-points
 - Not enough points to give "fine grain" operational R-D function
- So... Use Sequence of Three Fractional Bit-Plane Passes
 - <u>First Pass</u>: Code Magnitude & Sign Bit only for samples likely to give largest distortion improvement
 - Samples for which
 - All coded magn. bits have been so far been zero
 - At least one neighbor is non-zero
 - <u>Last Pass</u>: Code those expected to be least effective in reducing distortion

This figure is based on Fig. 15 in [1]

- Adaptive Arithmetic Coder
 - Used to remove substantial redundancy between successive bit planes
 - Uses the so-called MQ coder implementation
 - Coder switches between 18 different adaptive probability models
 - selects model based on previously coded bits from the current & previous bit planes
 - each model adaptively estimates its probability distribution
 - This is context coding using conditional probability

- Recall: Two Main Types of Scalability Structure
 - Resolution Scalability: drop components from high resolution sub-bands
 - Distortion Scalability: drop LSB's from embedded quantization
- Quality Layers: Allow management of this scalability structure
 - Specifies how each code-block should be truncated in relation to others
 - Each layer in the embedded stream provides a progressive improvement
 - Layer structure is optimized during compression for optimal embedding

Performance of JPEG2000 vs. JPEG [1]

- Three different "modes" for JPEG2000
 - S-9,7: Single Layer using 9/7 Wavelet
 - Single layer is not distortion scalable; new stream is generated for each rate under test
 - P6-9,7: Six-Layer Quality Progressive using 9/7 Wavelet
 - P7-3,5: Seven-Layer Quality Progressive using 5/3 Wavelet
- Two different "modes" for JPEG (Optimized Huffman Tables)
 - P-DCT: Progressive Mode
 S-DCT: Sequential Mode