WT of Images

These use some material from:

1. J.S.Walkerand T. Q. Nguyen, “Wavelet-Based Image Compression,” Ch. 6
in The Transform and Data Compression Handbook, edited by K. R. Rao
and P. C. Yip, CRC Press, 2001.

2.  X.Wu, “Compression of Wavelet Transform Coefficients,” Ch. 8 in The
Transform and Data Compression Handbook, edited by K. R. Rao and P. C.
Yip, CRC Press, 2001.



Recall 1-D WT
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This shows the true time “duration” covered by each coefficient
The widening duration of lower lines Is due to the decimation




Recall 1-D WT (cont.)

But... if we ignore the true “duration” coverage and just look at
the coefficients as a series of numbers we can get the following
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[Which can be re-ordered as:]
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[Recall: these are computed from the LPF output... so..]




Recall 1-D WT (cont.)

[So... another view Is: ]
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Final Result

é . : : :
Recall: at each stage the LPF gives the next-lower resolution approximation...
which then gets split further into into the next-lower resolution and the next

level’s details.... etc. etc. etc.
\_ J




2-D WT

There are general 2-D WT methods but the most commonly used

methods are those that use so-called “separable” 2-D filters....
.... That means that we
 First apply our filters to each row of the image

« Then apply our filters to each column of the row-filtered result
The result is that each subband stage of the 1-D filter bank gets replaced by
what appears to be two stages, but is really one row-stage and one column-

stage (which together back up one subband stage):
1-D Single Subband Stage

2-D Single Subband Stage
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Third Stage
Subband Results

Second Stage
Subband Results

First Stage
Subband Results

Original Image

FIGURE 8.2

(Figur

Dyadic wavelet decomposition of a test image.

from 2])
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Fig. 5. Example of dyadic decomposition mnto subbands for
the test image ‘barbara’

(Figure from [1])



Choice of Wavelet for Image Compression

Wavelet reconstruction formula w/o quantization:
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Now consider with quantization:

=3 Yo+t Rw@it—k)+ Yo, + e RP20(21t - k)

i=Jo k=0 —

=x(t)+ > el 2yt —k)+ DS (20 g2l t—k)
j=Jo k=—c0 k=0

/

-
error termis sum of waveletsand scaling function



* Thus, if the wavelet and scaling functions are rough, then the error is
rough. So we want to make them smooth

— There are various results that show how to design wavelet systems with
specific degrees of smoothness: see the wavelet literature for details

— One such means is: jt"\p(t)dt ~0 for 0<k<N

— This is called imposing N vanishing moments and imposes that the
wavelet will be N-times continuously differentiable

» Another aspect of vanishing moments:

— If a wavelet system has N vanishing moments, then polynomials of
degree less than N can be represented as a linear combination of
translates of the scaling function

— Thus, any locally-polynomial component of an image having degree
less than N gets zeroed out by the high-pass filter because it can be
completely handled by the low-pass filter

— This results in lots of zero values for the wavelet coefficients, which
leads to efficient coding (via zerotrees, as we will see).



