WT of Images

These use some material from:

- 1. J. S. Walker and T. Q. Nguyen, "Wavelet-Based Image Compression," Ch. 6 in *The Transform and Data Compression Handbook*, edited by K. R. Rao and P. C. Yip, CRC Press, 2001.
- X. Wu, "Compression of Wavelet Transform Coefficients," Ch. 8 in *The Transform and Data Compression Handbook*, edited by K. R. Rao and P. C. Yip, CRC Press, 2001.

<i>x</i> [0]	<i>x</i> [1]	<i>x</i> [2]	<i>x</i> [3]	<i>x</i> [4]	<i>x</i> [5]	<i>x</i> [6]	<i>x</i> [7]	<i>x</i> [8]	<i>x</i> [9]	<i>x</i> [10]	<i>x</i> [11]	<i>x</i> [12]	<i>x</i> [13]	<i>x</i> [14]	<i>x</i> [15]
<i>W_j</i> [0]		$W_{j}[1]$		$W_{j}[2]$		<i>W_j</i> [3]		<i>W_j</i> [4]		<i>W_j</i> [5]		<i>W_j</i> [6]		<i>W_j</i> [7]	
<i>W_{j-1}</i> [0]				<i>W_{j-1}</i> [1]				<i>W_{j-1}</i> [2]				<i>W_{j-1}</i> [3]			
<i>W_{j-2}</i> [0]								<i>W</i> _{<i>j</i>-2} [1]							
V _{i-2} [0]								V _{i-2} [1]							

This shows the true time "duration" covered by each coefficient The widening duration of lower lines is due to the decimation

Recall 1-D WT (cont.)

But... if we ignore the true "duration" coverage and just look at the coefficients as a series of numbers we can get the following

Recall 1-D WT (cont.)

So... another view is:

<u>Recall</u>: at each stage the LPF gives the next-lower resolution approximation... which then gets split further into into the next-lower resolution and the next level's details.... etc. etc. etc.

<u>2-D WT</u>

There are <u>general</u> 2-D WT methods but the most commonly used methods are those that use so-called "separable" 2-D filters....

.... That means that we

- First apply our filters to each row of the image
- Then apply our filters to each column of the row-filtered result

The result is that each subband stage of the 1-D filter bank gets replaced by what appears to be two stages, but is really one row-stage and one column-stage (which together back up one subband stage):

Third Stage Subband Results

Second Stage Subband Results

First Stage Subband Results

Original Image

FIGURE 8.2 Dyadic wavelet decomposition of a test image. (Figure from [2])

Fig. 5. Example of dyadic decomposition into subbands for the test image 'barbara'

(Figure from [1])

Choice of Wavelet for Image Compression

Wavelet reconstruction formula w/o quantization:

$$\begin{aligned} x(t) &= \sum_{k=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} d_{j,k} 2^{j/2} \psi(2^{j}t - k) \\ &= \sum_{j=j_{0}}^{\infty} \sum_{k=-\infty}^{\infty} d_{j,k} 2^{j/2} \psi(2^{j}t - k) + \sum_{k=-\infty}^{\infty} c_{j_{0},k} 2^{j_{0}/2} \phi(2^{j_{0}}t - k) \end{aligned}$$

Now consider with quantization:

$$\hat{x}(t) = \sum_{j=j_0}^{\infty} \sum_{k=-\infty}^{\infty} \left[d_{j,k} + \varepsilon_{j,k}^d \right] 2^{j/2} \psi(2^j t - k) + \sum_{k=-\infty}^{\infty} \left[c_{j_0,k} + \varepsilon_{j_0,k}^c \right] 2^{j_0/2} \phi(2^{j_0} t - k)$$
$$= x(t) + \sum_{j=j_0}^{\infty} \sum_{k=-\infty}^{\infty} \varepsilon_{j,k}^d 2^{j/2} \psi(2^j t - k) + \sum_{k=-\infty}^{\infty} \varepsilon_{j_0,k}^c 2^{j_0/2} \phi(2^{j_0} t - k)$$

error term is sum of wavelets and scaling function

- Thus, if the wavelet and scaling functions are rough, then the error is rough. So we want to make them smooth
 - There are various results that show how to design wavelet systems with specific degrees of smoothness: see the wavelet literature for details
 - One such means is: $\int t^k \psi(t) dt = 0$ for $0 \le k \le N$
 - This is called imposing *N* vanishing moments and imposes that the wavelet will be *N*-times continuously differentiable
- Another aspect of vanishing moments:
 - If a wavelet system has N vanishing moments, then polynomials of degree less than N can be represented as a linear combination of translates of the scaling function
 - Thus, any locally-polynomial component of an image having degree less than N gets zeroed out by the high-pass filter because it can be completely handled by the low-pass filter
 - This results in lots of zero values for the wavelet coefficients, which leads to efficient coding (via zerotrees, as we will see).