WT of Images

These use some material from:

1. J. S. Walker and T. Q. Nguyen, "Wavelet-Based Image Compression," Ch. 6 in The Transform and Data Compression Handbook, edited by K. R. Rao and P. C. Yip, CRC Press, 2001.
2. X. Wu, "Compression of Wavelet Transform Coefficients," Ch. 8 in The Transform and Data Compression Handbook, edited by K. R. Rao and P. C. Yip, CRC Press, 2001.

Recall 1-D WT

$x[0]$	$x[1]$	$x[2]$	$x[3]$	$x[4]$	$x[5]$	$x[6]$	$x[7]$	$x[8]$	$x[9]$	$x[10]$	$x[11]$	$x[12]$	$x[13]$	$x[14]$	$x[15]$

$W_{j}[0]$	$W_{j}[1]$	$W_{j}[2]$	$W_{j}[3]$	$W_{j}[4]$	$W_{j}[5]$	$W_{j}[6]$	$W_{j}[7]$

$W_{j-1}[0]$	$W_{j-1}[1]$	$W_{j-1}[2]$	$W_{j-1}[3]$

$W_{j-2}[0]$	$W_{j-2}[1]$

$$
\begin{array}{|l|l}
\hline V_{j-2}[0] & V_{j-2}[1] \\
\hline
\end{array}
$$

This shows the true time "duration" covered by each coefficient The widening duration of lower lines is due to the decimation

Recall 1-D WT (cont.)

But... if we ignore the true "duration" coverage and just look at the coefficients as a series of numbers we can get the following

$x[0]$	$x[1]$	$x[2]$	$x[3]$	$x[4]$	$x[5]$	$x[6]$	$x[7]$	$x[8]$	$x[9]$	$x[10]$	$x[11]$	$x[12]$	$x[13]$	$x[14]$	$x[15]$

$W_{j}[0]$	$W_{j}[1]$	$W_{j}[2]$	$W_{j}[3]$	$W_{j}[4]$	$W_{j}[5]$	$W_{j}[6]$	$W_{j}[7]$

$$
\begin{array}{|l|l|l|}
\hline W_{j-2}[0] & W_{j-2}[1] \\
\hline
\end{array}
$$

Which can be re-ordered as:

$V_{j-2}[0]$	$V_{j-2}[1]$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline V_{j-2}[0] & V_{j-2}[1] & W_{j-2}[0] & W_{j-2}[1] & W_{j-1}[0] & W_{j-1}[1] & W_{j-1}[2] & W_{j-1}[3] & W_{j}[0] & W_{j}[1] & W_{j}[2] & W_{j}[3] & W_{j}[4] & W_{j}[5] & W_{j}[6] \\
\hline & W_{j}[7] \\
\hline
\end{array}
$$

Recall: these are computed from the LPF output... so..

Recall 1-D WT (cont.)

So... another view is:

Final Result
Recall: at each stage the LPF gives the next-lower resolution approximation... which then gets split further into into the next-lower resolution and the next level's details.... etc. etc. etc.

2-D WT

There are general 2-D WT methods but the most commonly used methods are those that use so-called "separable" 2-D filters....
.... That means that we

- First apply our filters to each row of the image
- Then apply our filters to each column of the row-filtered result The result is that each subband stage of the 1-D filter bank gets replaced by what appears to be two stages, but is really one row-stage and one columnstage (which together back up one subband stage):

1-D Single Subband Stage

2-D Single Subband Stage

Fig. 5. Example of dyadic decomposition into subbands for the test image 'barbara'
(Figure from [1])

Choice of Wavelet for Image Compression

Wavelet reconstruction formula w/o quantization:

$$
\begin{aligned}
x(t) & =\sum_{k=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} d_{j, k} 2^{j / 2} \psi\left(2^{j} t-k\right) \\
& =\sum_{j=j_{0}}^{\infty} \sum_{k=-\infty}^{\infty} d_{j, k} 2^{j / 2} \psi\left(2^{j} t-k\right)+\sum_{k=-\infty}^{\infty} c_{j_{0}, k} 2^{j_{0} / 2} \phi\left(2^{j_{0}} t-k\right)
\end{aligned}
$$

Now consider with quantization:

$$
\begin{aligned}
\hat{x}(t) & =\sum_{j=j_{0}}^{\infty} \sum_{k=-\infty}^{\infty}\left[d_{j, k}+\varepsilon_{j, k}^{d}\right] 2^{j / 2} \psi\left(2^{j} t-k\right)+\sum_{k=-\infty}^{\infty}\left[c_{j_{0}, k}+\varepsilon_{j_{0}, k}^{c}\right]^{j_{0} / 2} \phi\left(2^{j_{0}} t-k\right) \\
& =x(t)+\underbrace{\sum_{j=j_{0}}^{\infty} \sum_{k=-\infty}^{\infty} \varepsilon_{j, k}^{d} 2^{j / 2} \psi\left(2^{j} t-k\right)+\sum_{k=-\infty}^{\infty} \varepsilon_{j_{0}, k}^{c} 2^{j_{0} / 2} \phi\left(2^{j_{0}} t-k\right)}_{\text {error term is sum of wavelets and scaling function }}
\end{aligned}
$$

- Thus, if the wavelet and scaling functions are rough, then the error is rough. So we want to make them smooth
- There are various results that show how to design wavelet systems with specific degrees of smoothness: see the wavelet literature for details
- One such means is: $\int t^{k} \psi(t) d t=0$ for $0 \leq k \leq N$
- This is called imposing N vanishing moments and imposes that the wavelet will be N-times continuously differentiable
- Another aspect of vanishing moments:
- If a wavelet system has N vanishing moments, then polynomials of degree less than N can be represented as a linear combination of translates of the scaling function
- Thus, any locally-polynomial component of an image having degree less than N gets zeroed out by the high-pass filter because it can be completely handled by the low-pass filter
- This results in lots of zero values for the wavelet coefficients, which leads to efficient coding (via zerotrees, as we will see).

