
WT of Images

These use some material from: 
1. J. S. Walker and T. Q. Nguyen, “Wavelet-Based Image Compression,” Ch. 6 

in The Transform and Data Compression Handbook, edited by K. R. Rao
and P. C. Yip, CRC Press, 2001.

2. X. Wu, “Compression of Wavelet Transform Coefficients,” Ch. 8 in The 
Transform and Data Compression Handbook, edited by K. R. Rao and P. C. 
Yip, CRC Press, 2001.



Recall 1-D WT
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This shows the true time “duration” covered by each coefficient
The widening duration of lower lines is due to the decimation



Recall 1-D WT (cont.)
But… if we ignore the true “duration” coverage and just look at 
the coefficients as a series of numbers we can get the following
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Which can be re-ordered as:
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Recall: these are computed from the LPF output… so..



Recall 1-D WT (cont.)
So… another view is:
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Final Result

Recall: at each stage the LPF gives the next-lower resolution approximation…
which then gets split further into into the next-lower resolution and the next 
level’s details…. etc. etc. etc. 
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2-D WT
There are general 2-D WT methods but the most commonly used
methods are those that use so-called “separable” 2-D filters….
…. That means that we 

• First apply our filters to each row of the image
• Then apply our filters to each column of the row-filtered result

The result is that each subband stage of the 1-D filter bank gets replaced by 
what appears to be two stages, but is really one row-stage and one column-
stage (which together back up one subband stage):
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(Figure from [2])



(Figure from [1])



Choice of Wavelet for Image Compression
Wavelet reconstruction formula w/o quantization: 
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• Thus, if the wavelet and scaling functions are rough, then the error is 
rough.  So we want to make them smooth

– There are various results that show how to design wavelet systems with 
specific degrees of smoothness: see the wavelet literature for details

– One such means is:       

– This is called imposing N vanishing moments and imposes that the 
wavelet will be N-times continuously differentiable

• Another aspect of vanishing moments:

– If a wavelet system has N vanishing moments, then polynomials of 
degree less than N can be represented as a linear combination of 
translates of the scaling function

– Thus, any locally-polynomial component of an image having degree 
less than N gets zeroed out by the high-pass filter because it can be 
completely handled by the low-pass filter

– This results in lots of zero values for the wavelet coefficients, which 
leads to efficient coding (via zerotrees, as we will see).
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