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Wavelet Example: Haar Wavelet
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Suppose we specify the MRE coefficients to be 1 1[ ] ,
2 2
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Then the MRE becomes ( ) (2 ) (2 1)t t tϕ ϕ ϕ= + −

Clearly the scaling function φ(t) as shown below satisfies this MRE
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• Special case:  finite number N of nonzero h(n) and  ON wavelets & scaling functions
• Given the h(n) for the scaling function, then the h1(n) that define the wavelet function 

are given by h1[n] = (–1)n h(N – 1 – n) where N is the length of the filter
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Thus the WE coefficients are 1
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Clearly the scaling function φ(t) as shown below satisfies this MRE
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Define a nested set of signal spaces

Let  V0 be the space spanned by the integer translations of scaling function φ(t) 
so that if x0(t) is in V0 then it can be represented by:
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Q: For the Haar scaling function what kind of functions are in V0??

A: Those that are “piece-wise” constant on the intervals [k,k+1] for integer k…
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If we let V1 be the space spanned by integer translates of φ(2t) then V1 is 
indeed a space of functions having higher resolution.
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Q: For the Haar scaling function what kind of functions are in V1??

A: Those that are “piece-wise” constant on the intervals [k/2,k/2+ ½] for integer k

Note:  x0(t) is also in V1 because it is also “piece-wise” constant on [k/2,k/2+ ½]

In fact, x0(t) is also in every Vj for j ≥ 0 … that is the nesting!!!
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If we keep going to higher j values we get finer and finer resolution and 
can ultimately express (in the limit of j) any finite energy signal
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Figure 15.8 from Textbook

This MRA 
development 
started at V0
and worked 
its way up to 
higher 
resolutions…
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How do the wavelets enter into this? 
• To go from Vj to higher resolution Vj+1 requires the addition of “details”

– These details are the part of Vj+1 not able to be represented in Vj

– This is captured through Wj the “orthogonal complement” of Vj w.r.t Vj+1
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Note that it is orthogonal 
to the signal in Vj

This is in Vj+1 

It is found by adding the two 
functions above
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The filterbank viewpoint that the MRA analysis lead to starts from some 
high-level resolution and works down… so let’s see how that works…

We’ll start at the resolution level where the scaled version of φ(t) has 
width of the sampling interval Ts

Figure 15.7 from Textbook
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Daubechies’ Compactly-Supported Wavelets

From Ch. 6 of I. 
Daubechies, Ten 
Lectures on 
Wavelets, SIAM 
1992
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