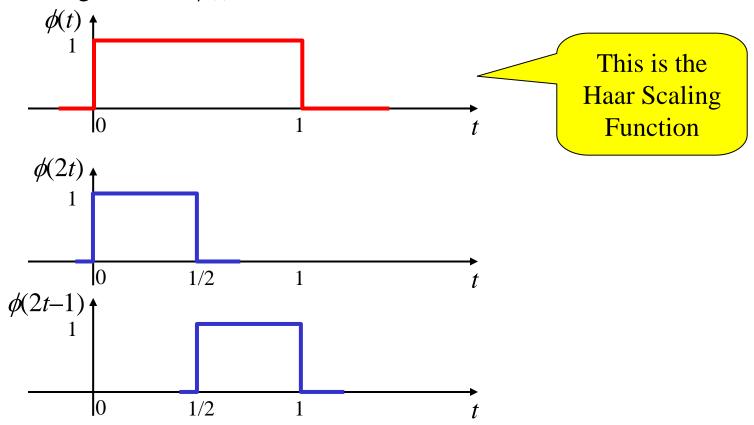
Wavelet Example: Haar Wavelet

Suppose we specify the MRE coefficients to be $h[n] = \left\{ \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\}$

Then the MRE becomes
$$\phi(t) = \sum_{n} h(n)\sqrt{2}\phi(2t-n)$$
 $\phi(t) = \varphi(2t) + \varphi(2t-1)$

Clearly the scaling function $\phi(t)$ as shown below satisfies this MRE

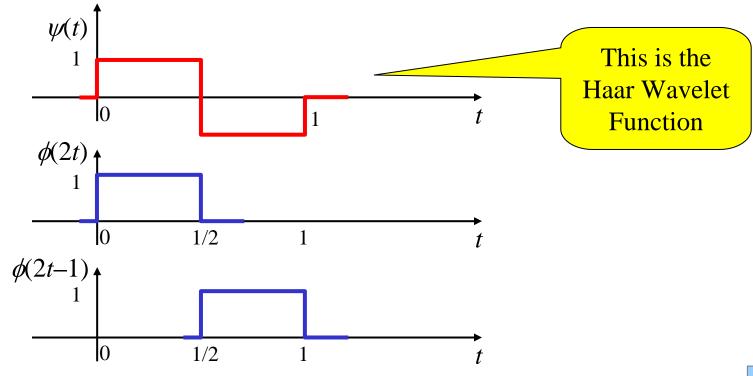


- Special case: finite number N of nonzero h(n) and ON wavelets & scaling functions
- Given the h(n) for the scaling function, then the $h_1(n)$ that define the wavelet function are given by $h_1[n] = (-1)^n h(N-1-n)$ where N is the length of the filter

Thus the WE coefficients are
$$h_1[n] = \left\{ \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right\}$$

Then the WE becomes
$$\psi(t) = \sum_{n} h_1(n) \sqrt{2} \varphi(2t - n)$$
 $\psi(t) = \varphi(2t) - \varphi(2t - 1)$

Clearly the scaling function $\phi(t)$ as shown below satisfies this MRE



Define a nested set of signal spaces

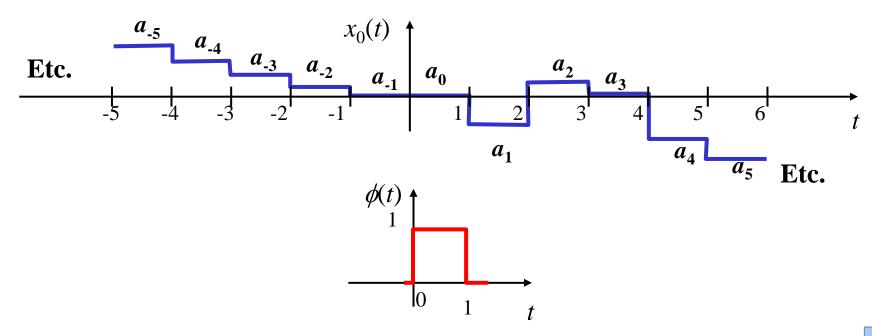
$$\cdots \subset V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset \cdots \subset L^2$$

Let V_0 be the space spanned by the integer translations of scaling function $\phi(t)$ so that **if** $x_0(t)$ is in V_0 **then** it can be represented by:

$$x_0(t) = \sum_k a_k \varphi(t - k)$$

Q: For the Haar scaling function what kind of functions are in V_0 ??

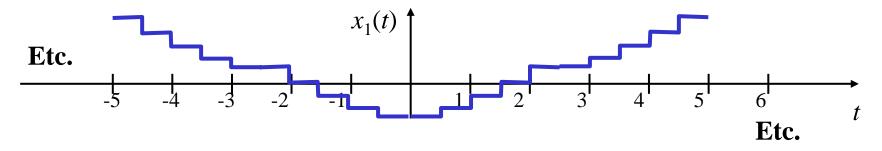
A: Those that are "piece-wise" constant on the intervals [k,k+1] for integer k...



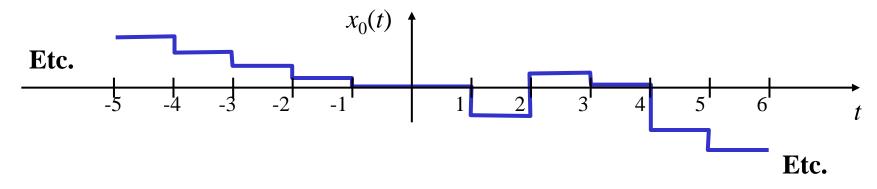
If we let V_1 be the space spanned by integer translates of $\phi(2t)$ then V_1 is indeed a space of functions having higher resolution.

Q: For the Haar scaling function what kind of functions are in V_1 ??

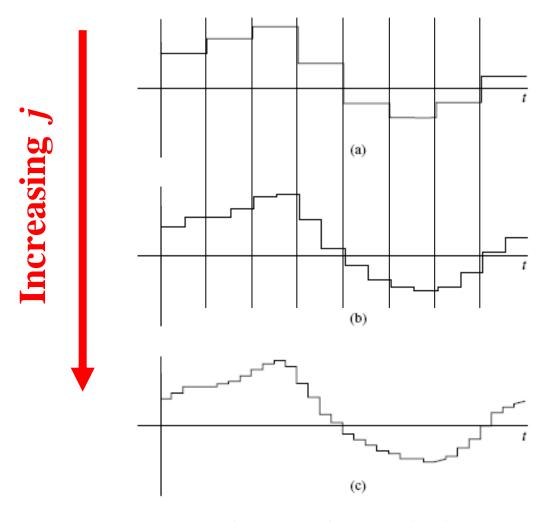
A: Those that are "piece-wise" constant on the intervals [k/2,k/2+1/2] for integer k



Note: $x_0(t)$ is also in V_1 because it is also "piece-wise" constant on [k/2, k/2 + 1/2]In fact, $x_0(t)$ is also in every V_j for $j \ge 0$... that is the nesting!!!



If we keep going to higher j values we get finer and finer resolution and can ultimately express (in the limit of j) any finite energy signal

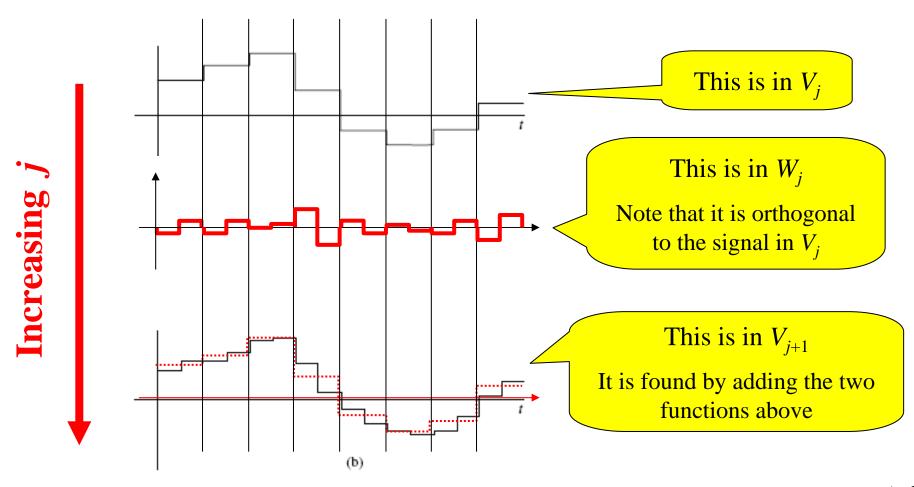


This MRA development started at V_0 and worked its way up to higher resolutions...

Figure 15.8 from Textbook

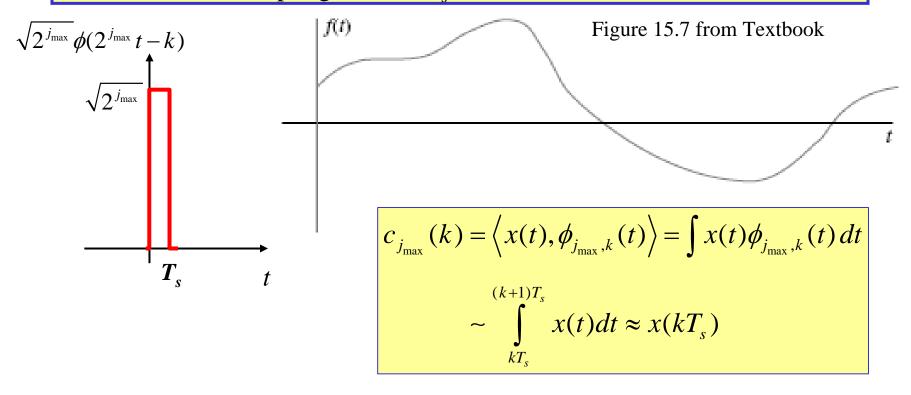
How do the wavelets enter into this?

- To go from V_i to higher resolution V_{i+1} requires the addition of "details"
 - These details are the part of V_{i+1} not able to be represented in V_i
 - This is captured through W_i the "orthogonal complement" of V_i w.r.t V_{i+1}

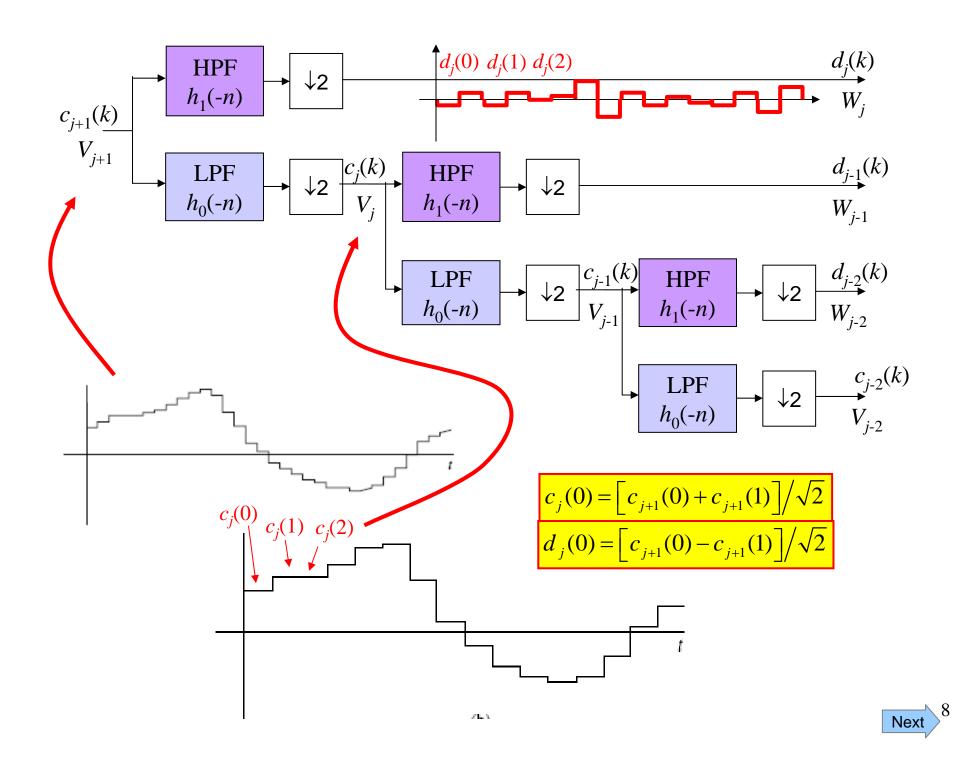


The filterbank viewpoint that the MRA analysis lead to starts from some high-level resolution and works down... so let's see how that works...

We'll start at the resolution level where the scaled version of $\phi(t)$ has width of the sampling interval T_s



→ Samples are approximately proportional to the scale coefficients at j_{max}



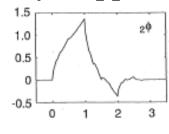
Daubechies' Compactly-Supported Wavelets

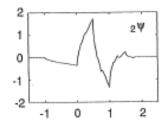
1.0

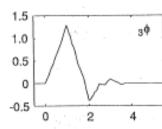
0.5

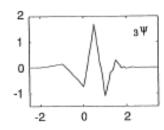
-0.5

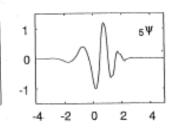
	_				
	PL)	Nha		n	Nh.
N = 2	0	.4829629131445341	N = 8	0	.0544158422431072
	1	.8365163037378077		1	.3128715909143166
	2	.2241438680420134		2	.6756307362973195
	3	1294096225512603		3	.5853546836542159
N = 3	0	.3326705529500825		4	0158291052563823
	1	.8068915093110924	1	5	2840155429615824
	2	.4598775021184914		6	.0004724845739124
	3	1350110200102546		7	.1287474266204893
	4	0854412738820267		8	0173693010018090
Nr .	5	.0352262918857095	1	9	0440882539307971
N = 4	0	.2303778133088964	1	10	.0139810279174001
	1	.7148465705529154		11	.0087460940474065
	2	,6308807679298587	1	12	0048703529934520
	3	0279837694168699	1	13	0003917403733770 .0006754494064506
	4	1870348117190931	1	14	
	5	.0308413818355607	17 - 0	15	0001174767841248
	6	.0328830116668852	M=8	0	.0380779473638778
N = 5	-	0105974017850690	1	1 2	.6048231236900955
N = 5	0	.1601023979741929		3	.6572880780512736
	1	.6038292697971895	1	4	.1331973858249883
	3	.7243085284377726 .1384281459013203	1	5	2932737832791663
	4	2422948870663823		6	0958407832229492
	5	0322448695846381	1	7	.1485407493381256
	6	.0775714938400459	1	8	.0307256814793385
	7	0062414902127983	1	l °	0676328290613279
	8	0125807519990820	1	10	.0002509471148340
	9	.0033357252854738		11	.0223616621236798
N = 6	0	.1115407433501095	1	12	0047232047577518
74 - 6	1	.4946238903984533	1	13	0042815036824635
	2	.7511339080210959	1	14	.0018476468830563
	3	.3152503517091982	1	15	.0002303857635232
	1 4	2262646939654400		16	0002519631889427
	5	1297668675672625		17	.0000393473203163
	6	.0975016055873225	N = 10	0	.0266700579005473
	7	.0275228665303063	11 - 10	li	.1881768000776347
	8	- ,0315820393174862	1	2	.5272011889315757
	9	.0005538422011614		3	.6884590394534363
	10	.0047772575109455		4	.2811723436605715
	11	0010773010853085		5	2498464243271598
N = 7	0	.0778520540850037		6	1969462743772862
	l î	.3965393194818912		7	.1273693403357541
-	2	.7291320908461957	1	8	.0930573646035547
	3	.4697822874051889		9	0713941471663501
	- 4	1439060039285212	1	10	0294575368218399
1	5	2240361849938412		11	.0332126740593612
	6	.0713092192668272		12	.0036065635669870
	7	.0806126091510774		13	0107331754833007
	8	0380299369360104		14	.0013963517470688
	9	0165745416306655		15	.0019924052951975
1	10	.0125509985560966		16	0006858566949564
1	11	.0004295779729314		17	0001164668551285
	12	0018016407040473		18	.0000935886703202
	13	.0003537137999745		19	0000132642028945
	-	-			

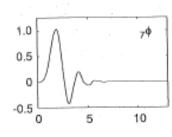


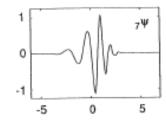


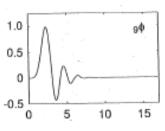


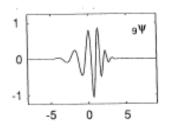












From Ch. 6 of I. Daubechies, *Ten Lectures on Wavelets*, SIAM 1992