
1

Ch. 13 Transform Coding

Coding Gain & Classic Transforms

2

Coding Gain for Transform Coding
This is one way (and an effective one!) to compare Transform Coding to Direct
Quantization in the Time Domain…

It is also a good way to compare the performance between various Transforms…

Define “Transform Coding Gain” as DSQ
TC

TC

D
G

D
Δ=

Dist. for Direct SQ

Dist. for TC(Large GTC is what we want!!!)

Let’s look at this assuming:
• Gaussian WSS signal w/ σx

2

• High-Rate Approximate Distortion Function (for both DSQ & TC)

For DSQ using bits for each of the samples we have total distortion:R N
2 22 R

DSQ G xD NC σ−=

For TC we saw earlier that the total distortion is 1/1
2 2

0

2
NN

R
TC G i

i

D NC γ γ σ
−

−

=

⎡ ⎤= = ⎢ ⎥⎣ ⎦
∏

For Gaussian

Linear Trans of Gaussian is Gaussian… standard result!

3

Forming the ratio and canceling common terms gives:
2

1/1
2

0

x
TC NN

i
i

G σ

σ
−

=

=
⎡ ⎤
⎢ ⎥⎣ ⎦
∏

An alternate (equivalent) form of GTC (for an ON transform) uses:
1

2 2

0

1 N

x i
iN

σ σ
−

=

= ∑
Proof: First we have { }

1 1
2 2 2

0 0

N N
T

i x x
i i

E E x Nσ σ
− −

= =

⎧ ⎫
= = =⎨ ⎬

⎩ ⎭
∑ ∑x x

Then, by ON properties

{ } N { }
1

2 2

0

N
T T T T

x i
i

N E E Eσ σ
−

= =

⎧ ⎫= = = =⎨ ⎬
⎩ ⎭

∑
I

x x y AA y y y

1
2

0
1/1

2

0

1 N

i
i

TC NN

i
i

NG
σ

σ

−

=

−

=

=
⎡ ⎤
⎢ ⎥⎣ ⎦

∑

∏
"Arithmetic Avg"
"Geometric Avg"

=
For TC to outperform DSQ…

We need:
(Geom. Avg) < (Arith Avg)

4

So… for a given signal scenario…

…we want to choose our transform to make GTC as large as possible

… that is equivalent to saying that we want a transform that gives σi
2

that have a larger arithmetic avg than geometric avg

So… for example, for images we might try to come up with a reasonable fairly
general model…

… then see if we can identify a transform that gives for that model σi
2

that have a larger arithmetic avg than geometric avg

5

Classical Transforms
Q: What transform maximizes GTC?
A: The Karhunen-Loeve (K-L) Transform
Let x be the signal vector drawn from a zero mean WSS process
Then { } 0 0 0 1 0 2 0 1

1 0 1 1 1 1

2 0 2 2

1 0 1 1 1 1

{ } { } { } { }
{ } { } { }
{ } { }

{ } { } { }

T
N

N

N N N N

E E x x E x x E x x E x x
E x x E x x E x x
E x x E x x

E x x E x x E x x

−

−

− − − −

= = ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

xR xx "
"

%
"

Autocorrelation
Matrix

σx
2 on diagonal (assuming WSS)

Let vi be the ith eigenvector of Rx with eigenvalue λi i i iλ=xR v v

[] []0 1 1 0 0 1 1 1 1N N Nλ λ λ− − −=x

V

R v v v v v v" "����	���

=xR V ΛV { }0 1 1, , , Ndiag λ λ λ −=Λ " ()

6

“Fact”: Since Rx is symmetric, its eigenvectors form a complete set of ON vectors

We use these ON eigenvectors obtained from the AC Matrix to form a
transform matrix A: []0 1 1

T
N −=A v v v"

This transform is called the Karhunen-Loeve Transform…

Note that there is not one K-L transform but rather one for each WSS process

Applying this transform to the signal vector x gives the transform coefficients:

=y Ax

Q: What is the AC matrix of these transform coefficients?

A: { } { } { }

{ } N

()T T T T

T T T T T T

E E E

E
=

= = =

= = = = =

y

x x
I

R yy Ax Ax Axx A

A xx A AR A V R V V ΛV V VΛ

ith row of
A is vi

T
T=A V

=yR Λ K-L diagonalizes!!!

7

Big Picture Result for K-L Transform
• The K-L Transform Matrix is made from the eigenvectors of the

AC Matrix of the signal vector
• The AC Matrix of the K-L coefficients is diagonal (& the values

on the diagonal are the eigenvalues of the AC Matrix)
– “The K-L Diagonalizes the AC Matrix”
– The coefficients after the K-L transform are uncorrelated!

• The K-L is the optimal transform… it maximizes the TC gain
• But there are some drawbacks to using the K-L transform!!!

– “The” transform is data dependent
• Must send info to describe the transform matrix… Wasteful!!!
• No efficient implementation

– The AC Matrix must be estimated from the data
• Adds complexity
• Makes the algorithm sub-optimal (“only as good as the estimate of the AC”)

See Next
Slide

So… the K-L is mostly of Theoretical & Historical Interest

8

Optimal TC Characteristics of K-L Transform
“Fact” #1: For any ON transform A with y = Ax we have det(Ry) = det(Rx)

“Fact” #2: For any AC Matrix R whose diagonal elements are σi
2

2

1

det()
N

i
i

σ
=

≤ ∏R with equality iff R is a diagonal matrix

Now, let A be any ON transform y = Ax.

Let Ry be the AC matrix of the transform coefficients… w/ diagonal elements σi
2

2

1

det() det()
N

i
i

σ
=

= ≤ ∏x yR R

1
2

0
1/1

2

0

1 N

i
i

TC NN

i
i

NG
σ

σ

−

=

−

=

=
⎡ ⎤
⎢ ⎥⎣ ⎦

∑

∏
Recall Coding Gain:

Facts #1 & #2 state that:

1
2

0

1

det()

N

i
i

TC
NG

σ
−

=≤
∑

xR

This is an
upper bound
on TC Gain

Equality when Ry is diagonal… which is given by the K-L

1
2

0
()

1

det()

N

i
i

TC K L
NG

σ
−

=
− =

∑
xR

K-L Gives
Largest!

9

Q: What transform is used in JPEG?
A: The Discrete Cosine Transform (DCT)

The 1-D DCT has a transform
matrix C with elements given by:

()

()

2 11 cos , 0, 0,1, 2, , 1
2

1, 2, , 12 12 cos ,
2 0,1, 2, , 1

ij

j i
i j N

N N
C

i Nj i
N N j N

π

π

⎧ +⎛ ⎞
= = −⎪ ⎜ ⎟

⎝ ⎠⎪⎪= ⎨
= −⎧⎪ +⎛ ⎞ ⎪

⎨⎜ ⎟⎪
= −⎝ ⎠ ⎪⎪ ⎩⎩

…

…

…

Each i (each row)
is a “cos of j” at a
different frequency

Note: The DCT is related to the DFT.

However, the DFT is less commonly used in compression… partly
because it maps real-valued signals into complex-valued coefficients…
which complicates the coding part of the compression algorithm.

Note that the DFT takes N real-valued samples into N complex-valued
coefficients so that is really 2N real-valued numbers…

Q: Does this mean that the DFT double the amount of information?

T
i iy= ⇒ =y Cx c x

ci is ith row
of C

10

() 1, 02 1
cos , , 0,1, 2, , 1,

2 2, 0
ij i i

ij i
C K i j N K

N i

π =⎧+⎛ ⎞ ⎪= = − = ⎨⎜ ⎟
≠⎝ ⎠ ⎪⎩

…

N = 8

1-D DCT

11

Let’s see why is the DCT commonly used… Recall the 1st Order AR Model

1[] [1] []x n a x n nε= − + ACF:
2

12
1

()
1

kR k a
a
εσ⎡ ⎤

= ⎢ ⎥−⎣ ⎦
with |a1| < 1 and with ε[n] a zero-mean white Gaussian Noise (WGN) process.

For here we’ll notationally let a1 = ρ and we’ll set σε
2 so that R(0) = 1

() kR k ρ= where ρ controls the “correlation decay” of the process

For a vector x taken from this
process the AC matrix is then

2 1

2 2

1 2

1
1

1

1

N

N

ρ ρ ρ
ρ ρ
ρ ρ ρ

ρ
ρ ρ ρ

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

xR

"
% #
%

% % %
"

Such a process is called a 1st-Order Gauss-Markov (GM) Process

“Fact”: As ρ → 1…. the DCT
approximately diagonalizes this Rx

The DCT is approximately the KL
transform for a 1st Order GM Process

A decent model for Images: DCT in JPEG

12

Q: How is the DCT used for Images (e.g., in JPEG)?

When we looked at ON transforms as ON matrices that operate on vectors we
were really focused on the 1-D signal case (e.g., time signal)…

But images are 2-D signals… so they are best viewed as matrices:

1-D signal → vector x

2-D signal → matrix X

1

N

i ij j
j

y A x
=

= ⇒ = ∑y Ax
jth column

of A
For DCT these
are 1-D cosines

1

N
T

j j
j

y
=

= ⇒ = ∑x A y x a
x is linear combo of basis vectors

()T T
columns= ⇒ = ⇒ =Y AXA Y AX Y AX A

()T T T
columns= ⇒ = ⇒ =X A YA X A Y X A Y A

A “separable”
2-D transform

Apply A
to columns

Apply A
to rows

Apply AT

to columns
Apply AT

to rows

13

So… in 1-D case the DCT coefficients come from “comparing” the signal
vector to each vector in the basis vector set

If we work through the math for the 2-D case… and write it out for the DCT…
we see a similar thing for the 2-D DCT:

() ()
1 1

2 1 2 1() () cos cos
4 2 2

N N

lk ij
i j

i l j kK l K kY X
N N

π π

= =

+ +⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑∑

1 1

() () (,)
4

N N

ij ij
i j

K l K k C l k X
= =

= ∑∑
1

2 , 0
()

1,

l
K l

l otherwise

=⎧⎪= ⎨
=⎪⎩

lkth DCT coefficient is found by “comparing” it to the lkth matrix C(l,k)

This is similar to the case for 1-D DCT… where “comparisons” were
made to 1-D cosines of different frequencies

For 2-D DCT… the “comparisons” are made to 2-D cosines of different
“mixed” frequencies (horizontal frequency & vertical frequency)

14Image from http://www.cs.cf.ac.uk/Dave/Multimedia/node231.html

2-D DCT Basis Matrices (8x8 case for JPEG)
C(1,1)

“DC-DC”
C(1,8)

“DC-Max”

C(8,1)
“Max-DC”

C(8,8)
“Max-Max”

15

C(4,1)

C(1,4)

C(8,2)

Note: These were computed
on a denser grid so it is
easier to see their behavior

16
From http://www.cs.cf.ac.uk/Dave/Multimedia/node231.html

17

JPEG Coding Structure

From http://www.cs.cf.ac.uk/Dave/Multimedia/node231.html

After Level
Shift… e.g.,

[0,255] → [-128,127]

18

Computing the 8x8 DCT

2-D signal → matrix X

()T T
columns= ⇒ = ⇒ =Y AXA Y AX Y AX A

Apply 1-D DCT
to columns

Apply 1-D DCT
to columns

() ()
1 1

2 1 2 1() () cos cos
4 2 2

N N

lk ij
i j

i l j kK l K kY X
N N

π π

= =

+ +⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑∑

Image from
http://www.cs.cf.ac.uk/Dave/Multimedia/node231.html

How we DO it…

How we THINK about it…

19

Quantizing the 8x8 DCT Coefficients

Each of the 64 DCT coefficients in an 8x8 block are quantized using uniform mid-tread
quantizers…

Each quantizer can have a different step size… step sizes are in “Quantization Table”

Each quantizer creates a “label” from a DCT coefficient:

Has zero as RL

0.5 roundij ij
ij

ij ij

Y Y
l

Q Q
⎢ ⎥ ⎛ ⎞

= + = ⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

lij = label
Yij = ijth DCT coefficient
Qij = ijth Quant. Table Entry

⎣x⎦ =
largest
integer
smaller
than x

îj ij ijY l Q=

Reconstruction Levels

At Decoder

20

What does such a quantizer look like?

Labels

For Q = 10

DBs

40

30

20

10

0

-10

-20

-30

-40

RLs

RLs

21

Example Quantization Table Values

Small…
Fine
Quantization

Large…
Coarse
Quantization

Rationale Behind the Quantization Tables
Table values are part of JPEG standard… but can also be user specified.

Choice of table controls quality… usually just scale standard table up/down

Tables have larger values for High Frequency coefficients…
• High freq coeffs tend to be small… quantizing to zero causes small

contribution to MSE
• Also… human visual perception not as sensitive to errors in high freq

components

For color… different tables for “luminence” and “chrominance” components
• Exploit difference in human perception of errors in these components

22

Original
DCT Values

Quantizer Table Values

Quantized Labels
(Mostly Zeros!!!)

Reconstructed
DCT Values

23

Original 8x8 Block

Reconstructed 8x8 Block from Previous Example

24

Zig Zag Scan of DCT Coefficients of 8x8 Block

Labels for Quantized DCT

DC
Coeff.

Left Out

1
-9
3
0
0
0
.
.
.
0

Rationale: Small Coeffs w/ large
Q values… Lots of zeros…
ZigZag increases long strings of
zeros…

Enables “Run Length Enoding”

RLE… sends
(Skip, Value)

using a
Huffman Code

25

Coding DC Coefficients
DC Coeff is essentially the average value of the 8x8 block

Expect this to vary slowly from block to block…

Code differences between successive blocks…. Use a form of Huffman

26

From http://www.cs.cf.ac.uk/Dave/Multimedia/node231.html

Frame = a picture
Scan = a pass through the pixels (e.g., red comp.)
Segment = a group of 8x8 blocks

JPEG File Structure

