Ch. 13 Transform Coding

Coding Gain & Classic Transforms



Coding Gain for Transform Coding

This iIs one way (and an effective one!) to compare Transform Coding to Direct
Quantization in the Time Domain...

It is also a good way to compare the performance between various Transforms...

DDS(ﬁ)ist. for Direct SQ |

Define “Transform Coding Gain” as G
e DTCé Dist. for TC |

(Large G is what we want!!!)
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Let’s look at this assuming:
e Gaussian WSS signal w/ ¢,2
« High-Rate Approximate Distortion Function (for both DSQ & TC)

For DSQ using R bits for each of the N samples we have total distortion:

B 2R 2
DDSQ = NCGVZ\CTX/[ For Gaussian}

For TC we saw earlier that the total distortion is UN
B N -1
DTC - N,CG7/ 2_2R r= Giz}

[ .. ) -7

Linear Trans of Gaussian is Gaussian... standard result!




Forming the ratio and canceling common terms gives:
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An alternate (equivalent) form of G, (for an ON transform) uses: Gf =— c)'i2
N i
N-1 N-1 =
Proof: Firstwe have E {xTx} = E{ xf} =Y oy =No;
i=0 =0
Then, by ON properties
( N-1
No? = E{XTX}Z E{y' AA' y} = E{yTy}: o’
\ =1 =0
N-1
i (7 4 ™\
N = "Arithmetic Avg" For TC to outperform DSQ...
‘ GTC = N 1'_ UN | = _ - We need:
{ } Geometric Avg (Geom. Avg) < (Arith Avg)
O, . J
=0




So... for a given signal scenario...
...we want to choose our transform to make G+ as large as possible

... that is equivalent to saying that we want a transform that gives ¢;
that have a larger arithmetic avg than geometric avg

So... for example, for images we might try to come up with a reasonable fairly
general model...

... then see if we can identify a transform that gives for that model c;?
that have a larger arithmetic avg than geometric avg



Classical Transforms

Q: What transform maximizes G;.?
A: The Karhunen-Loeve (K-L) Transtorm

Let x be the signal vector drawn from a zero mean WSS process

Then R, =E {XXT } =[ E{x%}  E{xx} E{ox} o E{XoXu}
E{Xl Xo} E{Xlxl} o E{XlxN —1}
E{X,X,} E{x,X,}
Autocorrelation : - :
Matrix L E{XN —1Xo} E{XN —1X1} o E{XN RN —1}_

Let v; be the i eigenvector of R, with eigenvalue &; |R_v, = A V.

|:> R, [VO v,

5,2 on diagonal (assuming WSS) LS

VN—l]:[ﬂ’OVO 2’1‘71 ﬂ“N—lvN—l]

\%

== |R.V=AV

A =diag {4y, Ay, -+ Ay} (K)



“Fact”: Since R_Is symmetric, its eigenvectors form a complete set of ON vectors

We use these ON eigenvectors obtained from the AC Matrix to form a

transform matrix A:

This transform is called the Karhunen-Loeve Transform...

A=[v, v,

VN—1]T

ihrow o
Aisv]!

)

A

VT

Note that there is not one K-L transform but rather one for each WSS process

Applying this transform to the signal vector x gives the transform coefficients:

Q: What is the AC matrix of these transform coefficients?

A: R, =E{yy"}|=E{Ax(Ax)" | = E{Axx"A"]

=AE{xx' |AT =AR A" =V'R V=V'AV=V'VA

) R =A

y = AX

=1

K-L diagonalizes!!!




Big Picture Result for K-L Transform

e The K-L Transform Matrix is made from the eigenvectors of the
AC Matrix of the signal vector

 The AC Matrix of the K-L coefficients Is diagonal (& the values

on the diagonal are the eigenvalues of the AC Matrix)
— “The K-L Diagonalizes the AC Matrix”
— The coefficients after the K-L transform are uncorrelated!

* The K-L Is the optimal transform... it maximizes the TC gain

« But there are some drawbacks to using the K-L transform!!!

— “The” transform is data dependent
» Must send info to describe the transform matrix... Wasteful!!!
* No efficient implementation
— The AC Matrix must be estimated from the data
» Adds complexity
» Makes the algorithm sub-optimal (“only as good as the estimate of the AC”)

See Next
Slide

So... the K-L Is mostly of Theoretical & Historical Interest




Optimal TC Characteristics of K-LL Transform

“Fact” #1: For any ON transform A with y = Ax we have det(R,) = det(R,)

“Fact” #2: For any AC Matrix R whose diagonal elements are ¢,

N
det(R) < H o’ with equality iff R is a diagonal matrix
i=1

Now, let A be any ON transform y = Ax.

Let R, be the AC matrix of the transform coefficients... w/ diagonal elements ;2

1 N -1 )
N &7
Recall Coding Gain: G, = N_l'=° —
az}
=0 |
Facts #1 & #2 state that:

det(R,) =det(R,) <

(.

N

2
||Gi
i1

Equality when R is diagonal... which is given by the K-L

/

1 O-iz This is an
o < N i upper bound
det(R,) on TC Gain
, K-LGives
1 Z o2 Largest!
N=
GTC(K—L) =




Q:
A:

The 1-D DCT has a transform
matrix C with elements given by:

What transform is used in JPEG?
The Discrete Cosine Transform (DCT)

¢; is i!"row
of C

y=Cx = Yy =c¢'x

" 2j+1)i .
\/%cos(( I )m]’ 1=0, J=0,1,2,...,N-1 Each i (each row)

2N Isa“cosof j” ata
= different frequency

\/7 £(2j+1)i7,j i=1,2,...,N-1
— COS ,
[N 2N j=0,12,...,N~-1

Note: The DCT is related to the DFT.

However, the DFT is less commonly used in compression... partly
because it maps real-valued signals into complex-valued coefficients...
which complicates the coding part of the compression algorithm.

Note that the DFT takes N real-valued samples into N complex-valued
coefficients so that is really 2N real-valued numbers...

Q: Does this mean that the DFT double the amount of information?






Let’s see why is the DCT commonly used... Recall the 15t Order AR Model

x[n]=a,x[n—-1]+¢[n]  ACF: R(k)z{lgjaz}af

Y

with |a,| < 1 and with ¢[n] a zero-mean white Gaussian Noise (WGN) process.

Such a process Is called a 15-Order Gauss-Markov (GM) Process

For here we’ll notationally leta, = p and we’ll set 6,2 so that R(0) = 1

mm=) R(k) = p* where pcontrols the “correlation decay” of the process

For a vector x taken from this
process the AC matrix is then

" 2 va1 | “Fact” Asp—1.... the DCT
p p P : : : _
s 1 p 5 approximately diagonalizes this R,
Re=l o p 1 " | | The DCT is approximately the KL
- ; p transform for a 1%t Order GM Process
v p-p 1]

A decent model for Images: DCT in JPEG | 4




Q: How is the DCT used for Images (e.g., in JPEG)?

When we looked at ON transforms as ON matrices that operate on vectors we
were really focused on the 1-D signal case (e.g., time signal)...

1-D signal — vector x

y=Ax = VY = ZAJXJ ]

jih column
of A

For DCT these
are 1-D cosines

|s linear combo of basis vectors ]

But images are 2-D signals... so they are best viewed as matrices:

2-D signal — matrix X Apply A Apply A
to columns to rows

=AXA' = Y, .m =AX =Y =(AX) AT
A “separable” T T
EZ-D transform ):Apply A ] ZAPDW A ]
to column t0 rows

=A'Y = X=(A"Y)A

X=A'YA = X

columns
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So... in 1-D case the DCT coefficients come from “comparing” the signal
vector to each vector in the basis vector set

If we work through the math for the 2-D case... and write it out for the DCT...

we see a similar thing for the 2-D DCT:

Yy = K(I)K(k)ZZCOS[ 2I+1)Iﬂ]cos[(2j;Nl)kﬂqu

=l=3 2N B
K(I)K(k) T 10

ZZCU(I k)x K(I)_{f/f otherwise

=1 j=1 , = Wi

Ikt DCT coefficient is found by “comparing” it to the Ikt matrix C(l,k)

This is similar to the case for 1-D DCT... where “comparisons” were
made to 1-D cosines of different frequencies

For 2-D DCT... the “comparisons” are made to 2-D cosines of different
“mixed” frequencies (horizontal frequency & vertical frequency)
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:

C(1,1)
‘DC-DC”

[ C(8,1)

‘Max-DC”

2-D DCT Basis Matrices (8x8 case for JPEG)
I
T

Image from http://www.cs.cf.ac.uk/Dave/Multimedia/node231.html

(o WE (T F

LR

18 & 3§




Note: These were computed
on a denser grid so it is
easier to see their behavior
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4.2.1. Overview of JPEG

Whatis JPEG?
e "Joint Photographic Expert Group". Voted as mternational standard in 1992.

e Works with color and grayscale images, e.g., satellite, medical, ...
Motivation

e The compression ratio of lossless methods (e.g., Huffman, Arithmetic, LZW) 1s not high enough for
image and video compression, especially when the distribution of pixel values is relatively flat.

o JPEG uses transform coding, it 1s largely based on the following observations:

o Observation 1: A large majority of useful image contents change relatively slowly across images,
1.€., 1t 1s unusual for intensity values to alter up and down several times in a small area, for
example, within an 8 x 8 image block. Translate this into the spatial frequency domain, it says
that, generally, lower spatial frequency components contain more information than the high
frequency components which often correspond to less useful details and noises.

o Observation 2: Pshchophysical experiments suggest that humans are more receptive to the loss of
higher spatial frequency components than the loss of lower frequency components.

From http://www.cs.cf.ac.uk/Dave/Multimedia/node231.html
16



. e DCT (Discrete Cosine Transformation)
JPEG Coding Structure e Quantization
e /Zigzag Scan
e DPCM on DC component
e RLE on AC Components
YIQor YUV e Entropy Coding
I
' £, § Fa, v) Fqtu, v)
DCT Quantization
After Level
Shift... e.g., 4
8 x 8 [0,255] - [-128,127]
:__________________1__ Quanliz.
: Coding Tables
" | Tables
Header E ,
Tables |+ -- DPCM DC
Entropy \ / Yig
Coding . \ Zag
Data e | RLC
. )/ \ ) AC

From http://www.cs.cf.ac.uk/Dave/Multimedia/node231.html
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Computing the 8x8 DCT

Apply 1-D DCT Apply 1-D DC
2-D signal — matrix X to columns to columns

Y=AXA' =Y

columns

—AX = Y= (AX)A

How we DO it...

i How we THINK about it...—ﬁ
| l EEl[IIllil
L[ £

M@ mm | KOO $ 4 03( 2H1)|7[Jcos((2j+l)kﬂ]xij

i=1 j=1 2N

Image from
http://www.cs.cf.ac.uk/Dave/Multimedia/node231.html 18




Quantizing the 8x8 DCT Coefficients

Has zero 'ils/RLJ

Each of the 64 DCT coefficients in an 8x8 block are quantized using uniform mid-tread

quantizers...

Each quantizer can have a different step size... step sizes are in “Quantization Table”

Each quantizer creates a “label” from a DCT coefficient:

smalle
than x

integer

r

xl= L = {L + O.SJ = round (Y—
| Q Q

argest

l; = label
Y;; = ij"™ DCT coefficient
Qij = ij" Quant. Table Entry

/

~
Reconstruction Levels

\fij =1;,Q; %At Decode j

r
J

19



What does such a quantizer look like?

Label

__________________________________________________________________________________________________________

___________________________________________________________________________________________________________

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

LhLL

-30 i-20 i-10 1 O { 10 i 20 i 30 | 40
Input to Quantizer: : :

20



Rationale Behind the Quantization Tables
Table values are part of JPEG standard... but can also be user specified.

Choice of table controls quality... usually just scale standard table up/down

Example Quantization Table Values

...................................
......................
--------

Small... HE TS L1 10 16 & 24 40 51 61
Fi Pl 12 s 19 26 58 60 55
Ine o 14 13 16 .24 40 57 69 _..-36 | Large...
Quantization: | 14 17 .23 29 51 87 .- gOT 62"
| 18 73T 37 56 68 109" 103 77 1 Coarse
435 55 64 8. 104 113 92 | Quantization
9 64 78 87 103 121 120 1ol
7292 95 98 i 112 100 103 99

......
..........
............................................

Tables have larger values for High Frequency coefficients...
» High freq coeffs tend to be small... quantizing to zero causes small
contribution to MSE
« Also... human visual perception not as sensitive to errors in high freq
components

For color... different tables for “luminence” and “chrominance” components
 Exploit difference in human perception of errors in these components

21



39.88 6.56 —2.24 1.22 —0.37 —1.08 0.79 1.13 Original
—102.43 4.56 2.26 1.12 0.35 —0.63 —1.05 —0.48
37.77 1.31 1.77 0.25 —1.50 _2.21 —0.10 023 | DCT Values
—5.67 2.24 —1.32 —0.81 1.41 0.22 —0.13 0.17
~3.37 —0.74 —1.75 0.77 —0.62 ~2.65 —1.30 0.76
5.08 —0.13 —0.45 —0.77 1.99 —0.26 1.46 0.00
3.97 5.52 2.39 —0.55 —0.051 —0.84 —0.52 ~0.13
—3.43 0.51 —1.07 0.87 0.96 0.09 0,33 0.01
16 11 10 16 24 40 51 6l
ii ﬁ 12 ;i ig 23 28 ZZ Quantizer Table Values
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 11
7 92 95 98 112 100 103 99
2 I 0 0 0 0 0 0
-9 0 0 0 0 0 0 0 | Quantized Labels
3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 (Mostly Zeros!!!
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 |32 [ 0 0 0 0 0 0
0 0 0 0 0 0 1108 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Reconstructed g 8 8 8 8 8 8 8
DCT Values | 0 0 0 0 0 0 0 |22




Original 8x8 Block

124 125 122 120 122 119 117 118
121 121 120 119 119 120 120 118
126 124 123 122 121 121 120 120
124 124 125 125 126 125 124 124
127 127 128 129 130 128 127 125
143 142 143 142 140 139 139 139
150 148 152 152 152 152 150 151
156 159 158 155 158 158 157 156

Reconstructed 8x8 Block from Previous Example

123 122 122 121 120 120 119 119
121 121 121 120 119 118 118 118
121 121 120 119 119 118 117 117
124 124 123 122 122 121 120 120
130 130 129 129 128 128 128 127
141 141 140 140 139 138 138 137
152 152 151 151 150 149 149 148

159 159 158 157 157 156 155 155




Zig Zag Scan of DCT Coefficients of 8x8 Block

DC
Coeff.
Left Out

Rationale: Small Coeffs w/ large
Q values... Lots of zeros...

. ZlgZag Increases long strings of

. Zeros...

Enables “Run Length Enoding”

1
9 RLE... sends
=9 O -
................................. i 3 (Skip, Value)
Labels for Quantized DCT 0 using a
D L Q) 0 0 0 0 0 Huffman Code
=5 (T — 0" 0 0 0 0 0
L 3 Qe 0 0 0 0 0
""" e 0 0 0 0 0
0 O 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 .
0 0 0 0 0 0 0 0 0
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Coding DC Coefficients
DC Coeff is essentially the average value of the 8x8 block

Expect this to vary slowly from block to block...

Code differences between successive blocks.... Use a form of Huffman

25



JPEG File Structure From http://www.cs.cf.ac.uk/Dave/Multimedia/node231.html

Start-of-Image I Frame I End-of-Image

-
- -

'_’_,-' .~

lables, elc. |header scanl »ee scan

lables, elc. headerlsegment IRe.sEar! segmenl | Restart | »»»

-~ -
- -~
- ~
- S

e . Frame = a picture
block | block | »»» | block Scan = a pass through the pixels (e.g., red comp.)
Segment = a group of 8x8 blocks

e Scan header
Number of components in scan
component ID (for each component)
Huffman table for each component (for each component)

e Frame header:
sample precision
(width, height) of image
number of components
unique ID (for each component)
horizontal/vertical sampling factors (for each component)
quantization table to use (for each component)

e Misc. (can occur between headers)
Quantization tables
Huffman Tables
Arithmetic Coding Tables
Comments
Application Data 26



