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Ch. 13 Transform Coding

Example, Insight & Algorithms
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• Consider Scalar Quantizers
• Need function for Di(Ri)

– Use “High-Rate” Approximation

Example of Bit Allocation Theory

• Assume we know the variances σi
2 of the transform coefficients

– In Theory: assume WSS & choose PDF model & ACF model, then use 
analysis to get σi

2 for the chosen transform
– In Practice: One way is to collect a large set of typical signals and 

estimate variances by averaging over the set of coefficients (“pseudo 
ensemble”)… Another way… TC is often applied on a block-by-block 
basis so can average coefficients over several blocks
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derived for USQ of Uniform RV
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Assume all coefficients have the same type of PDF, just different variances
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Solve for Ri
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Provides the variation w/ i Additive Constant
Shifts up/down
Adjust λ until ΣRi = RB

Now… add up Ris and set = to RB… then solve for λ
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The negative of this is the 
slope that all the Qs should 

have for an optimal 
allocation of RB bits

Putting ( ) into ( ) gives the optimal allocation (see next page for steps):
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Now do various manipulations using properties of logarithms…
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RΔ=

This term gives the 
“evenly divided”

# of bits

This term tells how Rk should 
differ from the “evenly 

divided” value

Denom = “geometric mean” of σi
2’s

γΔ=

2
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Coefficients w/  geometric mean... get more bits than R bits

Coefficients w/  geometric mean... get fewer bits than R bits
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Note: Allocation does not depend on the pdf-type-dependent constant C
Depends only on the PDF variances
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Q: When we use this optimal allocation what is the resulting distortion?
A: Plug optimal allocation into assumed distortion function (here we’ve 
used the “high rate” approximation for a scalar quantizer):
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Not really 
important here “Fixed”

Controlled by Choice 
of transform!!

(See Next Slide)

Distortion depends on:  N, C, R, γ
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Insight into ON Transform Choice
22 RD NCγ −=Total Distortion is:

Controlled by Choice 
of Transform
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Want to minimize γ!!

“Theorem” Must choose ON transform to give “widely varying” σi
2 values

“Proof” Consider the N = 2 case.  Let σx
2 be the variance of the original signal.

( )2 2 21
1 22xσ σ σ= + variances of 

transform coeff’s
Since the transform is ON
(We’ll see this result later) 
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Constrained to this line segment…
… find where γ =(σ1

2 σ2
2)½ is minimized

γ is Minimum (= zero) at end points:
• σ1

2 = 0        &    σ2
2 = 2σx
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• σ1
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γ is Maximum (= σx
2) in center:

• σ1
2 = σx

2 &    σ2
2 = σx
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One Last Pair of Insights
Raising 2 to each side of ( ) we get:
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(# of Quantization Levels of kth quantizer)  ~   kth Std. Dev Insight #1:

If… σi = 2 σj

Then… Ri = Rj + 1

Insight #2:
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Bit Allocation Algorithms
Method #1: Based on Theoretical Allocation ( )
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1. Collect “training” set of L signals that typify the class of signals of interest
xl[n]   l = 1, 2, 3, … , L     n = 0, 1, 2, … , N-1

2. Transform “training” signals into “training” coefficients
yl = A xl

3. Estimate the variance of each coefficient by averaging over training set

4. Compute optimal allocation values Rk
* using ( )

Uh Oh!!!  The resulting Rk
* values can be:

Non-Integer Valued
Negative Valued

5. Round to integers
6. Set negative allocations to zero….total allocation now exceeds RB

“Un-allocate” some bits to get back down to RB
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Method #2: Based on “One Last Pair of Insights”

1. Estimate Variances of Training Set (See Steps 1 – 3 of Method #1)
Get Estimated Std. Devs from Estimated variances: 

2. Allocate a bit to the quantizer w/ largest 
Then set that 

3. Stop if all bits are allocated…. Otherwise: Go to Step #2

If… σi = 2 σj

Then… Ri = Rj + 1

2ˆ ˆk kσ σ=
ˆkσ

ˆ ˆ 2k kσ σ←

Also based on that Di is the same for all quantizers…See ( ).

For the “high-rate approximation” we have

* * should be same for all 
2 2i i

i i
i R R

D C iσ σ
= ⇒

This is a so-called “Greedy” algorithm…

At each step, a “greedy” algorithm takes the step that gives maximum 
improvement… but there is no guarantee it will find the optimum.

Book Error on p. 408… it divides 
variance by 2 rather than Std Dev
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Method #3: A Generalization of Method #2

1. Estimate Variances of Training Set (See Steps 1 – 3 of Method #1)
Get Estimated Std. Devs from Estimated variances: 

2. Also using the Training Set… “Develop” functions for the distortions
Di(Ri) = fi(Ri,σi

2)
3. Set all Ri = 0 & Calculate Di(0) for all i 
4. Allocate a bit to the quantizer with the largest Di

Increment that Ri

Re-compute that Di

5. Stop if all bits are allocated… Otherwise, Go to Step #4…

Methods #1 & #2 use theoretical results found via the “high-rate approximation”
for the distortion of scalar quantizers

In many scenarios these two assumptions may not be valid!
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Methods #1 - #3 are all based on Classical, Average R-D Theory

i.e.,  variances are estimated over a “pseudo-ensemble” of a training set

Bit allocations are done once based on training set variances
Get optimal distortion “on average”
Some signals have distortions far above the average distortion

Operational R-D Methods try to give the best distortion possible for the particular 
signal being coded

Method #4: Operational R-D Version of Method #3

1. Set all Ri = 0  (or to the minimum allowed Ri)
2. Measure Di(Ri) for all i 
3. Allocate a bit to the quantizer with the largest Di

Re-Measure Di with the newly allocated bit.
4. Stop if all bits are allocated… Otherwise, Go to Step #3…

Instead of a function for Di(Ri), we measure distortion for a specific allocated Ri
using the specific signal

For an even better algorithm… See “Shoham & Gersho Paper” mentioned earlier


