Ch. 13 Transform Coding

My Coverage is Different from the Book

Overview

Transform the signal (e.g., via the DFT, etc.) into a new domain where compression can be done: (i) better and/or (ii) easier
Often (but not always!) done on a block-by-block basis:

- Non-Overlapped Blocks (most common)
- Overlapped Blocks
$x[n]$

Transform as Linear Operator
We'll view transforms as linear operators on a vector space (finite dimensional):

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N-1}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N-1}
\end{array}\right] \\
& \mathbf{x} \xrightarrow{\mathbf{A}} \mathbf{y} \Rightarrow \mathbf{y}=\underbrace{\mathbf{A} \mathbf{x}}_{\begin{array}{c}
\mathbf{A}=\text { Operator } \\
\ldots \text { an } N \times N \text { Matrix }
\end{array}}
\end{aligned}
$$

Because at the decoder we need to undo the effect of this operator... we need matrix A to be invertible:

Usefulness of Transform Coding

1. Information Theory Advantages

- Try to make \mathbf{y} have uncorrelated elements
- \quad Try to concentrate energy into just a few elements of \mathbf{y}

2. Perceptual Distortion Advantages

- Transform domain is often better-suited for exploiting aspects of human perception: psychology of hearing and vision

3. Efficient Implementation

- Transform Coding framework provides simple way to achieve \#1 \& \#2
- "Extra" cost of transform is usually not prohibitively large

Need for ON Transforms

Using theory of quantization it is easy to assess transform-domain distortion:

$$
d(\mathbf{y}, \hat{\mathbf{y}})=\frac{1}{N} \sum_{n=0}^{N-1}\left(y_{n}-\hat{y}_{n}\right)^{2}
$$

But what is the resulting signal-domain distortion?? $d(\mathbf{x}, \hat{\mathbf{x}})=$???
Fact: If transform \mathbf{A} is ON then $d(\mathbf{x}, \hat{\mathbf{x}})=d(\mathbf{y}, \hat{\mathbf{y}})$
\rightarrow Simplifies understanding of impact of quantization choices in the transform domain

Recall: The matrix A for an ON transform has:

- Columns that are ON vectors: $\quad \mathbf{a}_{i}^{T} \mathbf{a}_{j}=\left\{\begin{array}{ll}1, & i=j \\ 0, & i \neq j\end{array}\right\}$
- Inverse is the transpose: $\mathbf{A}^{-1}=\mathbf{A}^{T}$

So... if the transform is ON then the signal distortion is:

$$
\begin{aligned}
D & =E\left\{(\mathbf{x}-\hat{\mathbf{x}})^{T}(\mathbf{x}-\hat{\mathbf{x}})\right\} \\
& =E\{(\mathbf{y}-\hat{\mathbf{y}})^{T} \underbrace{\mathbf{A A ^ { T }}}_{=\mathbf{I}}(\mathbf{y}-\hat{\mathbf{y}})\} \\
& =E\left\{(\mathbf{y}-\hat{\mathbf{y}})^{T}(\mathbf{y}-\hat{\mathbf{y}})\right\} \\
& =E\left\{\sum_{n=0}^{N-1}\left(y_{n}-\hat{y}_{n}\right)^{2}\right\} \\
& =\sum_{n=0}^{N-1} D_{n} \underbrace{}_{\begin{array}{c}
\text { Distortion of } n^{\text {th }} \\
\text { Transform Coefficient }
\end{array}}
\end{aligned}
$$

Big Picture Result: If ON transform, then Transform-Domain distortions add to give total distortion in signal domain

Bit Allocation to TC Quantizers

In "Fig. A" we have N quantizers operating on the transform coefficients...
Q: How do we decide how many bits each of these should use?
This is the so-called "Bit Allocation Problem"... we have a constrained total \# of bits... how do we allocate them across the N quantizers?

Q: Why not just allocate them evenly???

Bit Allocation Problem

$R_{B}=$ Total Rate Budget ("Bit Budget")
$R_{i}=\#$ of bits allocated to the $i^{\text {th }}$ quantizer \rightarrow Total Bits Used: $R=\sum_{i=0}^{N-1} R_{i}$
$D_{i}\left(R_{i}\right)=$ Distortion of $i^{\text {th }}$ quantizer when using R_{i} bits
Assume distortions are additive (true for ON transform): $D=\sum_{i=0}^{N-1} D_{i}\left(R_{i}\right)$

Each quantizer has its
own R-D curve...
depends on quantizer type
and char. of the $i^{\text {th }}$
transform coefficient

Goal: $\underline{\text { Allocate bits }}\left\{R_{i}\right\}_{i=0}^{N-1}$

$$
\text { to } \underline{\text { minimize }} \quad D=\sum_{i=0}^{N-1} D_{i}\left(R_{i}\right) \quad \text { constrained by } R=\sum_{i=0}^{N-1} R_{i} \leq R_{B}
$$

(Alternate Goal: Minimize R subject to $D \leq D_{B}$)

Aspects of Bit Allocation

1. Theoretical View
2. Algorithms

- Average R-D Approach
- "Operational" R-D Approach

Bit Allocation Theory

Given known functions $D_{i}\left(R_{i}\right)$

Models used here determine if we strive for

- Average R-D Solution
- Operational R-D Solution
(Based on some appropriate signal \& quantizer models)

$$
\text { Constrained Opt } \boldsymbol{\rightarrow} \text { Lagrange Mult. }
$$

Solve the constrained optimization problem for the optimal allocation vector $\mathbf{r}=\left[\begin{array}{llll}\mathrm{R}_{0} & \mathrm{R}_{1} & \ldots & \mathrm{R}_{N-1}\end{array}\right]$

Interpret the result to understand general characteristics

Constrained Optimization: Lagrange Multiplier

Lagrange Multiplier Approach to Bit Allocation

See paper: Shoham \& Gersho, "Efficient Bit Allocation for an Arbitrary Set of Quantizers," IEEE Transactions on Acoustics, Speech and Signal Processing, Sept. 1988, pp. 1445 - 1453. (See especially Sect. III)

Constrained Minimization: $\min _{B \in S} H(B)$ subject to $R(B) \leq R_{c}$

Theorem: For any $\lambda \geq 0$, the solution $B^{*}(\lambda)$ to the unconstrained problem

$$
\min _{B \in S}\{H(B)+\lambda R(B)\}
$$

is also the solution to the constrained problem with constraint

$$
\min _{B \in S} H(B) \text { subj. to } R(B) \leq \underbrace{R\left(B^{*}(\lambda)\right)}_{\triangleq R^{*}(\lambda)}
$$

So... for each $\lambda \geq 0$ we find the λ-dependent solution to a λ-dependent unconstrained problem... this solution solves a particular version of the constrained problem, where the constraint is λ-dependent

Proof: Since $B^{*}(\lambda)$ is a solution to the unconstrained problem

$$
H\left(B^{*}(\lambda)\right)+\lambda R\left(B^{*}(\lambda)\right) \leq \underbrace{H(B)+\lambda R(B)}_{\forall B \in S}
$$

Re-arranging this gives: $\quad H\left(B^{*}(\lambda)\right)-H(B) \leq \lambda\left[R(B)-R\left(B^{*}(\lambda)\right)\right]$
Since this is true for $B \in S$ it is true for $B \in S^{*} \subseteq S$ such that $R(B) \leq R\left(B^{*}(\lambda)\right)$

$$
S^{*}=\underbrace{\left\{B \mid R(B) \leq R\left(B^{*}\right)\right\}}_{\begin{array}{c}
\text { Set of all allocations } B \text { that satisfy } \\
\lambda \text {-dependent constraint } R\left(B^{*}(\lambda)\right)
\end{array}}
$$

Note: $R(B)-R\left(B^{*}(\lambda)\right)$ is negative for all $B \in S^{*}$.
Since λ is positive we have that $H\left(B^{*}(\lambda)\right)-H(B) \leq 0 \quad H\left(B^{*}(\lambda)\right) \leq H(B)$ $\forall B \in S^{*}$
$H\left(B^{*}(\lambda)\right)$ is minimum over all B s.t. $R(B) \leq R\left(B^{*}(\lambda)\right)$
$\square B^{*}(\lambda)$ solves the constrained problem with constraint $R\left(B^{*}(\lambda)\right)$
<End of Proof>

What does this theorem say?

To each $\lambda \geq 0 \ldots$

- there is a constrained problem with: constraint $R^{*}(\lambda)$

$$
\left.\& \text { solution } B^{*}(\lambda)\right\} \begin{aligned}
& \text { depend } \\
& \text { on } \lambda
\end{aligned}
$$

- the unconstrained problem $\min \{H(B)+\lambda R(B)\}$ also has the same solution

So...if we can find closed-forms for $B^{*}(\lambda) \& R^{*}(\lambda)$ as functions of λ

Applying the Theorem to TC Bit Allocation

We want to $\underline{\text { minimize }} D(R)=\sum_{i=0}^{N-1} D_{i}\left(R_{i}\right)$ constrained by $R=\sum_{i=0}^{N-1} R_{i} \leq R_{B}$
The theorem says minimize: $J_{\lambda}=D(R)+\lambda R$ for arbitrary fixed λ (get results in terms of λ)

$$
\square J_{\lambda}=\sum_{i=0}^{N-1} D_{i}\left(R_{i}\right)+\lambda \sum_{i=0}^{N-1} R_{i}
$$

To minimize... we need to set: $\frac{\partial J_{\lambda}}{\partial R_{j}}=0 \quad \forall j \quad \square \frac{\partial J_{\lambda}}{\partial R_{j}}=\underbrace{\frac{\partial D_{j}\left(R_{j}\right)}{\partial R_{j}}+\lambda}_{\text {set }=0}$

Aha!! Insight!!

\Rightarrow All the quantizers must operate at an R-D point that has the same slope "Equal Slopes Requirement"

Intuitive View of "Equal Slopes"

$$
\text { Consider } N=2 \text { case }
$$

Intuitive "Proof" by Contradiction

1. Assume an optimal operating pt. $\left(R_{1}{ }^{*}, D_{1}{ }^{*}\right) \&\left(R_{2}{ }^{*}, D_{2}{ }^{*}\right) \mathrm{w} /$ non-equal slopes

$$
\left.S_{i}^{*} \triangleq \frac{\partial D_{i}}{\partial R_{i}}\right|_{R_{i}=R_{i}^{*}} \quad \text { with } S_{1}^{*} \neq S_{2}^{*} \quad \text { WLOG }: \quad S_{1}^{*}=S_{2}^{*}-\Delta \quad \text { w/ } \quad \Delta>0
$$

2. Because assumed optimal: $R_{1}^{*}+R_{2}^{*}=R_{B}$ i.e., meets budget
3. Now... imagine small increase in R_{1} for quantizer \#1: $R_{1}^{*} \rightarrow R_{1}^{*}+\varepsilon, \quad \varepsilon>0$
4. To keep the bit budget, must decrease rate R_{2} by same small amount:

$$
R_{2}^{*} \rightarrow R_{2}^{*}-\varepsilon, \quad \varepsilon>0(\text { same } \varepsilon)
$$

5. Find new distortions due to these rate changes... (Use Taylor series approximations... valid because rate changes were small)

$$
\begin{aligned}
& D_{1}^{*} \text { decreases to } \approx D_{1}^{*}+S_{1}^{*} \varepsilon=D_{1}^{*}+\left(S_{2}^{*}-\Delta\right) \varepsilon \\
& D_{2}^{*} \text { increases to } \approx D_{2}^{*}-S_{2}^{*} \varepsilon
\end{aligned}
$$

6. Find new total distortion:

$$
\begin{aligned}
D_{\text {New }} & =\left[D_{1}^{*}+\left(S_{2}^{*}-\Delta\right) \varepsilon\right]+\left[D_{2}^{*}-S_{2}^{*} \varepsilon\right] \\
& =\underbrace{D_{1}^{*}+D_{2}^{*}}_{D_{\text {Old }}}-\underbrace{\Delta \varepsilon}_{>0} \varepsilon \quad \square D_{\text {New }}<D_{\text {Old }}
\end{aligned}
$$

Contradiction!!! We assumed we were optimal (but with non-equal slopes)
... Yet, we were able to reduce the distortion while meeting bit budget
... So... that non-equal slope operating pt. wasn't optimal after all!!!
... So, equal slopes must occur at the optimal operating point!!!!

So We Need Equal Slopes... But Which Slope?

Here are two cases, each with equal slopes... Which should we use?

Note: Slope \#1 gives a lower total rate than does Slope \#2
\rightarrow Choose Slope that causes Total Rate $=$ Budget Rate
Recall: All slopes $=-\lambda \quad \rightarrow$ Choose λ to make Total Rate $=$ Budget Rate

Recall Theorem

Find $\lambda=\lambda_{c}$ that gives $R^{*}\left(\lambda_{c}\right)=R_{c}$
\rightarrow Set λ so that the solution to the unconstrained solution also solves our constrained problem with our constraint

