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Ch. 13 Transform Coding

My Coverage is Different from the Book
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Overview Transform the signal (e.g., via the DFT, etc.) into a 
new domain where compression can be done: (i) 
better  and/or (ii) easier

Optional

“Blocker”
Quantizers

Scalar
Vector

Differential

Entropy Coders
Huffmann

Arithmethic
Etc.

Block Diagram of Transform Coding
“Fig. A”

Often (but not always!) done on a block-by-block basis:
• Non-Overlapped Blocks  (most common)
• Overlapped Blocks
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Transform as Linear Operator
We’ll view transforms as linear operators on a vector space (finite dimensional):
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… an N×N Matrix

Because at the decoder we need to undo the effect of this operator… we need 
matrix A to be invertible:

x y
Binary
Stream ŷ x̂
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1. Information Theory Advantages
– Try to make y have uncorrelated elements
– Try to concentrate energy into just a few elements of y

2. Perceptual Distortion Advantages
– Transform domain is often better-suited for exploiting aspects of human 

perception: psychology of hearing and vision

3. Efficient Implementation
– Transform Coding framework provides simple way to achieve #1 & #2
– “Extra” cost of transform is usually not prohibitively large

Usefulness of Transform Coding
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Need for ON Transforms
Using theory of quantization it is easy to assess transform-domain distortion:
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But what is the resulting signal-domain distortion?? ˆ( , ) ???d =x x

Fact: If transform A is ON then ˆ ˆ( , ) ( , )d d=x x y y

Simplifies understanding of impact of 
quantization choices in the transform domain

Recall:  The matrix A for an ON transform has:

• Columns that are ON vectors:

• Inverse is the transpose: 
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So… if the transform is ON then the signal distortion is:
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Big Picture Result: If ON transform, then Transform-Domain 
distortions add to give total distortion in signal domain
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Bit Allocation to TC Quantizers
In “Fig. A” we have N quantizers operating on the transform coefficients…

Q: How do we decide how many bits each of these should use?

This is the so-called “Bit Allocation Problem”… we have a constrained total # 
of bits… how do we allocate them across the N quantizers?

Q: Why not just allocate them evenly???
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Bit Allocation Problem
RB = Total Rate Budget (“Bit Budget”)

Ri = # of bits allocated to the ith quantizer Total Bits Used: 

Di(Ri) = Distortion of ith quantizer when using Ri bits

Assume distortions are additive (true for ON transform):

1

0

N

i
i

R R
−

=

= ∑

Each quantizer has its 
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(Alternate Goal: Minimize R subject to D ≤ DB)
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Aspects of Bit Allocation
1. Theoretical View
2. Algorithms

– Average R-D Approach
– “Operational” R-D Approach

Bit Allocation Theory

Theory Drives Algorithms

Given known functions Di(Ri)
(Based on some appropriate signal & quantizer models)

Solve the constrained optimization problem for the optimal 
allocation vector r = [R0 R1 … RN-1]

Models used here determine if 
we strive for 

• Average R-D Solution
• Operational R-D Solution

Interpret the result to understand general characteristics

Constrained Opt  Lagrange Mult.
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x2 f (x1,x2) contours Equality Constraint: g(x1,x2) = C
g(x1,x2) – C = h(x1,x2) = 0
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Ex.  The grad vector has 
“slope” of b/a ⇒
orthogonal to constraint line

Ex. ax1 + bx2 – c = 0
⇒ x2 = (–a/b)x1 + c/b
A Linear Constraint

Constrained Optimization: Lagrange Multiplier 

Unconstrained 
Minimum
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Lagrange Multiplier Approach to Bit Allocation 
See paper: Shoham & Gersho, “Efficient Bit Allocation for an Arbitrary Set of 
Quantizers,” IEEE Transactions on Acoustics, Speech and Signal Processing, 
Sept. 1988, pp. 1445 – 1453.   (See especially Sect. III)
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Theorem: For any λ ≥ 0, the solution B*(λ) to the unconstrained problem
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is also the solution to the constrained problem with constraint

So… for each λ ≥ 0 we find the λ-dependent solution to a λ-dependent 
unconstrained problem… this solution solves a particular version of the 
constrained problem, where the constraint is λ-dependent
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Proof:  Since B*(λ) is a solution to the unconstrained problem
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Re-arranging this gives: ( ) ( )* *( ) ( ) ( ) ( )H B H B R B R Bλ λ λ⎡ ⎤− ≤ −⎣ ⎦

Since this is true for B∈S it is true for B∈S* ⊆ S such that R(B) ≤ R(B*(λ))
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Set of all allocations B that satisfy 
λ-dependent constraint R(B*(λ))

Note: R(B) – R(B*(λ)) is negative for all B∈S*.
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H(B*(λ)) is minimum over all B s.t. R(B) ≤ R(B*(λ))

B*(λ) solves the constrained problem with constraint R(B*(λ))
<End of Proof>
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What does this theorem say?

To each λ ≥ 0…

• there is a constrained problem with:  constraint R*(λ)

& solution   B*(λ)

• the unconstrained problem min{H(B)+λR(B)} also has the same solution

So…if we can find closed-forms for B*(λ) & R*(λ) as functions of λ

then we can “adjust” λ = λc so that R*(λc) = Rc

So we get that… B*(λc) solves the constrained problem 
w/ our desired constraint

Both 
depend 
on λ

Our Actual 
Constraint
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Applying the Theorem to TC Bit Allocation

The theorem says minimize:

We want to minimize
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Aha!!  Insight!!
All the quantizers must operate at an R-D 

point that has the same slope
“Equal Slopes Requirement”
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Intuitive View of “Equal Slopes” Consider N = 2 case
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Intuitive “Proof” by Contradiction

1. Assume an optimal operating pt. (R1
*, D1

*)  & (R2
*, D2

*) w/ non-equal slopes

2. Because assumed optimal:

3. Now… imagine small increase in R1 for quantizer #1:

4. To keep the bit budget, must decrease rate R2 by same small amount: 
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5. Find new distortions due to these rate changes… (Use Taylor series 
approximations… valid because rate changes were small)

6. Find new total distortion:
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Contradiction!!! We assumed we were optimal (but with non-equal slopes)

… Yet, we were able to reduce the distortion while meeting bit budget

… So… that non-equal slope operating pt. wasn’t optimal after all!!!

… So, equal slopes must occur at the optimal operating point!!!!
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So We Need Equal Slopes… But Which Slope?
Here are two cases, each with equal slopes… Which should we use?

Note: Slope #1 gives a lower total rate than does Slope #2

Choose Slope that causes   Total Rate = Budget Rate

Recall: All slopes = –λ Choose λ to make Total Rate = Budget Rate

λ

Total Rate, R*(λ)

Budget, Rc

λc

Recall Theorem
Find λ = λc that gives R*(λc) = Rc
Set λ so that the solution to the 

unconstrained solution also solves our 
constrained problem with our constraint 


