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Vectors and Matrices 
 

Vectors 
 
Vector: A collection of complex or real numbers, generally put in a column     
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Transpose of  a Vector:  Sometimes it is helpful to deal with a row version of a vector, 
which is called the transpose of the vector and is denoted with a superscript T: 
 

[ ]N
T vv1=v  

 
We can also use the following variation of this: 
 

[ ]T
Nvv1=v  

 
which is often convenient for notational purposes to save vertical space. 
 
 

Vector Addition:  
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Scalar: A real or complex number.  If the vectors of interest are complex valued then the 
scalars are taken to be complex; if the vectors of interest are real valued then the scalars 
are taken to be real. 
 

Multiply by a Scalar: 
















α

α
=α
















=

NN a

a

a

a 11

aa  

 
Note: multiplying a vector by a scalar is viewed as changing its length.  If the scalars are 
real: (i) multiplying by a scalar whose magnitude is greater than 1 increases the length; 
(ii) multiplying by a scalar whose magnitude is less than 1 decreases the length; (iii) if the 
scalar is negative, multiplying by it “flips” the vector to point in the opposite direction  
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Arithmetic Properties of Vectors: vector addition and scalar multiplication exhibit the 
following properties.  This basically just says that the arithmetic structure of vectors 
behaves pretty much like the real numbers – the main difference is that you can’t 
multiply a vector by a vector, but you have a different set of numbers (the scalars) that 
come into play for the multiplication aspects.  Let x, y, and z be vectors of the same 
dimension and let α and β be scalars; then the following properties hold: 
 

(1) Commutativity  
α=α

+=+
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(2) Associativity  
xx

zxyzyx

)()(

)()(

αβ=βα

++=++
 

 

(3) Distributivity  
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 (4) Unity and Zero Scalar 
zeros all of vector zero  theis   where,1
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Vector Space: Set of all vectors of some fixed dimension N, together with 2 operations 
defined on the set: 

(i) addition of vectors – gives another vector in the set 
(ii) multiply a vector by a scalar – gives another vector in the set 

 
In other words: a set vectors qualifies to be a vector space if and only if the set is closed 
under addition and closed under scalar multiplication. 
 
Note: this means that ANY linear combination of vectors in the space results in a vector 
in the space. 
 
Example: Consider the vector space CN = set of all complex N-Vectors with complex 
numbers as the set of scalars.  Then, any linear combination of such vectors is in CN.  For 
example, let },,{ 1 Kvv  be any set of K vectors in CN and let },,{ 1 Kαα be any set of 
K scalars in C, then 
 

N
K

k
kk C∈α∑

=1

v  

 
 
Axioms of Vector Space: If V is a set of vectors satisfying the above definition of a 
vector space then it satisfies the following axioms – the first four are simply the 
arithmetic properties of vectors: 
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(1) Commutativity (see above) 
(2) Associativity (see above) 
(3) Distributivity (see above) 

 (4) Unity and Zero Scalar (see above) 
 

(5) Existence of an Additive Identity –there is a single unique vector 0 in V that 
when added to any vector v in V  gives back the vector v:   
 

v0v =+  
This vector is called the zero vector, and for CN and RN is the vector containing N 
zeros.  This axiom just says that every vector space must include the zero vector. 
 
(6) Existence of Negative Vector: For every vector v in V  there exists another 
element, say v~ , such that  

 
0vv =+~ ;  

 
that is, it is the negative of v:  vv ⋅−= 1~  

 
 
Subspace: a subset of vectors in the space that itself is closed under vector addition and 
scalar multiplication (using the same set of scalars) is called a subspace of the original 
vector space. 
 
Examples:  1. R2 is a subspace of R3.  
        2. Any line passing through the origin in R2 is a subspace of R2  – Verify it! 
        3.  R2 is NOT a subspace of C2 because R2 isn’t closed under complex scalars 
 
 
So, we have a set of vectors plus an “arithmetic structure” on that set of vectors and we 
call that a vector space.  Now we add some more structure to the vector space…  Let’s 
add some “geometric structure” by considering the length of a vector. 
 
Length of a Vector (Vector Norm): For any NC∈v  we define its length (or norm) to 
be 

∑
=

=
N

i
iv
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2
v  

This is called the “Two Norm” or the “Euclidian Norm”; there are other types of norms, 
but this is the one we’ll need. 
 
Properties of Vector Norm: 
1.  

22
vv α=α  
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2. 
2221221 vvvv β+α≤β+α  

 
3. NC∈∀∞< vv

2
 

 
4.  0vv == iff0

2
 (the zero vector has all elements equal to 0) 

 
 
 
So, we now have “length” ideas; now we build in distance 
 
Distance Between Vectors:  the distance between two vectors in a vector space with the 
two norm is defined by: 

22121 ),( vvvv −=d  
 
Note that 2121    iff    0),( vvvv ==d  
 
 
 
 
 
 
 
Now, more geometry comes because the “angle” between vectors can be defined in terms  
of the inner product… 
 
Inner Product Between Vectors: 
 
Motivate the idea in R2: 
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A measure of the angle between the vectors 
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In general CN: *

1
i

N

i
ivu∑

=

>=< vu,  

 
Properties of  Inner Products: 
 

1.  
><β>=β<

><α>=α<

vu,vu,

vu,vu,

*
 

 

2.  
><+>>=<+<

><+>>=<+<

vw,vu,vw,u

zu,vu,zvu,
 

 
3. >=< vv,v 2

2
 

 
4. 

22
vuvu, ≤><     Schwarz Inequality 

 

5.  
22

vu
vu, ><    

 
(i) lies between –1 and 1;  
(ii) measures directional alikeness of  u and v 
 = +1 when u and v point in the same direction 
 = 0 when u and v  are a “right angle” 
 = -1 when u and v point in opposite directions 

 
6. Two vectors u and v for which 0>=< vu,  are called orthogonal  vectors 
 
If in addition, they each have unit length ( 11

22
== vu ) the are said to be 

orthonormal 
 
 

Building Vectors from Other Vectors 
 
Can we find a set of “prototype” vectors },,{ 1 Mvv  from which we can build all other 
vectors in some given vector space?   
 
We’d like to find a set of vectors },,{ 1 Mvv such that we can write any vector in terms 
of a linear combination of these vectors: 
 

For example, if we had NC∈v ,  we could build it using ∑
=

α
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… and if we had NC∈u , we could build it using ∑
=

β
M

k
kk

1

v  

 
 
The only difference between how we build these two vectors is the coefficients that we 
choose (α’s for v and β’s for u).  Thus, the vectors },,{ 1 Mvv  act as the ingredients in 
the recipe and the α’s and β’s act as the amounts of the ingredients we need to build a 
certain vector.  
 
Thus, what we want to be able to do is get any vector we want by changing the amounts.  
To do this requires that the set of prototype vectors },,{ 1 Mvv  satisfy certain 
conditions.  We’d also like to make sure that the set of prototype vectors },,{ 1 Mvv  is 
as small in number as possible (no sense using more vectors here than is necessary, 
right?).  To answer this question we need the idea of linear independence… 
 
Linear Independence:  A set of vectors },,{ 1 Mvv is said to be linear independent if 
there is no vector in it that can be written as a linear combination of the others.   
 
If there were a vector  that could be written in terms of the others, then this vector is not 
really needed if we are trying to find a minimal set of prototype vectors because any 
contribution it might make to build a desired vector could be obtained using the vectors 
that can make it!  For example, say that we have a set of four vectors },,,{ 4321 vvvv and 
lets say that we know that we can build 2v  from 1v  and 3v according to 312 32 vvv += .  
Now lets say we are interested in finding how to build some vector u from the set 

},,,{ 4321 vvvv according to  

44332211

4

1
vvvvvu α+α+α+α=α= ∑

=k
kk  

 
But we know that 2v  can be written in terms of 1v  and 3v so that we have: 
 

[ ]

443311

44323121

443331211

ˆˆ

)3()2(

32

vvv

vvv

vvvvvu

α+α+α=

α+α+α+α+α=

α+α++α+α=

 

 
Thus, we see that 2v  is not needed at all.   
 
Linear independence is a property that allows us to check to see if we have too many 
vectors in a set of vectors we are considering as a possible prototype set – in other words, 
it allows us to check to see if the proposed set has any redundancy in it. 
 
Examples of Linear Independence: 
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It is clear that: 
1.  In CN or RN we can have no more than N linear independent vectors. 
2.  Any set of mutually orthogonal vectors is linear independent (a set of vectors is 
mutually orthogonal if all pairs are orthogonal). 
 
Span of a Set of Vectors: A set of vectors },,{ 1 Mvv  is said to span a vector space V if 
it is possible to write any vector v in V using only a linear combination of vectors from 
the set },,{ 1 Mvv : 

∑
=

α=
M

k
kk

1

vv  

 
This is a check to see if there are enough vectors in the proposed prototype set to build all 
possible vectors. 
 
Thus, because what we want is a smallest such prototype set, we see that we need a set 
that spans the space and is linearly independent.  This leads to the following definition. 
 
Basis of a Vector Space: A basis of a vector space is a set of linear independent vectors 
that span the space.   
 
Orthonormal (ON) Basis: If a basis of a vector space contains vectors that are 
orthonormal to each other (all pairs of basis vectors are orthogonal and each basis vector 
has unit length). 
 
Fact: Any set of N linearly independent vectors in CN (RN) is a basis of CN (RN). 
 
Dimension of a Vector Space: The number of vectors in any basis for a vector space is 
said to be the dimension of the space.  Thus, CN and RN each have dimension of N. 
 
 
Fact: For a given basis },,{ 1 Nvv , the expansion of a vector v in V is unique.  That is, 
for each v there is only one unique set of coefficients },,{ 1 Nαα such that  

Linear 
Independent 

Not Linear 
Independent 
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∑
=

α=
N

k
kk

1

vv  

 
In other words, this expansion or decomposition is unique.  Thus, for a given basis we 
can make a one-to-one correspondence between the vector v and the expansion 
coefficients },,{ 1 Nαα .  Note we can write the expansion coefficients as a vector, too: 










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





α

α
=

N

1

α  

 
Coefficients as Transformed Values: Thus, we can think of the expansion as being a 
mapping (or transformation) from vector v to vector αααα.  Knowing the coefficient vector αααα 
provides complete knowledge of vector v as long as we know the basis set to be used 
with αααα. We can think of the process of computing the coefficients as applying a transform 
to the original vector.  We can view this transform as taking us from the original vector 
space into a new vector space made from the coefficient vectors of all the vectors in the 
original space. 
 
 
Fact: For any given vector space there are an infinite number of possible basis sets.  The 
coefficients with respect to any of them provides complete information about a vector; 
however, some of them provide more insight into the vector and are therefore more 
useful for certain signal processing tasks than others. 
 
Example for R3 
 
We know that the dimension of this space is N=3 and that we therefore need three vectors 
in any basis for R3.  We could pick the simplest basis: 
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0
0
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321 eee   (Verify that this is indeed linearly independent) 

 
Note also that this particular basis is an ON basis because each pairs of vectors is 
orthogonal and each vector has unit length. 
 
Now, we can write any R3 vector T][ γβα=v  by a linear combination of the basis 
vectors e1, e2, and e3 and it is easy to verify that the coefficients for this basis are nothing 
more than the vector’s elements themselves: 
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Thus, this basis really doesn’t give any more insight than the vector itself.  To explore 
this farther, lets say that we have a scenario where we know that any vector we would 
have will follow the specific form T]2[ γαα=v .  Then perhaps a better basis to 
choose would be  
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321 vvv     (Verify that this is an orthogonal basis – it can be 

normalized to give an ON basis.) 
 
Then using this basis we can transform any vector of the form T]2[ γαα=v  into the 
corresponding set coefficients {α, γ, 0}; thus, for this limited class of vectors we need 
only 2 numbers to describe them rather than three as would be needed for the basis set of 
e1, e2, and e3.  For this case we have found a basis that exploits structure in the set of 
vectors expected and the result is a more efficient means of representing the vector.  Note 
that this works here because the expected form of the vectors limits them to a 2 
dimensional subspace of R3 that is spanned by the first two vectors in the “v” basis.  In 
signal processing we try to do the same thing: find a basis that yields an efficient basis for 
the types of vectors that we are trying to deal with. 
 
DFT from Basis Viewpoint: 
 
Consider that we have a discrete-time signal x[n] for n = 0, 1, … N-1.  We know that we 
can compute the DFT of this using  
 

∑
−

=

π−=
1

0

/2][][
N

n

NknjenxkX  

 
where ][kX  for k =  0, 1, … N-1 are the DFT coefficients.  We also know that we can 
build (i.e., get back) the original signal using the inverse DFT (IDFT) according to 
 

∑
−

=

π=
1

0

/2][1][
N

k

NknjekX
N

nx  

Now lets view this from the vector space perspective we’ve been developing here.  Let 
the vector x consist of the original signal samples: 
 

[ ]TNxxx ]1[]1[]0[ −=x  
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and define a set of basis vectors from the complex exponentials that are used in the IDFT 
sum – the kth one looks like this: 
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where the values down the column follow the running n variable; thus the kth vector 
viewed as a signal is N samples of a complex sinusoid of frequency Nk /2π .  Thus, the 
set of N vectors  dk for k = 0 to N-1 are  
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
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Using the standard results that are used for DFT/IDFT analysis it is easy to show that 
these vectors are indeed orthogonal and thus, because there are N of them, form a basis 
for CN.  Thus, we can view the IDFT equation above as an expansion of the signal vector 
x in terms of this complex sinusoid basis: 
 

∑
−

=

=
1

0
][1 N

k
kkX

N
dx , 

 
from which it can be seen that the basis coefficients are proportional to the DFT 
coefficients.  Thus, if a signal is a sinusoid (or contains significant sinusoidal 
components) then this basis provides an efficient representation.  Note that our view of 
using the coefficient vector as a complete characterization of the vector is consistent with 
the usual view of using the DFT coefficients as a complete characterization of the signal. 
 

Usefulness of ON Basis 
 
Note: any orthogonal basis can be made into an ON basis by scaling each vector in the 
basis to have unit norm. 
 
What’s So Good About an ON Basis?: Let’s See!  Given any basis },,{ 1 Nvv  we can 
write any v in V as  
 

∑
=

α=
N

k
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1

vv  
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with unique coefficients.  Now, we ask:  Given the vector v how we find the α’s? 
 In general – hard! 
 For ON basis – easy!!  Here is how. 
 
If },,{ 1 Nvv  is an ON basis, then 
 

i

ij

ij

N

j
j

ij
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j
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1

v,v

v,vvv,

 

 
Thus, the ith coefficient is found by taking the inner product between the vector v and the 
ith basis vector: 
 

ii vv,=α  EASY!!!! 
 
 
The other thing that is good about an ON basis is that they preserve inner products and 
norms.  Let u and v be two vectors that are expanded with respect to some ON basis to 
give the coefficient vectors αααα and ββββ, respectively.  Then, 
 
1.  < u ,v > = < αααα , ββββ >    (Preserves Inner Products) 
2. ||u||2  = ||αααα||2   and  ||v||2 = ||ββββ||2  (Preserves Norms) 
 
Actually, the second of these is a special case of the first.  These are known as Parseval’s 
theorem.  The first allows us to characterize the closeness of two vectors in terms of the 
closeness of their respective coefficient vectors.  The second allows us to measure the 
size of a vector in terms of the size of its coefficient vector. 
 
So… What’s so good about an ON basis?  It provides an easy way to compute the 
coefficients and it ensures a link between the coefficient space “geometry” and the 
original space “geometry”.   
 
DFT Coefficients as Inner Product Results: 
 Now lets see how these ideas relate to the DFT.  We’ve already seen that we can 
interpret the N-pt. IDFT as an expansion of the signal vector in terms of the linear 
combination of N ON vectors dk defined above.  (Note that for the IDFT case this is just 
saying that we are building the signal out of a sum of complex sinusoids.)  From the 
above theory, we now know how to compute the required coefficients for any ON 
expansion so we should see what this idea gives for the IDFT case.  Our main general 
result above was that the expansion coefficients are found from the inner products of the 



Vectors and Matrices                                                                   Prof. Fowler 

© 2001 Mark L. Fowler 

12 

vector to be expanded and the various ON basis vectors: so for the IDFT case the 
coefficients are kdx, . But, we know from standard DFT theory that the coefficients of 
the IDFT expansion are just the DFT values ][kX .  Combining these two points of view 
gives 

kkX dx,=][ .  
 
Let’s take a look at this an verify that the right-hand side of this is consistent with what 
we know from standard DFT theory.  From vector inner product theory we know that the 
right side of this is 
 

∑

∑
−

=

π−

−

=

=

=

1

0

/2

1

0

*

][

][][

N

n

Nknj

N

n
kk

enx

ndnxdx,

 

 
which is the DFT of the signal, so we see that things work as stated.  Actually, we have 
been a little bit loose here – the dk vectors as given above are orthogonal but not 
orthonormal so there is a 1/N term in the IDFT equation used back in the “DFT from 
Basis Viewpoint” section.  To really do this using ON basis vectors we would have to put 
a N/1 term in front of the dk vectors, but that would lead to forms that aren’t exactly 
the same as the conventional DFT/IDFT expressions; try as an exercise redoing this 
development with true ON basis vectors. 
 
 

Matrices 
 
Matrix:  Is  an array of numbers organized in rows and columns; here is a 4x4 example 
 



















=

44434241

34333231

24232221

14131211

aaaa
aaaa
aaaa
aaaa

A  

 
It will helpful sometimes to view a matrix as being built out of its columns; thus, the 4x4 
example above could be written as: 
 

[ ]4321 ||| aaaaA =  
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where 



















=

k

k

k

k

k

a
a
a
a

4

3

2

1

a  

 
Matrix as Transform: Our main view of matrices will be as things that transform or 
map a vector from one space to another.  Consider the 4x4 example matrix above.  We 
could use that to transform one 4 dimensional vector space V into another one U as 
follows.  Let  v be in V  and compute the product  Av and call it vector u: 
 

[ ]

44332211

4321 |||

aaaa

vaaaaAvu

vvvv +++=

==
 

 
as computed according to the definition of matrix-vector multiplication.  Now what 
vector space does u lie in?  It clearly is built from the columns of matrix A; therefore, it 
can only be a vector that lies in the span of the set of vectors that make up the columns of 
A.  Exactly which vector in this space v gets mapped to clearly depends on what the 
values of the elements of v are, since they act as the “building” coefficients for the 
columns of A when u is built.   
 
If we apply A to all the vectors in V we get a collection of vectors that are in a new space 
called U. 
 
Fact: If the mapping matrix A is square and its columns are linearly independent then  

(i) the space that vectors in V get mapped to (i.e., U) has the same dimension as V 
(ii) this mapping is reversible (i.e., invertible); there is an inverse matrix A-1 such 
that v = A-1u. 

 

Matrix View of Basis 
 
Recall: For a general basis },,{ 1 Nvv we can expand a vector in the space according to  
 

∑
=

α=
N

k
kk

1
vv  

 
Another view: Consider the NxN matrix V whose columns are the basis vectors: 
 

]||[ 1 NvvV =  
 
And consider the Nx1 vector of coefficients:  
 



Vectors and Matrices                                                                   Prof. Fowler 

© 2001 Mark L. Fowler 

14 

















α

α
=

N

1

α  

 
Then we can rewrite the expansion using matrix multiplication: 
 

[ ]


















α

α
α

==

N

NxN

N
2

1

matrix   

21 ||| vvvVαv  

 
We can now take three views of this: 
 
View #1: Vector v is a linear combination of the columns of basis matrix V. 
 
View #2: Matrix V maps vector αααα into vector v  
 
View #3: Is there a matrix, say ΓΓΓΓ, that maps vector v into vector αααα? 
 
Aside:  If a matrix A is square and has linearly independent columns, then A-1 exists such 
that A A-1 = A-1A = I where I is the identity matrix having 1’s on the diagonal and zeros 
elsewhere. 
 
Well… because V is a basis matrix, it is square and its columns are linearly independent.  
Thus, its inverse exists and we have: 
 

vVα 1−=  
 
So we now have a way to go back and forth between the vector v and its coefficient 
vector αααα. 
 
Basis Matrix for ON Basis:  When the basis used to form the matrix is ON then we get a 
special structure that arises (this is connected to the inner product result we derived for 
computing the coefficients of an ON basis). 
 
Result: The inverse of the ON basis matrix V is VH, where the superscript H denotes 
hermitian transpose, which consists of transposing the matrix and conjugating the 
elements.  Let’s see where this comes from.  We need to show that V VH = I.  Consider 
the form for V VH: 
 



Vectors and Matrices                                                                   Prof. Fowler 

© 2001 Mark L. Fowler 

15 

I

vvvvvv

vvvvvv
vvvvvv

VV

=



















=



















><><><

><><><
><><><

=

100

010
001

,,,

,,,
,,,

21

22212

12111

NNNN

N

N

H

 

 
where we have used the fact that the vectors are ON. 
 
Thus, for the ON basis case, the inverse basis matrix is easy to find from the basis matrix: 
 

HVV =−1  
 
Such a matrix (i.e., one whose inverse is just its hermitian transpose) is called a unitary 
matrix; in other words, a unitary matrix is one that satisfies IVVVV == HH .  As a note, 
for the real-valued matrix case the idea of unitary matrix becomes what is called an 
orthogonal matrix for which IVVVV == TT  and TVV =−1 ; that is, for real-valued 
matrices the hermitian transpose is the same as the regular transpose. 
 
Two Properties of Unitary Matrices: 
1.  They preserve norms: Let U be a unitary matrix and let y = Ux.   

 
Then ||y|| = ||x||. 

2. They preserve inner products: Let U be a unitary matrix and let y1 = Ux1 and y2 = Ux2.   
 

Then < y1, y2 > = < x1, x2 > 
 
That is norms and inner products are preserved by the unitary matrix as it transforms into 
the new space. 
 
 
This is the same thing as the preservation properties of ON basis. 
DFT from Unitary Matrix Viewpoint: 
 
Consider that we have a discrete-time signal x[n] for n = 0, 1, … N-1.  We know that we 
can compute the DFT of this using  
 

∑
−

=

π−=
1

0

/2][][
N

n

NknjenxkX  
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where ][kX  for k =  0, 1, … N-1 are the DFT coefficients.  We also know that we can 
build (i.e., get back) the original signal using the inverse DFT (IDFT) according to 
 

∑
−

=

π=
1

0

/2][1][
N

k

NknjekX
N

nx  

Now lets view this from the unitary matrix perspective we’ve been developing here.  Let 
the vector x consist of the original signal samples: 
 

[ ]TNxxx ]1[]1[]0[ −=x  
 
and define a set of basis vectors from the complex exponentials that are used in the IDFT 
sum: 
 





















=

−π

π

π

NNkj

Nkj

Nkj

k

e

e
e

/)1(2

/12

/02

d  

 
where the values down the column follow the running n variable; thus the kth vector is a 
complex sinusoid of frequency Nk /2π .  Thus, the set of N vectors  dk for k = 0 to N-1 
are  
 



















=

1

1
1

0d   



















=

−π

⋅π

NNj

Nj

e

e

/)1(12

/112

1

1

d  



















=

−π

⋅π

NNj

Nj

e

e

/)1(22

/122

2

1

d  …  



















=

−−π

⋅−π

−

NNNj

NNj

N

e

e

/)1)(1(2

/1)1(2

1

1

d  

 
Using the standard results that are used for DFT/IDFT analysis it is easy to show that 
these vectors are indeed orthogonal and thus, because there are N of them, form a basis 
for CN; they aren’t orthonormal, as mentioned above, so we have to account for that in 
our usage here.  We’ll see that we can view the IDFT equation above as nearly unitary 
matrix – where the “nearly” comes from the fact that vectors aren’t normalized.   
 Recall that we’ve seen that we can write the IDFT as follows 
 
 

∑
−

=

=
1

0
][1 N

k
kkX

N
dx . 

 
From this motivation we define the matrix D as follows: 
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

















==

−−π

⋅−π

−π

⋅π

−π

⋅π

−

NNNj

NNj

NNj

Nj

NNj

Nj

N

e

e

e

e

e

e

/)1)(1(2

/1)1(2

/)1(22

/122

/)1(12

/112

110

111

1

1
1

]|||[ dddD  

 
from which we can write the IDFT as  
 

xDx ~1
N

=  

 
where we have used the vector x~  to denote the vector of DFT coefficients X[k].  This is 
the “Matrix View of a Basis” applied to the IDFT.   

Now to get the DFT coefficients from the signal vector, we use the fact that the 
matrix D is (nearly) unitary so that we have that  
 

IDD =H

N
1

 

 
so that we get  

xxI

xDDxD

~~

~1

==

= HH

N  

 
or in other words, to compute the vector of DFT coefficients x~  all we have to do is  
 

xDx H=~  
 
You should be able to verify that this matrix operation does indeed give the DFT 
coefficients. 
 

Matrix as Transform 
 
What we just saw for the DFT was that we can view the Discrete Fourier transform as a 
matrix multiplying a vector.  This is a VERY useful viewpoint for all sorts of signal 
transforms.  In general we can view any linear transform in terms of some matrix (say A) 
operating on a signal vector (say x) by pre-multiplication to give another vector (say y): 
 

Axy =  
 
Given what we seen above we can view this as mapping the vector x into a new vector 
space, where that new space is the span of the columns of matrix A.  If A is square and 
invertible, then we can get x back from y by operating on y with the inverse of A: 
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yAx 1−=  
 
 
Thus, we see that we can think of A and its inverse as mapping back and forth between 
two vector spaces as shown below: 
 

1x

1, −AA

1y
2x

2y

1, −AA

 
 
This figure shows two vectors x1 and x2 getting mapped into y1 and y2.  The double 
direction arrows labeled with A and its inverse show that it is possible to go back forth 
between these two spaces (or domains).  Note that we have seen that unitary matrices do 
this mapping in such a way that the sizes of vectors and the orientation between vectors is 
not changed – clearly this picture shows a non-unitary matrix because the sizes of the y’s 
are not the same as the sizes of the x’s nor are the y’s oriented the same as the x’s. 
 
While this viewpoint is very useful; it is important to always keep in your mind that there 
is an alternative, basis viewpoint – namely, that the transform results y gives the 
coefficients that are used to write the recipe for how to build the x vector as a linear 
combination of  the columns of A-1.  Often in signal processing we choose the matrix A 
to ensure that the computed y vector gives us useful insight to the vector x that was not 
available directly from x – this is what is done in the DFT and other transforms used for 
data compression, etc.   For data compression, if we choose A such the resulting vector y 
has mostly small (or even better, zero) elements, then we can use that to advantage to 
reduce the amount of data that we need to send.  For DFT, we often use it to analyze 
sinusoidal signals – that’s because a sinusoid gives a large value for the element of y in 
the position corresponding to the basis vector frequency that is closest to the signal’s 
frequency; the other elements of y are likely to be small, thus we can use this to detect the 
presence of a sinusoid and measure its frequency. 
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