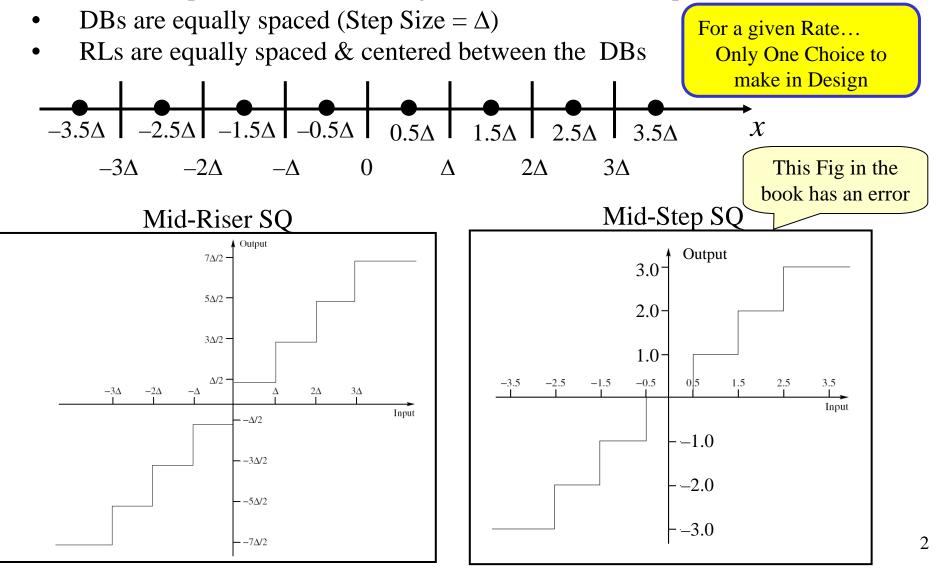
Ch. 9 Scalar Quantization

Uniform Quantizers

1

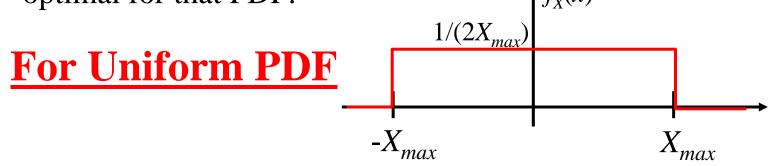
Characteristics of Uniform Quantizers

Constraining to UQ makes the design easier but performance usually suffers... For a uniform quantizer the following two constraints are imposed:



PDF-Optimized Uniform Quantizers

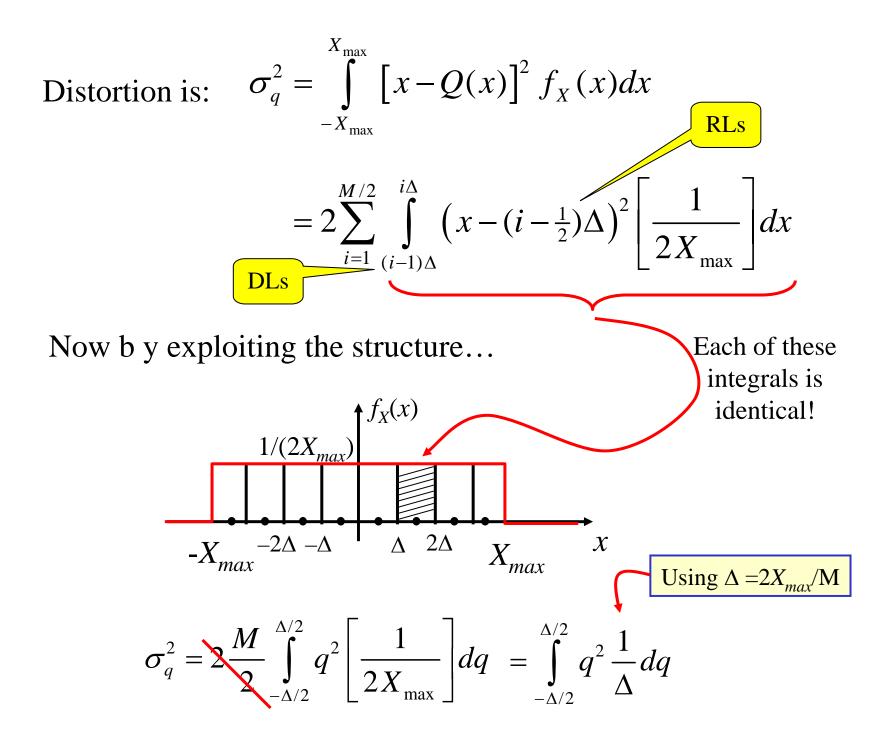
The idea here is: Assuming that you know the PDF of the samples to be quantized... design the quantizer's step so that it is optimal for that PDF. $\uparrow f_X(x)$



Want to uniformly quantize an RV $X \sim U(-X_{max}, X_{max})$

Assume that desire *M* RLs for $R = \lceil \log_2(M) \rceil$

→ *M* equally-sized intervals having $\Delta = 2X_{max}/M$

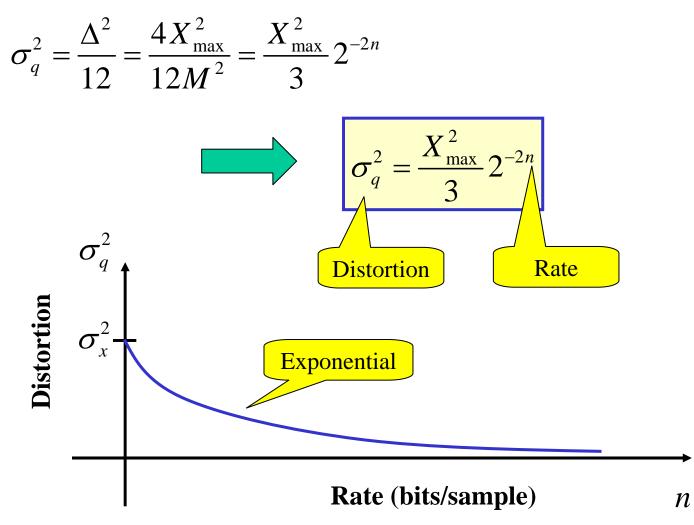


So... the result is:

$$\sigma_q^2 = \int_{-\Delta/2}^{\Delta/2} q^2 \frac{1}{\Delta} dq \qquad \Longrightarrow \qquad \sigma_q^2 = \frac{\Delta^2}{12}$$

To get SQR, we need the variance (power) of the signal... Since the signal is uniformly dist. we know from Prob. Theory that $\sigma_x^2 = \frac{(2X_{\text{max}})^2}{12} = \frac{\Delta^2 M^2}{12}$ $SQR(dB) = 10\log_{10} \left[\frac{\sigma_x^2}{\sigma_q^2}\right] = 10\log_{10} \left[M^2\right] \quad \text{For } n\text{-bit}$ Quantizer: $M = 2^n$ $= 20\log_{10} \left[2^n\right]$ $= 6.02n \quad dB \quad 6 \text{ dB per bit}$

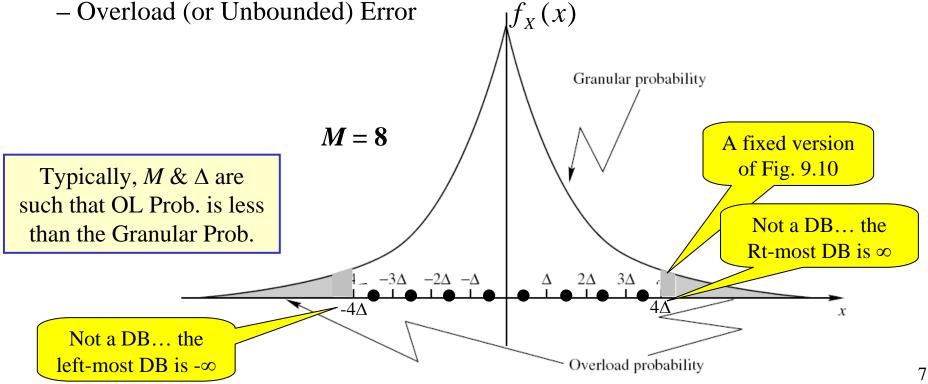
Rate Distortion Curve for UQ of Uniform RV



PDF-Optimized Uniform Quantizers

For Non-Uniform PDF

- We are mostly interested in Non-Uniform PDFs whose domain is not bounded.
- For this case, the PDF must decay asymptotically to zero...
- So... we can't cover the whole infinite domain with a finite number of Δ -intervals! •
- We have to choose a $\Delta \& M$ to achieve a desired MSQE
- Need to balance to types of errors:
 - Granular (or Bounded) Error
 - Overload (or Unbounded) Error



<u>Goal</u>: Given *M* (i.e., given the Rate *n*... typically $M = 2^n$) Find Δ to minimize MSQE (i.e., Distortion) DBs M = 8 $b_M = +\infty$ $b_0 = -\infty$ -3Δ -2Δ $-\Delta$ Δ $2\Delta = 3\Delta$ $-7\Delta - 5\Delta - 3\Delta$ 3Δ 5Δ 7Δ $-\Delta$ Δ 2 2 2 2 2 2 **RLs** 2 2

Write distortion as a function of Δ and then minimize w.r.t. Δ :

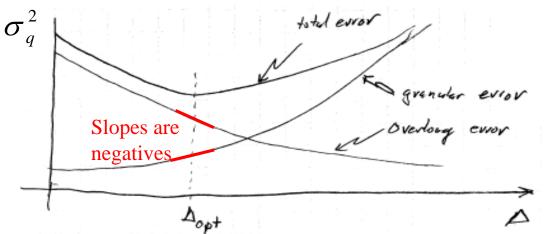
$$\sigma_q^2 = \sum_{i=1}^M \int_{b_{i-1}}^{b_i} (x - y_i)^2 f_X(x) dx$$
Granular
$$= \left[2 \sum_{i=1}^{M/2} \int_{(i-1)\Delta}^{i\Delta} (x - (1 - \frac{1}{2})\Delta)^2 f_X(x) dx \right]$$
Overload
$$+ 2 \int_{\frac{M}{2}\Delta}^{\infty} (x - (\frac{M}{2} - \frac{1}{2})\Delta)^2 f_X(x) dx$$

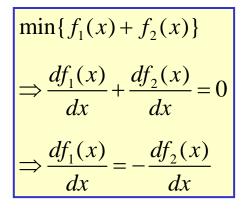
Now to minimize... take derivative & set to zero: $\frac{d\sigma_q^2}{d\Delta} = 0$

Gets complicated & messy to do analytically... <u>solve numerically</u>!

This balances the granular & overload effects to minimize distortion...

↑ $\Delta \rightarrow \downarrow$ Overload... but... ↑Granular





Distributions that have heavier tails tend to have larger step sizes...

How practical are these quantizers?

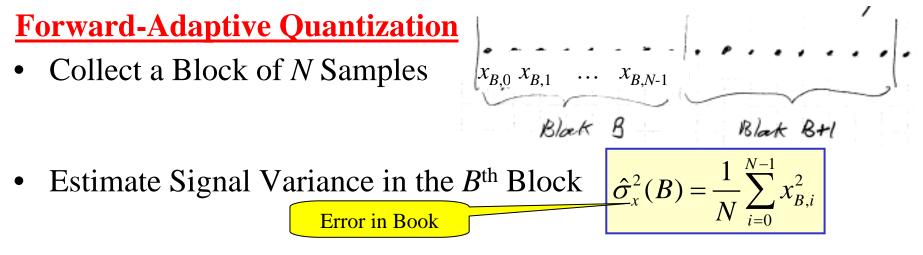
- Useful when source really does adhere to designed-for-pdf
- Otherwise have degradation due to mismatch
 - Right PDF, Wrong Variance
 - Wrong PDF Type

Alphabet	Uniform		Gaussian		Laplacian	
Size	Step Size	SNR	Step Size	SNR	Step Size	SNR
2	1.732	6.02	1.596	4.40	1.414	3.00
4	0.866	12.04	0.9957	9.24	1.0873	7.05
6	0.577	15.58	0.7334	12.18	0.8707	9.50
8	0.433	18.06	0.5860	14.27	0.7309	11.39
10	0.346	20.02	0.4908	15.90	0.6334	12.8
12	0.289	21.60	0.4238	17.25	0.5613	13.98
14	0.247	22.94	0.3739	18.37	0.5055	14.98
16	0.217	24.08	0.3352	19.36	0.4609	15.84
32	0.108	30.10	0.1881	24.56	0.2799	20.40

TABLE 9.3Optimum step size and SNR for uniform quantizers for different
distributions and alphabet sizes [108, 109].

Adaptive Uniform Quantizers

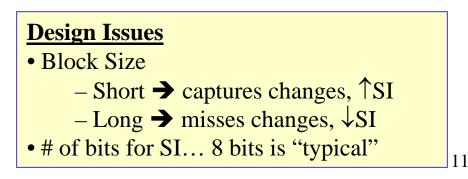
We use adaptation to make UQ robust to Variance Mismatch

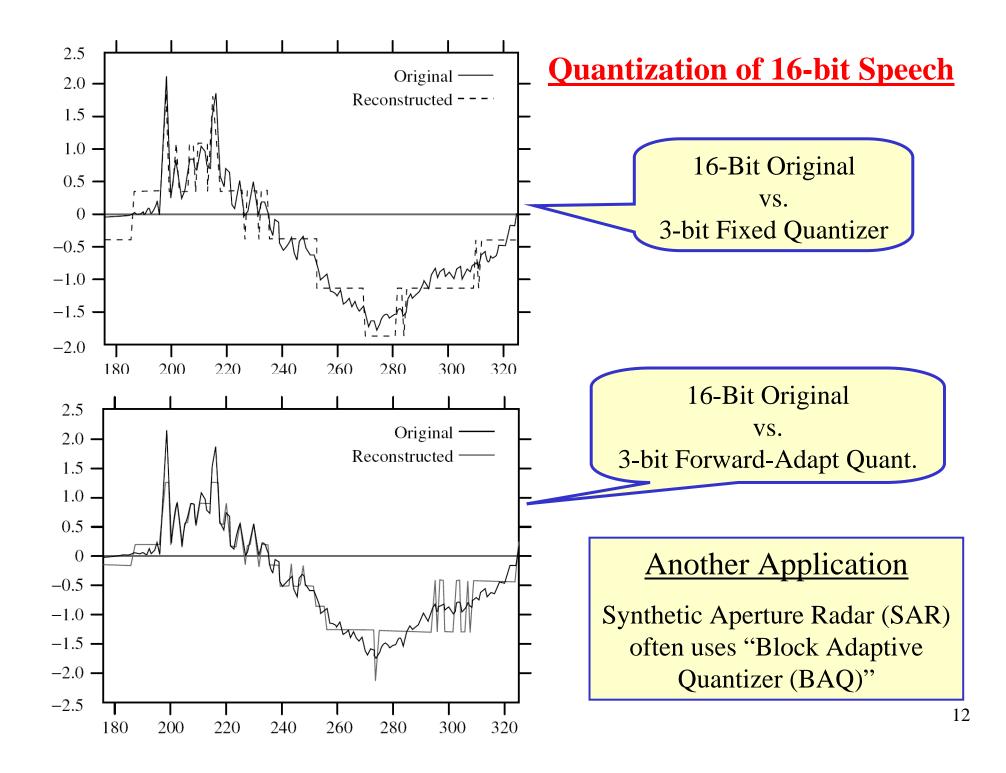


• Normalize the Samples in the *B*th Block

$$\hat{x}_{B,i} = x_{B,i} / \sqrt{\hat{\sigma}_x^2(B)}$$

- Quantize Normalized Samples
 - Always Use Same Quantizer: Designed for <u>Unit</u> Variance
- Quantize Estimated Variance
 - Send as "Side Info"





Alternative Method for Forward-Adaptive Quant.

"Block-Shifted Adaptive Quantization (BSAQ)"

- Given digital samples w/ large # of bits (*B* bits)
- In each block, shift all samples up by S bits
 - S is chosen so that the MSB of largest sample in block is "filled"
- Truncate shifted samples to b < B bits
- Side Info = S (use $\lceil \log_2(B) \rceil$ bits)

Original 8 bit samples	Shifted Up by 2 Bits	Truncated to 3 Bits	
00000000000	00000100000	000000100000	
00000000000	100100001001	100100001001	
00000100000	11111111111	11111111111	
100100001001	101011001110		
11111111111	010001001010	To Decode: Shift down,	
101011001110	010110010010	fill zeros above & below	
010001001010	Coded $S = 010$	00000000000	
010110010010	Coded S = 010	00000000000	
		000000100000	
		100100001001	

Backward-Adaptive Quantization

There are some downsides to Forward AQ:

- Have to send Side Information... reduces the compression ratio
- Block-Size Trade-Offs... Short \rightarrow captures changes, \uparrow SI
- Coding Delay... can't quantize any samples in block until see whole block

Backward-Adaptation Addresses These Drawbacks as Follows:

- Monitor which quantization cells the past samples fall in
 - Increase Step Size if outer cells are too common
 - Decrease Step Size if inner cells are too common

Because it is based on past quantized values,

- no side info needed for the decoder to synchronize to the encoder
 - At least when no transmission errors occur
- no delay because current sample is quantized based on past samples
- So in principle block size can be set based on rate of signal's change

How many past samples to use? How are the decisions made?

Jayant provided <u>simple</u> answers!!

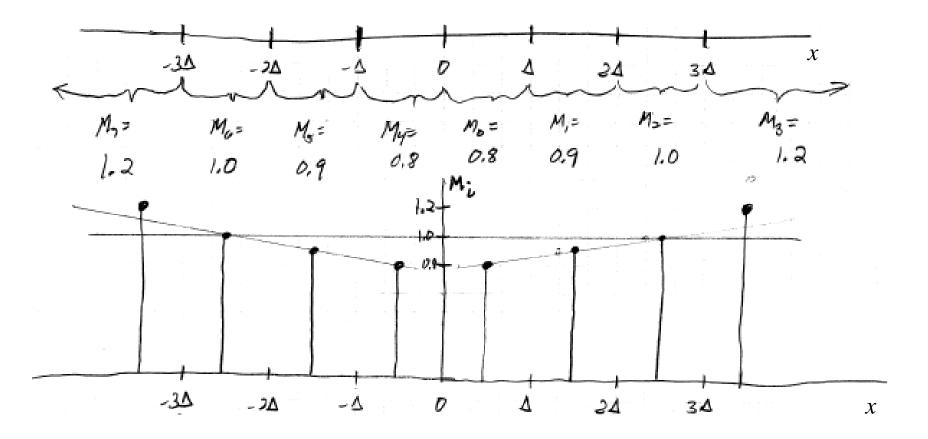
Jayant Quantizer (Backward-Adaptive)

- Use *single* most recent output
- If <u>it</u>...
 - is in <u>outer levels</u>, <u>increase</u> Δ ... or... is in <u>inner levels</u>, <u>decrease</u> Δ
- Assign each interval a multiplier: M_k for the k^{th} interval

" " inner " " < 1

• Specify $\Delta_{min} \& \Delta_{max}$ to avoid "going too far"

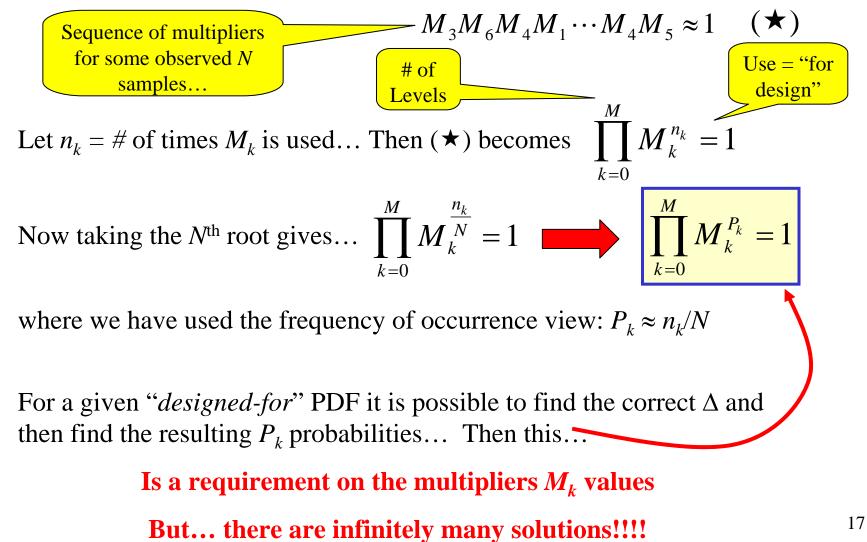
Example of Jayant Multipliers



How Do We Pick the Jayant Multipliers?

<u>*IF*</u> we knew the PDF & designed for the correct Δ ...

Then we want the multipliers to have no effect after, say, N samples:



One way to further restrict to get a unique solution is to require a specific form on the M_i :

form on the
$$M_k$$
:

$$M_k = \gamma^{l_k}$$
Real #>1

$$M_k = \gamma^{l_k}$$
Real #>1

$$\sum_{k=0}^{M} l_k P_k = 0 \quad (\star \star)$$

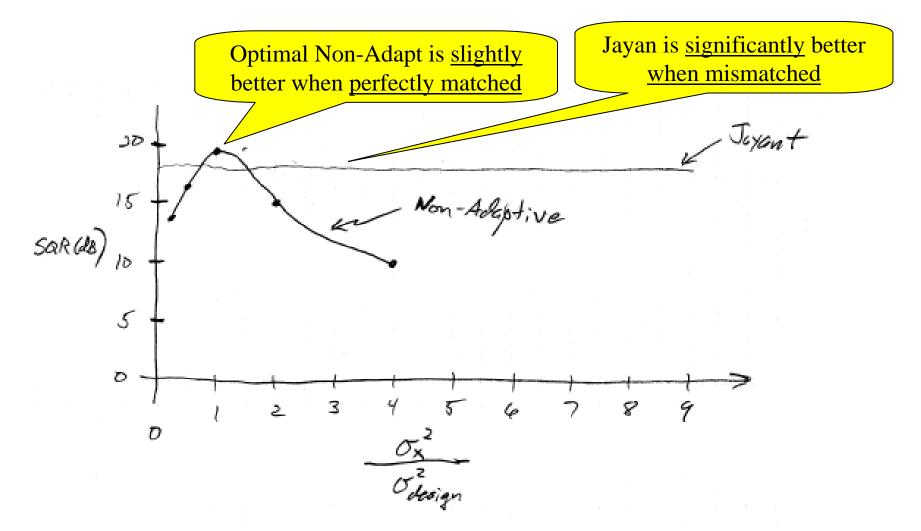
So... if we've got an idea of the P_k ... $(\star \star) \rightarrow$ values for the l_k

Then use creativity to select
$$\gamma$$
:
 $\begin{cases}
Large \gamma \text{ gives fast adaptation} \\
Small \gamma \text{ gives slow adaptation}
\end{cases}$

In general we want faster expansion than contraction:

- Samples in <u>outer</u> levels indicate possible overload (potential big overload error)... so we need to expand fast to eliminate this potential
- Samples in <u>inner</u> levels indicate possible underload (granular error is likely too big... but granular is not as dire as overload)... so we only need to contract slowly

Robustness of Jayant Quantizer



Combining Figs. 9.11 & 9.18