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Ch. 8 Math Preliminaries for 
Lossy Coding

8.5 Rate-Distortion Theory 
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• Theory provide insight into the trade between 
Rate & Distortion

• This theory is needed to answer:
– What do typical R-D curves look like?
– What factors impact the R-D trade-off?
– For a given practical case, what is the best R-D curve 

that I can expect?
• Tells designers when to stop trying to improve!

– Etc.
• Our Goal Here: To express the R-D function in 

terms of Info Theory & see what it tells

Introduction
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Need math form for Distortion… Recall:
Expression for Distortion

{ }( , )D E d X Y=
Expected Value 
taken w.r.t. joint 
PDF of X &Y 
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Describes joint prob
of cont. X & disc. Y<Differs from book>
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Simple Example for Distortion
In compression we wish to minimize D by designing a mapping 
from values of X (continuous) into values of Y (discrete)

Simple Example:

x

RV X can take any value here

y

“Compression”
from X to Y

Clearly our map doesn’t impact fX(x)…But it does specify P(yj|x)!!

In fact, designing a compression algorithm is equivalent to 
specifying P(yj|x)….  Including determining how many yj
values to use
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Goal for Picking Compression Algorithm

When we design a compression algorithm we want one that 
minimizes the distortion D

Pick P(yj|x) to minimize D(P(yj|x))

Thus, D is a function of P(yj|x): ( ){ ( , )} ( | )jD E d X Y D P y x= =

But wait!!!...    

We need to worry about how large or small the Rate is!

Constrained minimization of D(P(yj|x)) to find 
the theoretical lower bound on the R-D curve
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Info Theory View of Rate-Distortion
Recall that we said the Avg. Mutual Info I(X;Y) was the theoretical 
minimum rate needed to convey the amount of info about X that is 
in some specified Y…

Info-Theory R-D Goal #2:  For given distortion value D find the 
P(yj|x) that minimizes the avg rate I(X;Y) under the distortion 
constraint E{d(X,Y)} ≤ D

Info-Theory R-D Goal #1:  For given rate value R find the P(yj|x) 
that minimizes the avg distortion E{d(X,Y)} under the rate constraint 
I(X;Y) ≤ R

These two complementary goals actually result in the same 
Info Theory R-D function…

We’ll focus on #2:
( | ): { ( , )}

( ) min ( ; )
jP y x E d X Y D

R D I X Y
≤

=
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( ; ) ( ) ( | )I X Y h X h X Y= −

| 2 |( | ) ( | ) ( ) log ( | )X Y Y X Yh X Y f x y f y f x y dxdy
∞ ∞

−∞ −∞

⎡ ⎤= − ⎣ ⎦∫ ∫

Notice that the minimization is over P(yj|x) and involves E{d(X,Y)} 
and I(X;Y)… We need these two things as functions of P(yj|x)…

We’ve already seen that for the first one:

( ){ ( , )} ( | )jE d X Y D P y x=

The second one is a bit harder to see:

|
|

|

( | ) ( )
( | )

( | ) ( )
Y X X

X Y
Y X X

f y x f x
f x y

f y x f x dy
=
∫

Depends on the reverse of 
the conditioning we need!!
Depends on the reverse of 
the conditioning we need!!But… using Bayes’ Rule we see

Recall: A Prob. Function can 
be written as a PDF that has 

only deltas in it

with

Has the order of the 
conditioning we need… but 

is a PDF



8

• Find lower bound for I(X;Y) given the desired 
distortion level D

• Show this bound “can be achieved”

Example: R-D Function for Gaussian Source
Approach:

Let X be Gaussian w/ Zero Mean & Variance σ2

Distortion Constraint:  E{(X-Y)2} ≤ D

First consider case where D < σ2

( ; ) ( ) ( | )I X Y h X h X Y= −

( ) ( | )h X h X Y Y= − −

( )h X Y≤ −

Don’t Use formal 
Math to get this –
reason it out by 

definition

( ) ( )h X h X Y≥ − − ( )
Now want to minimize this lower bound while meeting the distortion constraint

That means we need to maximize h(X – Y) 
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For notational ease let ( ) ( )h Z h X YΔ= −

We know that the Diff Entropy h(Z) is maximized if Z is 
Gaussian… so assume that.

Further… if Z has variance of D, then E{(X–Y)2} = D

… and we meet the distortion goal!

Since Z is Gaussian we know that [ ]2
1( ) log 2
2

h Z eDπ=

Since X is Gaussian we know that 2
2

1( ) log 2
2

h X eπ σ⎡ ⎤= ⎣ ⎦

Then ( ) gives [ ]2
2 2

1 1( ; ) log 2 log 2
2 2

I X Y e eDπ σ π⎡ ⎤≥ −⎣ ⎦

2

2
1( ; ) log
2

I X Y
D
σ⎡ ⎤

≥ ⎢ ⎥
⎣ ⎦

( For D < σ2 )
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Now consider case where D ≥ σ2

Note that: 2 2{( 0) }E X Dσ− = ≤

Setting Y = 0 satisfies the Dist. Goal

Don’t have to even send anything and 
you still meet the Dist. Goal!!!

I(X;Y) = I(X;0) = 0 

Combining these two cases (and noting that it is possible to 
actually achieve this bound – see the textbook) we have 
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In Practice

The above results guide practical ideas and give bounds for 
comparing actual Rates & Distortions

These ideas also motivate “Operational Rate-Distortion”

In the above Info Theory View:
D was a probabilistic average over the ensemble
R was a lower limit

In Operational R-D View:
D is “what we actually achieve on this particular signal”
R is “the best rate we can get using a specified algorithm

< More On This Later>


