Ch. 8 Math Preliminaries for Lossy Coding

8.4 Info Theory Revisited
Info Theory Goals for Lossy Coding

Again – just as for the lossless case – Info Theory provides:

- Basis for Algorithms & Bounds on Performance

The Info Theory Goal for Lossy: Given a probabilistic model for a class of signals, determine the best possible Rate-Distortion curve

- Want $D(R)$ vs. R (“Info Theory R-D” rather than “Operational R-D”)

Recall from our Figure of Compression Processing:

- original signal $x[n]$ takes values on continuum
- recovered signal $y[n]$ takes discrete values

Raises Questions:

1. How much information is in $x[n]$?
2. How much of the info in $x[n]$ is conveyed by $y[n]$?

Another way of asking #2 is: If I know $y[n]$, how much uncertainty remains about the signal $x[n]$?
Discrete-Discrete (D-D) Results
Discrete-Discrete - Motivation

Q#1 is made hard because $x[n]$ takes values on a continuum – as we’ll see later. Let’s sidestep this by first answering Q#2 for the case when

$x[n]$ and $y[n]$ **both** take discrete values

… but values from different sets

Example: Let the original signal values be $x[n] \in \{0, 1, 2, \ldots, 15\}$

Let the “compressed” signal be $y[n] \in \{0, 2, 4, \ldots, 14\}$

where the mapping is

<table>
<thead>
<tr>
<th>$y[n]$</th>
<th>if $x[n]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>2</td>
<td>2 or 3</td>
</tr>
<tr>
<td>4</td>
<td>4 or 5</td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
</tr>
</tbody>
</table>

If $x[n]$ is IID & equally likely then $H(X) = 4$ bits

… and it is easy to verify that $H(Y) = 3$ bits
This concept allows one to answer the following:

• If I know \(y[n] \), how much uncertainty (i.e., unknown info) remains about \(x[n] \)?

• For our example: Once I know \(y[n] \), I know that \(x[n] \) is one of only two (equally likely) values…

• Thus, by “inspection”: \(H(X|Y) = -\frac{1}{2}\log_2\left(\frac{1}{2}\right) -\frac{1}{2}\log_2\left(\frac{1}{2}\right) = 1 \text{ bit} \)

• Note: \(H(X) - H(Y) = 4 - 3 = 1 \text{ bit} \), also!
Conditional Entropy (D-D): \(H(X|Y) \)

Define Cond. Info of input symbol \(x_i \) ... given output symbol \(y_j \) as:

\[
i(x_i | y_j) = -\log_2 P(x_i | y_j)
\]

Now, to assess the source as a whole – on average – we average over all possible \(x_i \) & \(y_j \):

\[
H(X | Y) = -\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} P(x_i, y_j) \log_2 \left[P(x_i | y_j) \right]
\]

Need joint Prob. to avg. over all possible pairs

Captures Cond. Info

Using \(P(x_i, y_j) = P(x_i | y_j) P(y_j) \) gives

\[
H(X | Y) = -\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} P(x_i | y_j) P(y_j) \log_2 \left[P(x_i | y_j) \right]
\]

Conditional Entropy of Source Alphabet \(X \) given Reconstruction Alphabet \(Y \) (and the rule that maps \(X \) to \(Y \))
\[H(X|Y) = \text{Avg. Uncertainty on } X \text{ given } Y \]

\[= \text{On Avg. how much info about } X \text{ is } \text{NOT} \text{ conveyed by } Y \]

Clearly… \[H(X|Y) \leq H(X) \]

\[\Rightarrow \text{Knowing } Y \text{ can “help” but can’t “hurt”!} \]

Ex. 8.4.2 in the textbook computes \(H(X|Y) \) for our example above and shows that \(H(X|Y) = 1 \ldots \) consistent with what we showed.
Now we answer Q#2: How much info about X is conveyed by Y (on average)?

Define “Avg. Mutual Info”: $I(X;Y)$

It is obvious that:

$$I(X;Y) = H(X) - H(X | Y)$$

- **Amount of Info Y conveys about X**
- **Total Info that could be conveyed**
- **Amount of Info that isn’t conveyed**
 - The uncertainty left unresolved about X

$I(X;Y)$ is the theoretical minimum rate we need to use to specify the information that Y carries about X

Can show that:

$$I(X;Y) = I(Y;X)$$
Continuous-Discrete (C-D) Results
All of the above was pretty simple – but it was for the case where both $y[n]$ and $x[n]$ has discrete values!

When $x[n]$ takes values on a continuum none of this works! WHY?

Consider the interval $[0,1]$ with the #'s occurring according to the uniform PDF.

If we want to represent every # in this interval using binary, how many bits do we need for each #?

Similarly, $i(x[n]) = -\log_2 P(x[n])$ Probability, not PDF!

The prob. of cont. RV taking any specific value is zero!

If we can’t get $i(x[n])$… we can’t get $H(X)$

… and we can’t get $H(X|Y)$

… and we can’t get $I(X;Y)$
Development of Info of Cont. RV

What do we do??!!! “Limits” to the rescue!!!!

Divide up the continuum into cells of width Δ…

Cells: $[(i-1)\Delta, i\Delta)$

$\exists x_i \in [(i-1)\Delta, i\Delta)$ s.t.

For each cell, $f_{X_i}(x_i)\Delta = \int_{(i-1)\Delta}^{i\Delta} f_X(x)dx$

This is a probability

Define discrete RV X_d that takes on the values x_i with prob. function

$P(X_d = x_i) = f_X(x_i)\Delta$

The entropy of X_d is then

$H(X_d) = -\sum_{i=0}^{N-1} P(x_i) \log_2 [P(x_i)]$
Now (in some sense) \(\lim_{\Delta \to 0} H(X_d) \)

should give the entropy of the cont. RV \(X \)

It is easy to show (see pp. 205-206 if you must!):

\[
\lim_{\Delta \to 0} H(X_d) = \lim_{\Delta \to 0} \left[- \sum_{i=-\infty}^{\infty} \left[f_X(x_i) \log_2 f_X(x_i) \right] \Delta \right] - \left[\lim_{\Delta \to 0} \log_2 \Delta \right]
\]

\[
= -\int_{-\infty}^{\infty} f_X(x) \log_2 f_X(x) dx
\]

Called “**Differential Entropy**” of \(X \)

\(\equiv h(X) \)

Applying this reasoning to any cont. RV always gives that pesky \(\lim \log_2 \Delta \)!!!

But… each RV will have an \(h(X) \) that characterizes it!!!
Ex.: Differential Info of Gaussian X

What is the diff Info $h(X)$ if X is a Gaussian RV?

(Let the variance be σ^2 and the mean be μ)

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

Using this in equation for $h(X)$ and using properties of log & exp gives:

$$h(X) = \frac{1}{2} \log_2\left[2\pi e\sigma^2\right]$$
Can show that: For any RV X w/ variance σ^2

$$h(X) \leq \frac{1}{2} \log_2 \left[2\pi e \sigma^2 \right]$$

That is, the Gaussian has maximum differential entropy!!

Recall Discrete Case: Equally Probable RV gave the max Entropy

Cont. RV results in Info Theory are often derived for the Gaussian case because:

1. Math is easier than for other RVs.
2. Provides an upper bound on $h(X)$ for all other cases.
Avg Mutual Info for Cont. Case

Thus, in general problems of info theory…

\[h(X) \text{ plays the role of } H(X) \text{ with pretty much the same ideas!!!} \]

But for us it is even more straight-forward… What we are really interested in is \(I(X;Y) \) when \(X \) is a cont. RV…

So… applying the limiting argument directly:

\[
I(X_d ; Y_d) = H(X_d) - H(X_d \mid Y_d)
\]

We have found this

Need to get this

Can show:

\[
H(X \mid Y) = -\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \left[f_{X,Y}(x_i \mid y_j) f_Y(y_j) \log_2 [f_{X,Y}(x_i \mid y_j)] \right] \Delta \Delta - \log_2 \Delta
\]

Note: Both terms in \(I(X_d ; Y_d) \) have the pesky \(-\log_2 \Delta\) term… so they cancel BEFORE the limit!!!
So… we only have the differential parts left:

\[I(X; Y) = h(X) - h(X \mid Y) \]

where

\[h(X \mid Y) = -\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X\mid Y}(x \mid y)f_Y(y) \log_2 \left[f_{X\mid Y}(x \mid y) \right] dx dy \]

Note that this is for X and Y both continuous RVs… and the result uses PDFs for X and Y.

For our case, Y is discrete… But this can be handled by using delta functions in a PDF being used to describe a discrete RV.

Ex. Let RV Y take on discrete values of 1 & 2 with a prob. function \(P(Y=1) = 1/4 \) and \(P(Y=2) = 3/4 \)

\[f_Y(y) = \begin{cases}
1/4 & \text{if } y = 1 \\
3/4 & \text{if } y = 2 \\
0 & \text{otherwise}
\end{cases} \]
Big Picture Result for Cont. X & Disc. Y

We use $I(X; Y) = h(X) - h(X|Y)$ as the theoretical minimum rate needed to convey the info that Y holds about X.

$I(X; Y) = h(X) - h(X | Y)$

Amount of Info Y conveys about X

Total Diff. Info that could be conveyed

Diff. Info that isn’t conveyed

The uncertainty left unresolved about X