Ch. 8 Math Preliminaries for Lossy Coding

1

8.4 Info Theory Revisited

Info Theory Goals for Lossy Coding

Again – just as for the lossless case – Info Theory provides:

• Basis for Algorithms & Bounds on Performance

<u>The Info Theory Goal for Lossy</u>: Given a probabilistic model for a class of signals, determine the best possible Rate-Distortion curve <u>Want the lower bound</u>

• Want D(R) vs. R ("Info Theory R-D" rather than "Operational R-D")

Recall from our Figure of Compression Processing:

- original signal *x*[*n*] takes values on continuum
- recovered signal *y*[*n*] takes discrete values

Raises Questions:

- 1. How much information is in x[n]?
- 2. How much of the info in x[n] is conveyed by y[n]

Another way of asking #2 is: If I know y[n], how much uncertainty remains about the signal x[n]?

Discrete-Discrete (D-D) Results

Discrete-Discrete - Motivation

Q#1 is made hard because x[n] takes values on a continuum – as we'll see later. Let's sidestep this by first answering Q#2 for the case when

x[n] and y[n] **both** take discrete values

... but values from different sets

Example: Let the original signal values be $x[n] \in \{0, 1, 2, ..., 15\}$

Let the "compressed" signal be $y[n] \in \{0, 2, 4, \dots, 14\}$

where the mapping is y[n] = 0 if x[n] = 0 or 1 y[n] = 2 if x[n] = 2 or 3 y[n] = 4 if x[n] = 4 or 5 *Etc.*

If x[n] is <u>IID</u> & <u>equally likely</u> then H(X) = 4 bits ... and it is easy to verify that H(Y) = 3 bits

This concept allows one to answer the following:

- If I know *y*[*n*], how much uncertainty (i.e., unknown info) remains about *x*[*n*]?
- For our example: Once I know *y*[*n*], I know that *x*[*n*] is one of only two (equally likely) values...
- Thus, by "inspection": $H(X|Y) = -\frac{1}{2}\log_2(\frac{1}{2}) \frac{1}{2}\log_2(\frac{1}{2}) = 1$ bit
- Note: H(X) H(Y) = 4 3 = 1 bit, also!

Conditional Entropy (D-D): *H*(*X*|*Y*)

Define Cond. Info of input <u>symbol</u> x_i ... given output <u>symbol</u> y_i as:

$$i(x_i \mid y_j) = -\log_2 P(x_i \mid y_j)$$

Now, to assess the source as a whole $-\underline{on \ average}$ – we average over all possible $x_i \& y_j$:

Using $P(x_i, y_j) = P(x_i|y_j) P(y_j)$ gives

$$H(X | Y) = -\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} P(x_i | y_j) P(y_j) \log_2 \left[P(x_i | y_j) \right]$$

Conditional Entropy of Source Alphabet X given Reconstruction Alphabet Y (and the rule that maps X to Y) H(X|Y) = Avg. Uncertainty on X given Y

= On Avg. how much info about X is \underline{NOT} conveyed by Y

Clearly... $H(X|Y) \le H(X)$ \rightarrow Knowing Y can "help" but can't "hurt"!

Ex. 8.4.2 in the textbook computes H(X|Y) for our example above and shows that H(X|Y) = 1... consistent with what we showed.

Avg Mutual Information of X & Y (D-D)

<u>Now we answer Q#2</u>: How much info about *X* is conveyed by *Y* (on average)?

Define "Avg. Mutual Info": I(X;Y)

I(*X*;*Y*) is the theoretical minimum rate we need to use to specify the information that *Y* carries about *X*

Can show that:

$$I(X;Y) = I(Y;X)$$

Continuous-Discrete (C-D) Results

Intro to Continuous-Discrete Results

All of the above was pretty simple – but it was for the case where both y[n] <u>and</u> x[n] has <u>discrete</u> values!

When *x*[*n*] takes values on a continuum none of this works! WHY?

Consider the interval [0,1] with the #'s occurring according to the uniform PDF..

If we want to represent $\underline{every} \#$ in this interval using binary, how many bits do we need for each #?

Similarly,

$$i(x[n]) = -\log_2 P(x[n])$$
 Probability, not PDF!

The prob. of cont. RV taking any specific value is zero!

 $i(x[n]) = \infty$ if x[n] is on a continuum!

If we can't get i(x[n])... we can't get H(X)

... and we can't get H(X|Y)

... and we can't get I(X;Y)

Development of Info of Cont. RV

What do we do??!!! "Limits" to the rescue!!!!

Divide up the continuum into cells of width Δ ... Cells: $[(i-1)\Delta, i\Delta)$ $\exists x_i \in [(i-1)\Delta, i\Delta)$ s.t. For each cell, $f_X(x_i)\Delta = \int_{(i-1)\Delta}^{i\Delta} f_X(x)dx$ This <u>is</u> a probability

Define <u>discrete</u> RV X_d that takes on the values x_i with prob. function $P(X_d = x_i) = f_X(x_i)\Delta$

The entropy of X_d is then $H(X_d) = -\sum_{i=0}^{N-1} P(x_i) \log_2 [P(x_i)]$

Now (in some sense) $\lim_{\Delta \to 0} H(X_d)$

should give the entropy of the cont. RV X

It is easy to show (see pp. 205-206 if you must!):

Applying this reasoning to any cont. RV always gives that pesky $\log_2 \Delta!!!$

<u>But</u>... each RV will have an h(X) that characterizes it!!!

Ex.: Differential Info of Gaussian X

What is the diff Info h(X) if X is a Gaussian RV?

(Let the variance be σ^2 and the mean be μ)

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

Using this in equation for h(X) and using properties of log & exp gives:

Can show that: For any RV X w/ variance σ^2 $h(X) \le \frac{1}{2} \log_2 \left[2\pi e \sigma^2 \right]$

That is, the Gaussian has maximum differential entropy!!

Recall Discrete Case: Equally Probable RV gave the max Entropy

- Cont. RV results in Info Theory are often derived for the Gaussian case because:
- 1. Math is easier than for other RVs.
- 2. Provides an upper bound on h(X) for all other cases.

Avg Mutual Info for Cont. Case

Thus, in general problems of info theory...

h(X) plays the role of H(X) with pretty much the same ideas!!!

But for us it is even more straight-forward... What we are <u>really</u> interested in is I(X;Y) when X is a cont. RV...

So... applying the limiting argument directly:

$$I(X_d; Y_d) = H(X_d) - H(X_d | Y_d)$$

We have found this Need to get this

Can show:

$$H(X | Y) = -\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \left[f_{X|Y}(x_i | y_j) f_Y(y_j) \log_2 \left[f_{X|Y}(x_i | y_j) \right] \right] \Delta \Delta \left[-\log_2 \Delta \right]$$

<u>Note</u>: <u>Both</u> terms in $I(X_d; Y_d)$ have the pesky $-\log_2 \Delta$ term... so they cancel <u>BEFORE</u> the limit!!! So... we only have the differential parts left:

where
$$I(X;Y) = h(X) - h(X | Y)$$
$$h(X | Y) = -\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X|Y}(x | y) f_{Y}(y) \log_{2} \left[f_{X|Y}(x | y) \right] dxdy$$

Note that this is for X and Y <u>both</u> continuous RVs... and the result uses PDFs for X and Y

For our case, *Y* is discrete... But this can be handled by using <u>delta functions</u> in a PDF being used to describe a discrete RV

<u>Ex</u>. Let RV *Y* take on discrete values of 1 & 2 with a prob. function P(Y=1) = 1/4 and P(Y=2) = 3/4

Big Picture Result for Cont. *X* & Disc. *Y*

We use I(X;Y) = h(X) - h(X/Y) as the theoretical minimum rate needed to convey the info that *Y* holds about *X*.

