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Ch. 8 Math Preliminaries for 
Lossy Coding

8.4 Info Theory Revisited



2

Again – just as for the lossless case – Info Theory provides:
• Basis for Algorithms   &     Bounds on Performance

Info Theory Goals for Lossy Coding 

The Info Theory Goal for Lossy:  Given a probabilistic model for 
a class of signals, determine the best possible Rate-Distortion 
curve

• Want D(R)  vs. R   (“Info Theory R-D” rather than “Operational R-D”)
Want the lower bound

Recall from our Figure of Compression Processing:
• original signal x[n] takes values on continuum
• recovered signal y[n] takes discrete values 

Raises Questions:
1. How much information is in x[n]?
2. How much of the info in x[n] is conveyed by y[n]

Another way of asking #2 is:  If I know y[n], how much uncertainty remains 
about the signal x[n]?

Recall: Info - Uncertainty
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Discrete-Discrete (D-D) Results
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Q#1 is made hard because x[n] takes values on a continuum – as 
we’ll see later.  Let’s sidestep this by first answering Q#2 for the 
case when

x[n] and y[n] both take discrete values
… but values from different sets

Example: Let the original signal values be x[n] ∈ {0, 1, 2, … , 15}
Let the “compressed” signal be y[n] ∈ {0, 2, 4, … , 14}

where the mapping is 

Discrete-Discrete - Motivation 

[ ] 0 [ ] 0 1
[ ] 2 [ ] 2 3
[ ] 4 [ ] 4 5

.

y n if x n or
y n if x n or
y n if x n or
Etc

= =
= =
= =

If x[n] is IID & equally likely then H(X) = 4 bits
… and it is easy to verify that H(Y) = 3 bits
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This concept allows one to answer the following: 
• If I know y[n], how much uncertainty (i.e., unknown info) remains 

about x[n]?

• For our example: Once I know y[n], I know that x[n] is one of only 
two (equally likely) values…

• Thus, by “inspection”: H(X|Y) = –½log2(½) –½log2(½) = 1 bit

• Note: H(X) – H(Y) = 4 – 3 = 1 bit, also! 
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Define Cond. Info of input symbol xi… given output symbol yj as:
Conditional Entropy (D-D): H(X|Y)

2( | ) log ( | )i j i ji x y P x y= −

Now, to assess the source as a whole – on average – we average 
over all possible xi & yj:

1 1

2
0 0

( | ) ( , ) log ( | )
N M

i j i j
i j

H X Y P x y P x y
− −

= =

⎡ ⎤= − ⎣ ⎦∑∑

Need joint Prob. to avg. 
over all possible pairs

Captures 
Cond.  Info

Using P(xi,yj) = P(xi|yj) P(yj) gives
1 1

2
0 0

( | ) ( | ) ( ) log ( | )
N M

i j j i j
i j

H X Y P x y P y P x y
− −

= =

⎡ ⎤= − ⎣ ⎦∑∑

Conditional Entropy of Source Alphabet X given Reconstruction 
Alphabet Y (and the rule that maps X to Y)
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H(X|Y)  =  Avg. Uncertainty on X given Y

=   On Avg. how much info about X is NOT conveyed by Y

Clearly… H(X|Y)  ≤ H(X)
Knowing Y can “help” but can’t “hurt”!

Ex. 8.4.2 in the textbook computes H(X|Y) for our example above 
and shows that H(X|Y) = 1… consistent with what we showed.
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Now we answer Q#2: How much info about X is conveyed by Y (on 
average)?

Define “Avg. Mutual Info”:  I(X;Y)

It is obvious that:  

Avg Mutual Information of X & Y (D-D)

( ; ) ( ) ( | )I X Y H X H X Y= −

Total Info that 
could be conveyed

Amount of Info 
that isn’t conveyed

Amount of Info Y
conveys about X

The uncertainty left 
unresolved about X

I(X;Y) is the theoretical minimum rate we need to use 
to specify the information that Y carries about X

Can show that: ( ; ) ( ; )I X Y I Y X=
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Continuous-Discrete (C-D) Results
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All of the above was pretty simple – but it was for the case where 
both y[n] and x[n] has discrete values!

When x[n] takes values on a continuum none of this works!  WHY?

Intro to Continuous-Discrete Results

Consider the interval [0,1] with the #’s occurring according to the 
uniform PDF..

If we want to represent every # in this interval using binary, how many 
bits do we need for each #?

Similarly,                   i(x[n]) = –log2P(x[n]) Probability, not PDF!

The prob. of cont. RV taking 
any specific value is zero!

i(x[n]) = ∞ if  x[n] is on a continuum! 

If we can’t get i(x[n])… we can’t get H(X)

… and we can’t get H(X|Y)

… and we can’t get I(X;Y)
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Development of Info of Cont. RV
What do we do??!!!   “Limits” to the rescue!!!!

Divide up the continuum into cells of width Δ… (Yes… we 
are going to 
let Δ→0 !)Cells: [( 1) , )i i− Δ Δ

For each cell,
( 1)

[( 1) , ) . .

( ) ( )

i
i

X i X
i

x i i s t

f x f x dx
Δ

− Δ

∃ ∈ − Δ Δ

Δ = ∫
This is a probability

PDF

Define discrete RV Xd that takes on the values xi with prob. function
( ) ( )d i X iP X x f x= = Δ

The entropy of Xd is then [ ]
1

2
0

( ) ( ) log ( )
N

d i i
i

H X P x P x
−

=

= −∑
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Now (in some sense) 
0

lim ( )dH X
Δ→

should give the entropy of the cont. RV X

It is easy to show (see pp. 205-206 if you must!):

[ ]2 20 0 0
lim ( ) lim ( ) log ( ) limlogd X i X i

i

H X f x f x
∞

Δ→ Δ→ Δ→
=−∞

⎡ ⎤ ⎡ ⎤= − Δ − Δ⎢ ⎥ ⎣ ⎦⎣ ⎦
∑

= –∞
2( ) log ( )X Xf x f x dx

∞

−∞

− ∫

( )h XΔ=Called “Differential
Entropy” of X

Causes Entropy of X
to be infinite

Applying this reasoning to any cont. RV always gives that pesky lim log2Δ!!!

But… each RV will have an h(X) that characterizes it!!!
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Ex.: Differential Info of Gaussian X
What is the diff Info h(X) if X is a Gaussian RV?

(Let the variance be σ2 and the mean be μ)
2

22

1 ( )( ) exp
22

X
xf x μ
σπσ

⎡ ⎤−
= −⎢ ⎥

⎣ ⎦

Using this in equation for h(X) and using properties of log & exp gives:

2
2

1( ) log 2
2

h X eπ σ⎡ ⎤= ⎣ ⎦
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Can show that:      For any RV X w/ variance σ2

2
2

1( ) log 2
2

h X eπ σ⎡ ⎤≤ ⎣ ⎦

That is, the Gaussian has maximum differential entropy!!
Recall Discrete Case: Equally Probable RV gave the max Entropy

Cont. RV results in Info Theory are often derived for the 
Gaussian case because:

1. Math is easier than for other RVs.

2. Provides an upper bound on h(X) for all other cases.
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Thus, in general problems of info theory…

h(X) plays the role of H(X) with pretty much the same ideas!!!

But for us it is even more straight-forward… What we are really
interested in is I(X;Y) when X is a cont. RV…

Avg Mutual Info for Cont. Case

So… applying the limiting argument directly:

( ; ) ( ) ( | )d d d d dI X Y H X H X Y= −

We have found this Need to get  this

Can show:

| 2 | 2( | ) ( | ) ( ) log ( | ) logX Y i j Y j X Y i j
i j

H X Y f x y f y f x y
∞ ∞

=−∞ =−∞

⎡ ⎤⎡ ⎤= − ΔΔ − Δ⎣ ⎦⎣ ⎦∑ ∑

Note: Both terms in I(Xd;Yd) have the pesky –log2Δ term…
so they cancel BEFORE the limit!!!
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Ex.  Let RV Y take on discrete values of 1 & 2 with a prob. 
function   P(Y=1) = 1/4   and P(Y=2) = 3/4 

So… we only have the differential parts left:

( ; ) ( ) ( | )I X Y h X h X Y= −

where | 2 |( | ) ( | ) ( ) log ( | )X Y Y X Yh X Y f x y f y f x y dxdy
∞ ∞

−∞ −∞

⎡ ⎤= − ⎣ ⎦∫ ∫

Note that this is for X and Y both continuous RVs… and the result uses PDFs
for X and Y

For our case, Y is discrete… But this can be handled by using delta functions
in a PDF being used to describe a discrete RV

1/4

3/4

1 2 y

P(Y=y)

1/4

3/4

1 2 y

fY(y) Indicates 
Area of Delta

1 3( ) ( 1) ( 2)
4 4Yf y y yδ δ= − + −
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Big Picture Result for Cont. X & Disc. Y
We use I(X;Y) = h(X) – h(X|Y) as the theoretical minimum 

rate needed to convey the info that Y holds about X.

( ; ) ( ) ( | )I X Y h X h X Y= −

Total Diff. Info that 
could be conveyed

Diff. Info that isn’t
conveyed

Amount of Info Y
conveys about X

The uncertainty left 
unresolved about X


