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Ch. 8 Math Preliminaries for 
Lossy Coding
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Overview of Lossy Coding Slight variation on 
Fig 8.1 in textbook:

• Source signal shown is function of time t
– Speech, Music, Etc.

• Source signal could be function of space x,y
– Images

• … Or could be a function of space & time
– Video

Sometimes compare x(t) to y(t)

Nowadays generally focus on 
comparing x[n] to y[n] 
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• Make y[n] (result of compressing then decompressing) as close to 
the original signal x[n]

• While using the smallest possible # of bits to represent xc[n]
• We’ll need probabilistic models for the signals x(t) (or x[n]) and 

y(t) (or y[n])
• Model as random processes that take values over a continuum

– x(t) and y(t) are CT random processes
– x[n] and y[n] are DT random processes  

General Goal of Lossy Compression 

Need a Prob. Density 
Function (PDF)
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• Just as an RV is viewed as a collection of values that occur with a 
specified probability….

• A random process is viewed as a collection of functions that occur 
with specified probability.
– The collection is called the “Ensemble”
– Each function in the collection is called a “Realization”

Random Processes: Collection of Functions

Realization #1

Realization #2

Realization #3
t1 t2 tn

t

t

t

1( , )x t ξ

2( , )x t ξ

3( , )x t ξ
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• At each time, say ti, the RP is an RV Xi = x(ti,ξ)
• In general, Xi is a continuous RV so we need a PDF
• In general, this PDF depends on time ti: fX(x,t)   1st Order PDF
• To give some complete probabilistic characterization of an RP we

need joint PDFs fX(x1, x1, … , xn,t1, t1, … , tn)   nth Order PDF

Random Processes: Sequence of RVs

Realization #1

Realization #2

Realization #3
t1 t2 tn

t

t

t

1( , )x t ξ

2( , )x t ξ

3( , )x t ξ

X1 X2 Xn
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• We will limit ourselves to WSS processes and will only make use 
of the 1st order PDF and the autocorrelation function (ACF)
– Or equivalently, the Power Spectral Density (PSD)

• The ACF is E{x(t)x(t+τ)} and in general depends on both t & τ
– But for WSS the ACF depends only the τ: R(τ) = E{x(t)x(t+τ)}

Wide Sense Stationary (WSS) Processes

RX(τ) = 

Positive value if  

Negative value if

Near Zero if 

x(t) & x(t+ τ) are highly likely to have the same sign

Product x(t)x(t+ τ) is ≈ equally likely pos. or neg.

x(t) & x(t+ τ) are highly likely to have opposite signs

• A WSS process must have these two properties
– Its ACF depends only on τ
– Its mean is constant

• RX(0) = E{x2(t)} = constant
• Variance = Power:   σ2 = E{[x(t) – Meanx]2}
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Four Realizations of x(t) Four Realizations of y(t)

t

t

t

t
t1 t2= t1+τo

τo

t

t

t

t
t1 t2= t1+τo

τo

Ry (t1, t1+τ)

RX (t1, t1+τ)

τ

τo

Note: Both x(t) and y(t) 
have the same 1st Order 
PDF… Yet they have 
VERY different ACFs
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Ex. #1: D-T White Noise
Let x[k] be a sequence of RV’s where…

each RV x[k] in the sequence is 
uncorrelated with all the others:

E{ x[k] x[m] } = 0        for k≠m

Physically, uncorrelated means that knowing x[k] provides 
no insight into what value x[m] (for m≠k) will be likely to 
take (roll a die; the value you get provides no insight into 
what you expect to get on any future roll)

This DEFINES a DT White Noise
Also called “Uncorrelated Process”
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Ex. #1: D-T White Noise
TASK : We have a model…. Find the mean, ACF, and 
check if WSS (also find variance of process) 

MEAN of Process :

ACF:

E { x[k] } = 0    CONSTANT
By definition !

RX(k1,k2)=E { x[k1] . x[k2] }

By our definition of white noise, 
….this is 0 if k1≠ k2
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Ex. #1: D-T White Noise
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ACF for DT White RP
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Ex. #1: D-T White Noise
ACF displays lack of correlation between any pair 
of any time instants: 

Now since we have constant mean and ACF 
depends only on m = k2-k1 ⇒ WSS

RX[m] = σ²δ[m]

m

σ²

-3 -2 -1 1 2 3

……
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Ex. #1: D-T White Noise
Variance

2

22

]0[
]0[

σ

σ

=

=

−=

x

xx

R
xR

=0

For this case:
Variance of the Process = Variance of the RV
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Ex. #2: Filtered D-T RP
Start with White RP x[k] in previous example

Recall : Zero Mean Process
RX [m] = σ² δ[m]
⇒ WSS

x[k] D-T Filter
h[n] = [1 1]

y[k] = x[k] + x [k-1]

Two–Tap FIR filter
Taps = [1 1]
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Ex. #2: Filtered D-T RP
TASK:  Is y[k] WSS?

⇒ need to find mean & ACF

MEAN: Using filter output expressions gives 

{ } { }
{ } { }]1[][

]1[][][
−+=

−+=
kxEkxE

kxkxEkyE

⇒ E {y[k]} = 0
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Ex. #2: Filtered D-T RP
ACF :
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Plug in Eq. 
for output
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Ex. #2: Filtered D-T RP

⇒ RY(m) = σ²[2δ[m] + δ[m-1] + δ[m+1] 

( )
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ACF for 2-Tap Filtered White RP

y[k] is WSS
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Ex. #2: Filtered D-T RP

Note : Filter introduces correlation between adjacent 
samples - but still no correlation for samples 2 or more 
samples apart (for this filter)

Ry[m] 

m

2σ²

-3 -2 -1 1 2 3

…… σ²
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Big Picture: Filtered RP
Filters can be used to change the correlation structure of a
RP:

x[k] D-T Filter
h[n] = [1 1]

y[k] = x[k] + x [k-1]

0 50 100 150 200 250 300

0

White Noise 

-20 -10 0 10 20

0

0.5

1

ACF Rx[m] of Input Input RP (One Sample Function)

km
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0

-20 -10 0 10 20

0
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1

ACF Ry[m] of Output Output RP (One Sample Function)

km
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Big Picture: Filtered RP (cont)

km
-20 -10 0 10 20 0 50 100 150 200 250 300

0

Filter: ones(1,15)

0

0.5

1

ACF Ry[m] of Output Output RP (One Sample Function)
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Filter: [1 1 1 1]

-20 -10 0 10 20

0

0.5

1

ACF Ry[m] of Output Output RP (One Sample Function)
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ACF Ry[m] of Output Output RP (One Sample Function)
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Filtered RPs: Insight

Narrow ACF   Rapid Fluctuations
Broad ACF    Slow Fluctuations

Our study of the ACFs of filtered random processes 
and the degree of “smoothness” of the sample 
functions shows the following general result:
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Power Spectral Density of a 
Random Process

For a random Process: each realization (sample
function) of process x(t) has different FT and 
therefore a different PSD.

We again rely on averaging to give the “Expected”
PSD or “Average” PSD…

But… Usually just call it “PSD”.
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Define PSD for WSS RP
We define PSD of WSS process x(t) to be :

This definition isn’t very useful for analysis 
so we seek an alternative form

The Wiener-Khinchine Theorem provides 
this alternative!!!
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<Compare this to PSD for Deterministic Signal>
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Weiner- Khinchine 
Theorem

Let x(t) be a WSS process w/ ACF RX(τ) and w/
PSD SX(ω) as defined in (       )… Then RX(τ) and 
SX(ω) form a FT pair :  

SX(ω) = F{ RX(τ) }

or Equivalently

RX(τ) ↔ SX(ω)



24/40

Computing Power from PSD
From it’s name – Power Spectral Density – we 
know  what to expect :

∫
∞

∞−

= ωω
π

dSP xx )(
2
1

∫
∞

∞−
=

π
ωω

2
)( dSP xx )(ωxS

Watts Hz [ Watts / Hz ]
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PSD for DT Processes

SX(Ω) = DTFT { RX[m] }

Periodic in Ω with period 2π

ΩΩ= ∫
−

dSP xx

π

ππ
)(

2
1

Not much changes – mostly, just use DTFT 
instead of CTFT!!

Need only look at -π ≤ Ω < π
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Big Picture of PSD & ACF
i.e. High 
Frequencies 
have Large
power 
contentProcess exhibits 

Rapid fluctuations

Narrow ACF           Broad PSD

Less Correlated
Sample-to-sample

i.e. High 
Frequencies
have Small
power 
contentProcess exhibits 

Slow fluctuations

Broad ACF           Narrow PSD

More Correlated
Sample-to-sample

<<See “Big Picture: Filtered RP” back a few Charts >>
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White Noise
The term “White Noise” refers to a WSS process 
whose PSD is flat over all frequencies

C-T  White Noise

ω

SX(ω)

Convention to 
use this form 
(i.e. w/ 
division by 2)

White Noise 
Has Broadest 
Possible PSD

N /2

ωω ∀=
2

)( N
XS
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C-T White Noise

NOTE : C-T white noise has infinite Power :

Can’t really exist in practice but still a very
useful Model for Analysis of Practical Scenarios

∫
∞

∞−

∞→ωd2/N
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C-T White Noise
Q : what is the ACF of C-T white Noise ?
A: Take the IFT of the flat PSD : 

{ }

)(

2/)( 1

τδ

τ

2
N

N

=

ℑ= −
xR

x(t1) & x(t2) are uncorrelated
for any t1 ≠ t2

Delta function !
Narrowest ACFRX(τ)

Area = N /2
τ

PX = RX(0) = N /2δ(0) → ∞
Infinite Power.. It Checks!

Also….
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D-T White Noise
PSD is:
SX(Ω) = N /2 ∀ Ω

…but focus on Ω∈[-π,π] 

ACF is:
RX[m] = IDTFT {N /2 }

= N /2 δ [m] 

Delta sequence

x[k1] & x[k2] are uncorrelated for any k1 ≠ k2

Ω

SX(Ω)

-π π

N /2 Broadest 
Possible PSD

Narrowest 
ACF

m

RX[m]

-3 1-2 -1 2 3

N /2
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D-T White Noise

Note:

D-T White Noise has Finite Power
(unlike C-T White Noise)

222
1

2
]0[

NN

N

=Ω=
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∫
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π
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RP

x
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Example #2 of PSD
Example 2: “FILTERED D-T RANDOM PROCESS”

< See Also: “Filtered RPs” back a few charts > 

D-T Filterx [k]

Zero mean           ⇒ RX[m] = σ2δ[m] (Input ACF)  
White noise 

⇒ SX(Ω) = σ² ∀Ω (Input PSD)

y[k] = x[k] + x [k +1]

SX(Ω)

Ω

σ²
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Example #3 of PSD
For this case we showed earlier that for this filter 
output the ACF is : 

RY[m] = σ² { 2δ[m] + δ[m-1] + δ[m+1] }

So the Output PSD is:

SY(Ω) = σ² [2 + e-jΩ + e-jΩ]

= 2σ² [cos (Ω) + 1]

Use the result for 
DTFT of δ[m] and 
also time-shift 
property

= 2 cos (Ω)  By Euler
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Example #3 of PSD

General Idea…Filter Shapes Input PSD:
Here it suppresses High Frequency power

-2π -π 2ππ

Sy(Ω)

Ω

4σ²
Replicas Replicas

SY(Ω) = 2σ² [cos (Ω) + 1]

Remember: Limit View to [-π,π]
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RPs Through LTI Systems
We already saw that passing DT white noise 
through a FIR filter reshapes the ACF and PSD. 

Here we learn the General Theory:
(extremely useful for Modeling Practical RP’s)

h(t)x(t) y(t)

Input RP
WSS w/

Rx(τ)
Sx(ω)

LTI System 
Impulse Response h(t)
Frequency Response H(ω) = F{h(t)}

Output RP
What does it look like?
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RPs & LTI Systems: Results
To describe output RP y(t) we look at its: 

(i) Mean
(ii) ACF and 
(iii)PSD  

(i) Mean: 

Comment: Means are viewed as the DC Value of a RP –
it makes sense that the Filter’s DC Response, H(0), 
transfers “input-DC” to “output-DC”

E{y(t)} = H(0)E {x(t)}  

Results First (Proof Later)
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RPs & LTI Systems: Results

(ii)  ACF: Ry(τ) = h(τ)*h(-τ)*Rx(τ)Ry(τ) = h(τ)*h(-τ)*Rx(τ)

Comments: 
(1) Implicit in this is “WSS into LTI gives WSS out”

(2) The “second-order” dependence on h(.) comes from 
the ACF being a “second-order” characteristic

(3) ACF is a time-domain characteristic so it makes 
sense that convolution is involved. 
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RPs & LTI Systems: Results

(iii)  PSD:

Comments: (1) Again, 2nd-order dependence on H(ω) 
comes from PSD being a 2nd-order 
characteristic 

(2) PSD is a Frequency-domain characteristic
so it makes sense that the frequency 
response H(ω) is involved.  

)()()( 2 ωωω xy SHS =
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Ex: Filtered White Noise
Earlier we looked at figures showing how five different 
(but similar) filters impact the output ACF. 
Recall that in those examples the input was D-T white noise
⇒RX[m]=σ²δ[m]. Thus the output ACF’s are just the 
convolution:    σ²h[m]*h[-m].

The filters in the previous case all had rectangular impulse 
responses, which when convolved like this 
give the triangular ACF’s shown in the previous figures.

Note also: rectangular FIR filters are low-pass filters whose
cut-off frequency gets lower as the filter length increases.  
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Ex: Filtered White Noise
Thus , Since 

PSD’s of processes that are outputs of longer 
rectangle filters have narrower PSD’s

)()()( 2 ΩΩ=Ω xy SHS

= N /2 for White Noise

Wide ACF

Narrow ACF

Narrow PSD

Broad PSD

Process has slow
fluctuations

Process has fast
Fluctuations
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Linear System Models for RPs: ARMA, AR, MA)
From the result we just saw that relates output PSD to input PSD
for a linear, time-invariant system:

h[n]ε[n] x[n]

Input RP
WSS w/ Sε(ω) LTI System 

Impulse Response h(t)
Frequency Response H(ω) = F{h(t)}

Output RP
WSS w/ Sx(ω)

)()()( 2 ωωω εSHSx =

If the input ε[n] is white with power σ2 then: 22)()( σωω HSx =

Then… Shape of output PSD is completely set by H(ω)!!!

Signal 
Being 

Modeled
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RP Models via Parametric Models
Thus, under this model… knowing the LTI system’s transfer 
function (or frequency response) tells everything about the PSD.

The transfer function of an LTI system is completely determined 
by a set of parameters {bk} and {ak}:

If (…if, if , if!!!) we can assure ourselves that the random 
processes we are to process can be modeled as the output of a LTI 
system driven by white noise, then…. We can characterize the RP 
by the model parameters
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Parametric PSD Models
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The most general parametric PSD model is then:
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Model Parameters

The output of the LTI system gives a time-domain model for the 
process:
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There are three special cases that are considered for these models:
• Autoregressive (AR)
• Moving Average (MA)
• Autoregressive Moving Average (ARMA)
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Autoregressive Moving Average (ARMA)
If the LTI system’s model is allowed to have Poles & Zeros, then:
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Order of the model is p,q : called ARMA(p,q) model

Poles & Zeros 
Give Rise to PSD 
Spikes & Nulls
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Moving Average (MA) PSD Models
If the LTI system’s model is constrained to have only zeros, then:
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Output is an “average” of 
values inside a moving window

Order of the model is q: called MA(q) model
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TF has only Zeros 

Zeros Give Rise to 
PSD Nulls 
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Autoregressive (AR) PSD Models
If the LTI system’s model is constrained to have only poles, then:
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Output depends 
“regressively” on itself

Order of the model is p: called AR(p) model
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TF has only Poles 

Poles Give Rise to 
PSD Spikes 

Since x[n] depends only its past p values 
it is a pth order Markov Model  
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For an AR(1) process the defining time-domain model is
Ex. First-Order AR Model

1[ ] [ 1] [ ]x n a x n nε= − +

Conditionally-
Deterministic Part

Random Part

n – 1 n

Suppose a1 = 0.9

x[n–1]
0.9x[n–1]

PDF of  ε[n]…
centered at 0.9x[n-1]

ACF:
2

12
1

( )
1

kR k a
a
εσ⎡ ⎤

= ⎢ ⎥−⎣ ⎦
Exponential… at each step the correlation 
is reduced by a factor of a1
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Linear Prediction & AR
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If we re-arrange this output equation we get:
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= Prediction  of x[n] 
based on p past values

Prediction  
Error

Recall the AR model structure:
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Exploting Linear Prediction for Compression
There are lots of applications where linear prediction is used:

• Data Compression • Target Tracking
• Noise Cancellation • Etc.

As we will see later, the prediction is easier to compress for two reasons

1. It has had its “context dependence” removed

2. It is limited to a smaller dynamic range


