Ch. 4 Arithmetic Coding

Motivation - What are Problems w/ Huffman

1. Can be inefficient (i.e., large redundancy)

- This can be "solved" through Block Huffman
- But... \# of codewords grows exponentially

See Example 4.2.1: $H_{1}(S)=0.335$ bits/symbol
But using Huffman we get avg length $=1.05$ bits/symbol
Would need block size of $8 \rightarrow 6561$-symbol alphabet to get close to H_{1}
2. High-Order Models (Non-IID) Hard to Address

- Can be solved through Block Huffman
- But \# of codewords increases exponentially
\rightarrow Underlying difficulty: Huffman requires keeping track of codewords for all possible blocks
\rightarrow We need a way to assign a codeword to a particular sequence w/o having to generate codes for all possible sequences

Main Idea of Arithmetic Coding

- The mapping depends on the prob. of the symbols
- You don't need to a priori determine all possible mappings
- The Mapping is "built" as each new symbol arrives

Recall CDF of an RV: symbols $\left\{a_{1}, a_{2}, a_{3}\right\} \rightarrow \mathrm{RV} X$ w/ values: $\{1,2,3\}$ Consider $P(X=1)=0.7 \quad P(X=2)=0.1 \quad P(X=1)=0.2$

Example: "Vowellish" (from Numerical Recipes Book)

Symbols	Probabilities	Optimal \# Bits $\log 2(1 / \mathrm{Pi})$
a	0.12	3.06
e	0.42	1.25
I	0.09	3.47
o	0.3	1.74
u	0.07	3.84

To send "iou": Send any \# C such that $0.37630 \leq \mathrm{C}<0.37819$

Using Binary Fraction of

$$
0.011000001 \quad \text { (9 bits) }
$$

9 bits for Arithmetic VS
10 bits for Huffman
As each symbol is processed find new $\left\{\begin{array}{l}\text { upper limit } \\ \text { lower limit }\end{array}\right\}$ for interval

Math Result Needed to Program

Consider a sequence of RVs $\mathrm{X}=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ corresponding to the sequence of symbols $\left(S_{1}, S_{2}, S_{3}, \ldots, S_{n}\right)$

Ex. $\begin{array}{rll}\text { Alphabet }=\left\{a_{1}, a_{2}, a_{3}\right\} & \rightarrow & \text { RV Values }\{1,2,3\} \\ \left(S_{1} S_{2} S_{3} S_{4}\right)=\left(a_{2} a_{3} a_{3} a_{1}\right) & \rightarrow & \left(x_{1} x_{2} x_{3} x_{4}\right)=(2331)\end{array}$

Initial Values: $\quad l^{(0)}=0 \quad u^{(0)}=1$

Interval Update: $\begin{aligned} & l^{(n)}=l^{(n-1)}+\left[u^{(n-1)}-l^{(n-1)}\right] \\ & u^{(n)}=l^{(n-1)}+\left[u^{(n-1)}-l^{(n-1)}\right] \\ & \underbrace{F_{X}\left(x_{n}-1\right)}_{\text {From Prev Interval }} \\ & F_{X}\left(x_{n}\right)\end{aligned}$

Checking Some Characteristics of Update

- What is the smallest $l^{(n)}$ can be?

$$
l^{(n)}=l^{(n-1)}+\underbrace{\left[u^{(n-1)}-l^{(n-1)}\right]}_{>0} \underbrace{F_{X}\left(x_{n}-1\right)}_{\geq 0} \square l^{(n)} \geq l^{(n-1)}
$$

- What is the largest $u^{(n)}$ can be?

$$
\begin{aligned}
& u^{(n)}=l^{(n-1)}+\left[u^{(n-1)}-l^{(n-1)}\right] \underbrace{F_{X}\left(x_{n}\right)}_{\leq 1} \\
& \leq l^{\left(n^{\prime}-1\right)}+\left[u^{(n-1)}-l^{\left(n^{\prime}-1\right)}\right] \\
&!
\end{aligned}
$$

$$
u^{(n)} \leq u^{(n-1)}
$$

These imply an important requirement for decoding:
New Interval \subseteq Old Interval

Example of Applying the Interval Update

Symbols $\left\{a_{1}, a_{2}, a_{3}\right\} \rightarrow \mathrm{RV} X \mathrm{w} /$ values: $\{1,2,3\}$
Consider $P(X=1)=0.7 \quad P(X=2)=0.1 \quad P(X=1)=0.2$

CDF for this

Consider the sequence $\left(a_{1} a_{3} a_{2}\right) \rightarrow\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$
To process the first symbol " 1 "

$$
\begin{aligned}
& l^{(1)}=l^{(0)}+\left[u^{(0)}-l^{(0)}\right] F_{X}(1-1)=0+[1-0] \times 0=0 \\
& u^{(1)}=l^{(0)}+\left[u^{(0)}-l^{(0)}\right] F_{X}(1)=0+[1-0] \times 0.7=0.7
\end{aligned}
$$

To process the $2^{\text {nd }}$ symbol " 3 "

$$
\begin{aligned}
& l^{(2)}=l^{(1)}+\left[u^{(1)}-l^{(1)}\right] F_{X}(3-1)=0+[0.7-0] \times 0.8=0.56 \\
& u^{(2)}=l^{(1)}+\left[u^{(1)}-l^{(1)}\right] F_{X}(3)=0+[0.7-0] \times 1=0.7 \\
& F_{X}(3)
\end{aligned}
$$

To process the 3 rd symbol " 2 "
1010101000
$l^{(3)}=l^{(2)}+\left[u^{(2)}-l^{(2)}\right] F_{X}(2-1)=0.56+[0.7-0.56] \times 0.7=0.658$
$u^{(3)}=l^{(2)}+\left[u^{(2)}-l^{(2)}\right] F_{X}(2)=0.56+[0.7-0.56] \times 0.8=0.672$
$F_{X}(2)$
So... send a number in the interval $[0.658,0.672)$ Pick 0.6640625

$$
0.6640625_{10}=0.1010101_{2} \quad \text { Code }=1010101
$$

Decoding Received Code = 1010101

Decoding Continued: Received Code = 1010101

Decoding Continued: Received Code = 1010101

$$
\begin{aligned}
& 10101 \rightarrow\left\{\begin{array}{l}
0.1010111 \ldots=0.6875 \\
0.1010100 \ldots=0.65625
\end{array}\right. \\
& \begin{array}{l}
\left.0.672 \longrightarrow \text { 土 }_{0.658}^{\longrightarrow}\right\} \\
\begin{array}{l}
0.7 \\
\text { Can't Decode }
\end{array} \\
{[0.65625,0.6875) \ldots}
\end{array}
\end{aligned}
$$

$$
101010 \rightarrow\left\{\begin{array}{l}
0.10101011 \ldots=0.671875 \\
0.10101000 \ldots=0.65625
\end{array}\right.
$$

$$
1010101 \rightarrow\left\{\begin{array}{l}
0.1010101111 \ldots=0.671875 \\
0.1010101000 \ldots=0.6640625
\end{array}\right.
$$

In practice there are ways to handle termination issues!

Main Results on Uniqueness \& Efficiency

1. A "binary tag" lying between $l^{(n)}$ and $u^{(n)}$ can be found
2. The tag can be truncated to a finite $\#$ of bits
3. The truncated tag still lies between $l^{(n)}$ and $u^{(n)}$
4. The truncated tag is Unique \& Decodable
5. For IID sequence of length m :

Compared to Huffman:
$H(S) \leq \bar{I}_{\text {Arith }}<H(S)+\frac{2}{m}$
$H(S) \leq \bar{I}_{\text {Huff }}<H(S)+\frac{1}{m}$

Hey! AC is worse than Huffman??!! So why consider AC???!!!
Remember, this is for coding the entire length of \boldsymbol{m} symbols... You'd need 2^{m} codewords in Huffman... which is impractical! But for AC is VERY practical!!!

For Huffman must be kept small but for AC it can be VERY large!

How AC Overcomes Huffman's Problems

1. Efficiency: Huffman can only achieve close to $H(S)$ by using large block codes... which means you need a pre-designed codebook of exponentially growing size

- AC enables coding large blocks w/o having to know codewords a priori
- w/ AC you just generate the code for the entire given sequence
- No a priori codebook is needed

2. Higher-Order Models: Huffman can use Cond. Prob.

Models... but you need to build an a priori codebook for each context... which means a large codebook

- Context coding via conditional probabilities is easy in AC
- For each context you have a prob model for the symbols
- Next "slicing of the interval" is done using prob model for the currently observed context... no need to generate all the a priori codewords!

Ex.: $1^{\text {st }}$ Order Cond. Prob Models for AC

Suppose you have three symbols and you have a $1^{\text {st }}$ order conditional probability model for the source emitting these symbols...

For the first symbol in the sequence you have a std Prob Model
For subsequent symbols in the sequence you have 3 context models

$P\left(a_{1}\right)=0.2$	
$P\left(a_{2}\right)=0.4$	
$P\left(a_{3}\right)=0.4$	
$\sum_{i} P\left(a_{i}\right)=1$	$\left.\begin{array}{l}P\left(a_{1} \mid a_{1}\right)=0.1 \\ P\left(a_{2} \mid a_{1}\right)=0.5 \\ \hline \sum_{i} P\left(a_{i} \mid a_{1}\right)=1 \\ \hline\end{array} a_{1}\right)=0.4$

$P\left(a_{1} \mid a_{2}\right)=0.95$
$P\left(a_{2} \mid a_{2}\right)=0.01$
$P\left(a_{3} \mid a_{2}\right)=0.04$
$\sum_{i} P\left(a_{i} \mid a_{2}\right)=1$

$P\left(a_{1} \mid a_{3}\right)=0.45$
$P\left(a_{2} \mid a_{3}\right)=0.45$
$P\left(a_{3} \mid a_{3}\right)=0.1$
$\sum_{i} P\left(a_{i} \mid a_{3}\right)=1$

Now let's see how these are used to code the sequence $a_{2} a_{1} a_{3}$
Note: Decoder needs to know these models

Ex.: Similar for Adaptive Prob. Models

- Start with some a priori "prototype" prob model (could be cond.)
- Do coding with that for awhile as you observe the actual frequencies of occurrence of the symbols
- Use these observations to update the probability models to better model the ACTUAL source you have!!
- Can continue to adapt these models as more symbols are observed
- Enables tracking probabilities of source with changing probabilities
- Note: Because the decoder starts with the same prototype model and sees the same symbols the coder uses to adapt... it can automatically synchronize adaptation of its models to the coder!
- As long as there are no transmission errors!!!

