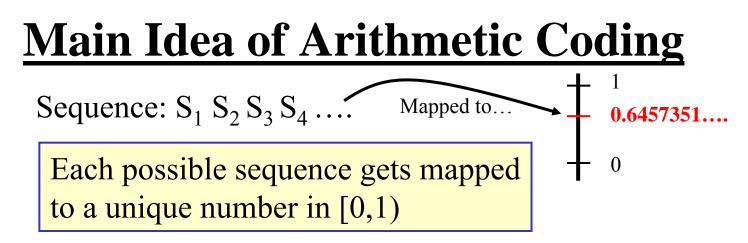
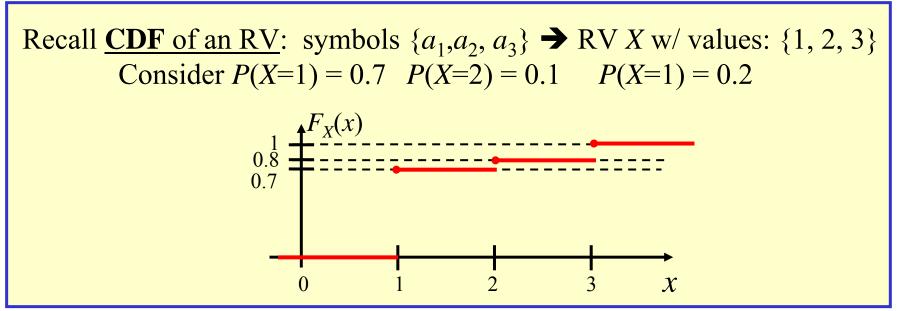
Ch. 4 Arithmetic Coding

Motivation – What are Problems w/ Huffman

- 1. Can be inefficient (i.e., large redundancy)
 - This can be "solved" through Block Huffman
 - But... # of codewords grows exponentially
 See Example 4.2.1: H₁(S) = 0.335 bits/symbol
 But using Huffman we get avg length = 1.05 bits/symbol
 Would need block size of 8 → 6561-symbol alphabet to get close to H₁
- 2. High-Order Models (Non-IID) Hard to Address
 - Can be solved through Block Huffman
 - But # of codewords increases exponentially
 - ➔ Underlying difficulty: Huffman requires keeping track of codewords <u>for all possible blocks</u>
 - ➔ We need a way to assign a codeword to a <u>particular sequence</u> w/o having to generate codes for all possible sequences



- The mapping depends on the prob. of the symbols
- You don't need to *a priori* determine all possible mappings
 - The Mapping is "built" as each new symbol arrives



Example: "Vowellish" (from Numerical Recipes Book)

Symbols	Probabilities	Optimal # Bits log2(1/Pi)
а	0.12	3.06
e	0.42	1.25
Ι	0.09	3.47
0	0.3	1.74
u	0.07	3.84

To send "iou": Send any # C such that $0.37630 \le C < 0.37819$

Using Binary Fraction of 0.011000001 (9 bits)

9 bits for Arithmetic

vs 10 bits for Huffman

1.0 0.46 0.4033 0.37819 0.9 0.45 0.3780 0.400.8 0.3778 0.44 0.7 -Ε Е Ε 0.3776 -Ε 0.395 0.43 0.6 -0.3774 -0.42 0.5 0.390 0.3772 -0.41 0.4 0.3770 -0.40 0.385 0.3 -0.3768 0 0 0.39 0 0.2 0.3766 0.380 -] 0.38 0.t 0.3764 υ U U υ 0.0 0.37 0.3763 0.37630

As each symbol is processed find new

lower limit for interval

Math Result Needed to Program

Consider a sequence of RVs $X = (x_1, x_2, x_3, ..., x_n)$ corresponding to the sequence of symbols $(S_1, S_2, S_3, ..., S_n)$

Ex. Alphabet =
$$\{a_1, a_2, a_3\}$$
 \rightarrow RV Values $\{1, 2, 3\}$
 $(S_1 S_2 S_3 S_4) = (a_2 a_3 a_3 a_1) \rightarrow (x_1 x_2 x_3 x_4) = (2 3 3 1)$

Initial Values:

$$u^{(0)} = 0$$
 $u^{(0)} = 1$

Interval Update:
$$l^{(n)} = l^{(n-1)} + \left[u^{(n-1)} - l^{(n-1)} \right] F_X(x_n - 1)$$
$$u^{(n)} = l^{(n-1)} + \left[u^{(n-1)} - l^{(n-1)} \right] F_X(x_n)$$
From Prev Interval From Prob Model

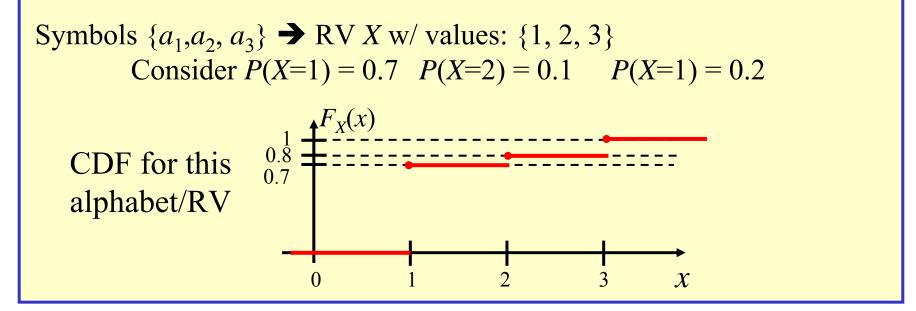
Checking Some Characteristics of Update

• What is the smallest $l^{(n)}$ can be?

• What is the largest $u^{(n)}$ can be?

These imply an important requirement for decoding: New Interval \subseteq Old Interval

Example of Applying the Interval Update



Consider the sequence $(a_1 a_3 a_2) \rightarrow (1 \ 3 \ 2)$

To process the first symbol "1" $l^{(1)} = l^{(0)} + \left[u^{(0)} - l^{(0)} \right] F_X(1-1) = 0 + [1-0] \times 0 = 0$ $u^{(1)} = l^{(0)} + \left[u^{(0)} - l^{(0)} \right] F_X(1) = 0 + [1-0] \times 0.7 = 0.7$ $F_X(1)$

To process the 2nd symbol "3"

$$F_{x}(2)$$

$$I^{(2)} = I^{(1)} + [u^{(1)} - I^{(1)}] F_{x} (3-1) = 0 + [0.7-0] \times 0.8 = 0.56$$

$$u^{(2)} = I^{(1)} + [u^{(1)} - I^{(1)}] F_{x} (3) = 0 + [0.7-0] \times 1 = 0.7$$

$$F_{x}(3)$$
To process the 3rd symbol "2"

$$I = 0.7$$

$$F_{x}(3)$$

$$F_{x}(3)$$

$$F_{x}(1)$$

$$I = 0.7$$

$$F_{x}(1)$$

$$F_{x}(1)$$

$$F_{x}(2)$$

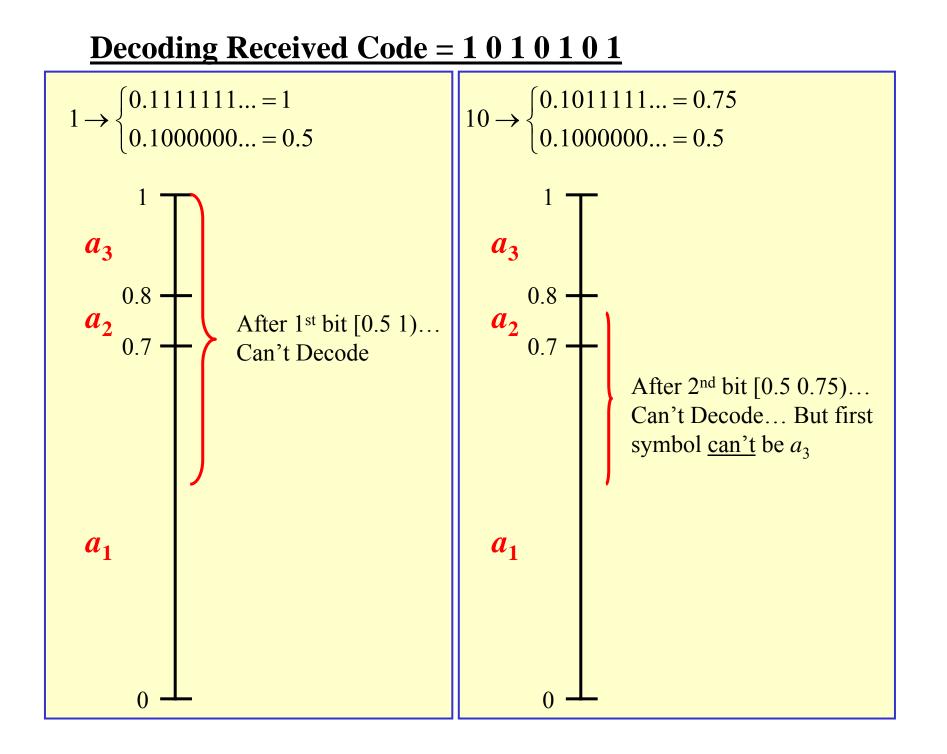
$$F_{x}(2) = 0.56 + [0.7-0.56] \times 0.7 = 0.658$$

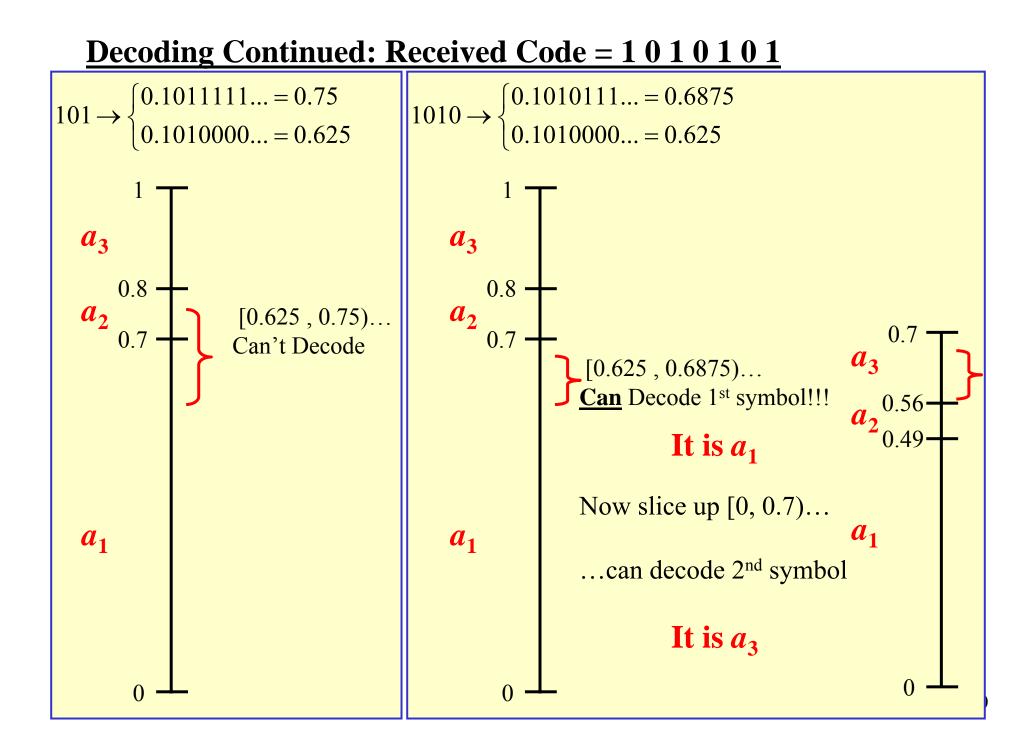
$$u^{(3)} = I^{(2)} + [u^{(2)} - I^{(2)}] F_{x} (2) = 0.56 + [0.7-0.56] \times 0.8 = 0.672$$

$$F_{x}(2)$$

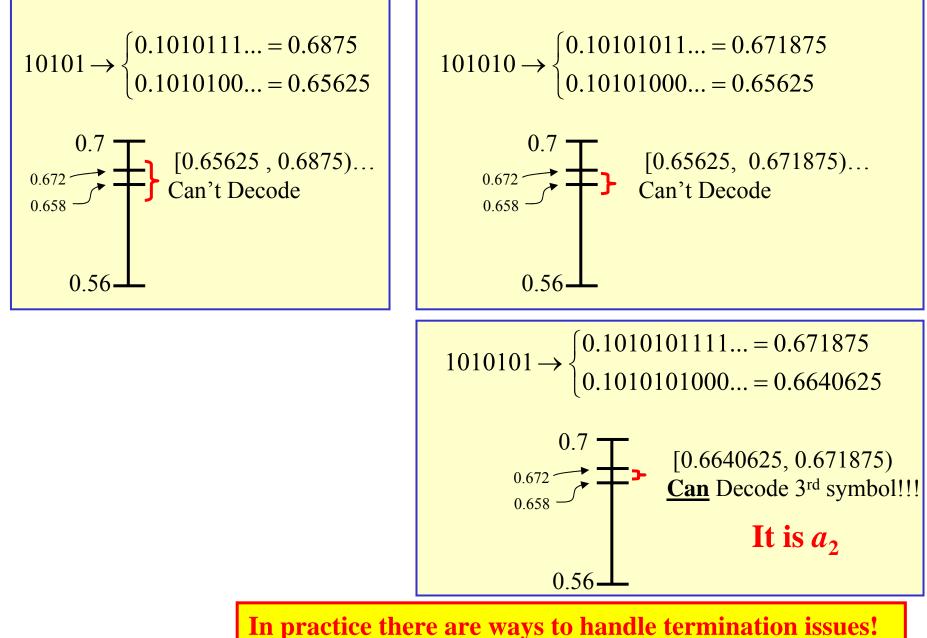
So... send a number in the interval [0.658,0.672) Pick 0.6640625

$$0.6640625_{10} = 0.1010101_2$$
 Code = 1 0 1 0 1 0 1





Decoding Continued: Received Code = 1010101



Main Results on Uniqueness & Efficiency

- 1. A "binary tag" lying between $l^{(n)}$ and $u^{(n)}$ can be found
- 2. The tag can be truncated to a finite # of bits
- 3. The truncated tag still lies between $l^{(n)}$ and $u^{(n)}$
- 4. The truncated tag is Unique & Decodable
- 5. For IID sequence of length *m*:

Compared to Huffman:

$$H(S) \le \overline{l}_{Arith} < H(S) + \frac{2}{m}$$
$$H(S) \le \overline{l}_{Huff} < H(S) + \frac{1}{m}$$

Hey! AC is worse than Huffman??!! So why consider AC???!!! Remember, this is for coding the entire length of *m* symbols... You'd need 2^m codewords in Huffman... which is impractical! But for AC is VERY practical!!!

For Huffman must be kept small but for AC it can be VERY large!

How AC Overcomes Huffman's Problems

- 1. <u>Efficiency</u>: Huffman can only achieve close to H(S) by using large block codes... which means you need a pre-designed codebook of exponentially growing size
 - AC enables coding large blocks w/o having to know codewords *a priori*
 - w/ AC you just generate the code for the entire given sequence
 - No *a priori* codebook is needed
- 2. <u>Higher-Order Models</u>: Huffman <u>can</u> use <u>Cond</u>. Prob. Models... <u>but</u> you need to build an *a priori* codebook for each context... which means a large codebook
 - Context coding via conditional probabilities is easy in AC
 - For each context you have a prob model for the symbols
 - Next "slicing of the interval" is done using prob model for the currently observed context... no need to generate all the *a priori* codewords!

Ex.: 1st Order Cond. Prob Models for AC

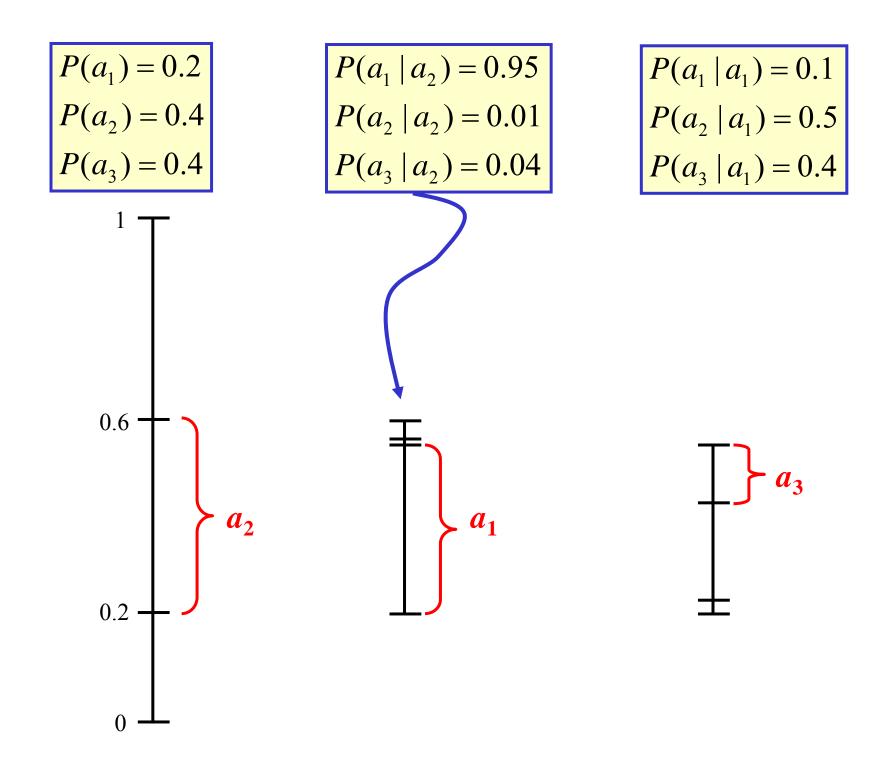
Suppose you have three symbols and you have a 1st order conditional probability model for the source emitting these symbols...

For the first symbol in the sequence you have a std Prob Model

For subsequent symbols in the sequence you have 3 context models

$P(a_1) = 0.2$	$P(a_1 \mid a_1) = 0.1$	$P(a_1 a_2) = 0.95$ $P(a_2 a_2) = 0.01$ $P(a_3 a_2) = 0.04$	$P(a_1 \mid a_3) = 0.45$
$P(a_2) = 0.4$	$P(a_2 \mid a_1) = 0.5$	$P(a_2 \mid a_2) = 0.01$	$P(a_2 \mid a_3) = 0.45$
$P(a_3) = 0.4$	$P(a_3 \mid a_1) = 0.4$	$P(a_3 \mid a_2) = 0.04$	$P(a_3 \mid a_3) = 0.1$
		$\overline{\sum_{i} P(a_i \mid a_2) = 1}$	

Now let's see how these are used to code the sequence $a_2 a_1 a_3$ Note: Decoder needs to know these models



Ex.: Similar for Adaptive Prob. Models

- Start with some *a priori* "prototype" prob model (could be cond.)
- Do coding with that for awhile as you observe the actual frequencies of occurrence of the symbols
 - Use these observations to update the probability models to better model the <u>ACTUAL</u> source you have!!
- Can continue to adapt these models as more symbols are observed
 - Enables tracking probabilities of source with changing probabilities
- Note: Because the decoder starts with the same prototype model and sees the same symbols the coder uses to adapt... it can automatically synchronize adaptation of its models to the coder!
 - As long as there are no transmission errors!!!