
1

Ch. 3 Huffman Coding

2

Two Requirements for Optimum Prefix Codes
1. Likely Symbols → Short Codewords

Unlikely Symbols → Long Codewords
<Recall Entropy Discussion>

2. The two least likely symbols have codewords of the
same length

Why #2???

Suppose two least likely symbols have different lengths:

ai

aj

φ

φ

Symbols Codewords

Unique due to prefix prop.

Can remove and still have prefix
code… and a lower avg code length

3

Additional Huffman Requirement
The two least likely symbols have codewords that differ only in the

last bit

These three requirements lead to a simple way of building a binary
tree describing an optimum prefix code - THE Huffman Code

• Build it from bottom up, starting w/ the two least likely symbols

• The external nodes correspond to the symbols

• The internal nodes correspond to “super symbols” in a
“reduced” alphabet

4

1. Label each node w/ one of the source symbol probabilities
2. Merge the nodes labeled by the two smallest probabilities into a parent node
3. Label the parent node w/ the sum of the two children’s probabilities

• This parent node is now considered to be a “super symbol” (it replaces its two
children symbols) in a reduced alphabet

4. Among the elements in reduced alphabet, merge two with smallest probs.
• If there is more than one such pair, choose the pair that has the “lowest order

super symbol” (this assure the minimum variance Huffman Code – see book)
5. Label the parent node w/ the sum of the two children probabilities.
6. Repeat steps 4 & 5 until only a single super symbol remains

Huffman Design Steps

5

Example of Huffman Design Steps
1. Label each node w/ one of the source symbol probabilities
2. Merge the nodes labeled by the two smallest probabilities into a parent node
3. Label the parent node w/ the sum of the two children’s probabilities
4. Among the elements in reduced alphabet, merge two with smallest probs.
5. Label the parent node w/ the sum of the two children probabilities.
6. Repeat steps 4 & 5 until only a single super symbol remains

0.40

0.01

0.04

0.05

0.10

0.10

0.15

0.15

0.05 1

20.1

30.2

40.35

50.25

60.6

7
0
1

0
1

0
1

0
1

0
1

0
1

0
1 11111

11110

1110

1011

1010

110

100

0

6

Performance of Huffman Codes
Skip the details, State the results

How close to entropy H(S) can Huffman get?

Result #1: If all symbol probabilities are powers of two then 1()l H S=

Info of each symbol is
an integer # of bits

Result #2: 1 1

1

() () 1

()

H S l H S

l H S

≤ < +

−
��	�

= Redundancy

Result #3: Refined Upper Bound 1 max

1 max

() , 0.5
() 0.086, 0.5

max

max

H S P P
l

H S P P
+ <⎧

< ⎨ + + ≥⎩

Note: Large alphabets tend to have small Pmax Huffman Bound Better

Small alphabets tend to have large Pmax Huffman Bound Worse

7

Applications of Huffman Codes
Lossless Image Compression Examples

Directly: 1.14 ≤ CR ≤ 1.67
Differences: 1.66 ≤ CR ≤ 2.03

Not That
Great!

Text Compression Example
Applied to Ch. 3: CR = 1.63

Not That
Great!

Lossless Audio Compression Examples
Directly: 1.16 ≤ CR ≤ 1.3
Differences: 1.47 ≤ CR ≤ 1.65

Not That
Great!

So… why have we looked at something so bad???
– Provides good intro to compression ideas
– Historical result & context
– Huffman is often used as building block in more advanced methods

• Group 3 FAX (Lossless)
• JPEG Image (Lossy)
• Etc…

8

• Useful when Huffman not effective due to large Pmax

• Example: IID Source w/ P(a1) = 0.8 P(a2) = 0.02 P(a3) = 0.18
• Book shows that Huffman gives 47% more bits than the entropy!!
• Block codes allow better performance

– Because they allow noninteger # bits/symbol

• Note: assuming IID… means that no context can be exploited
– If source is not IID we can do better by exploiting context model

• Group into n-symbol blocks
– map between original alphabet & a new “extended” alphabet

Block Huffman Codes (or “Extended” Huffman Codes)

{ }1 2 1 1 1 1 1 2

 times

 elements in new alphabet

, , () , (), , ()

n

m m m m

n

m

a a a a a a a a a a a a
⎧ ⎫⎪ ⎪→ ⎨ ⎬
⎪ ⎪⎩ ⎭

… " " " "��	�

���������	��������

Need mn codewords… use Huffman procedure on probs of blocks

Block probs determined using IID: () () () (), ,i j p i j pP a a a P a P a P a=… "

9

• Let S(n) denote the block source (with the scalar source IID)
R(n) denote the rate of the block Huffman code (bits/block)
H(S(n)) be the entropy of the block source

• Then, using bounds discussed earlier

• Now, how is H(S(n)) related to H(S)?
– See p. 53 of 3rd edition, which uses independence & properties of log
– After much math manipulation we get

Performance of Block Huffman Codes

() () ()() () 1n n nH S R H S≤ < +

bits per n symbols
R = R(n)/n # bits/symbol

() ()() () 1n nH S H SR
n n n

≤ < +

()() ()nH S nH S=
Makes Sense: - Each symbol in block gives H(S) bits of info

- Indep. no “shared” info between sequence
- Info is additive for Indep. Seq. ()() () () ()

()

nH S H S H S H S
nH S

= + + +
=

"

10

• As blocks get larger, Rate approaches H(S)
• Thus, longer blocks lead to the “Holy Grail” of

compressing down to the entropy…
BUT… # of codewords grows Exponentially: mn

Final Result for Huffman Block Codes w/ IID Source
1() ()H S R H S
n

≤ < +
n = 1 is case of “ordinary”
single symbol Huffman
case we looked at earlier

H(S) H(S) + 1H(S) + 1/2H(S)+1/4

…
H(S)+1/8

Impractical!!!

