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Ch. 3 Huffman Coding
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Two Requirements for Optimum Prefix Codes
1. Likely Symbols  → Short Codewords

Unlikely Symbols     → Long Codewords
<Recall Entropy Discussion>

2. The two least likely symbols have codewords of the 
same length 

Why #2???

Suppose two least likely symbols have different lengths:

ai

aj

φ

φ

Symbols Codewords

Unique due to prefix prop.

Can remove and still have prefix 
code… and a lower avg code length
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Additional Huffman Requirement
The two least likely symbols have codewords that differ only in the 

last bit

These three requirements lead to a simple way of building a binary 
tree describing an optimum prefix code - THE Huffman Code 

• Build it from bottom up, starting w/ the two least likely symbols

• The external nodes correspond to the symbols

• The internal nodes correspond to “super symbols” in a 
“reduced” alphabet
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1. Label each node w/ one of the source symbol probabilities
2. Merge the nodes labeled by the two smallest probabilities into a parent node
3. Label the parent node w/ the sum of the two children’s probabilities

• This parent node is now considered to be a “super symbol” (it replaces its two 
children symbols) in a reduced alphabet

4. Among the elements in reduced alphabet, merge two with smallest probs.
• If there is more than one such pair, choose the pair that has the “lowest order 

super symbol” (this assure the minimum variance Huffman Code – see book)
5. Label the parent node w/ the sum of the two children probabilities.
6. Repeat steps 4 & 5 until only a single super symbol remains

Huffman Design Steps
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Example of Huffman Design Steps
1. Label each node w/ one of the source symbol probabilities
2. Merge the nodes labeled by the two smallest probabilities into a parent node
3. Label the parent node w/ the sum of the two children’s probabilities
4. Among the elements in reduced alphabet, merge two with smallest probs.
5. Label the parent node w/ the sum of the two children probabilities.
6. Repeat steps 4 & 5 until only a single super symbol remains
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Performance of Huffman Codes
Skip the details, State the results

How close to entropy H(S) can Huffman get? 

Result #1: If all symbol probabilities are powers of two then 1( )l H S=

Info of each symbol is 
an integer # of bits

Result #2: 1 1
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Result #3: Refined Upper Bound 1 max
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Note: Large alphabets tend to have small Pmax Huffman Bound Better

Small alphabets tend to have large Pmax Huffman Bound Worse
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Applications of Huffman Codes
Lossless Image Compression Examples

Directly: 1.14  ≤ CR ≤ 1.67
Differences: 1.66  ≤ CR ≤ 2.03

Not That 
Great!

Text Compression Example
Applied to Ch. 3: CR =  1.63

Not That 
Great!

Lossless Audio Compression Examples
Directly: 1.16  ≤ CR ≤ 1.3
Differences: 1.47  ≤ CR ≤ 1.65

Not That 
Great!

So… why have we looked at something so bad???
– Provides good intro to compression ideas
– Historical result & context
– Huffman is often used as building block in more advanced methods

• Group 3 FAX (Lossless)
• JPEG Image (Lossy)
• Etc…
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• Useful when Huffman not effective due to large Pmax

• Example: IID Source w/  P(a1) = 0.8    P(a2) = 0.02    P(a3) = 0.18
• Book shows that Huffman gives 47% more bits than the entropy!!
• Block codes allow better performance

– Because they allow noninteger # bits/symbol

• Note: assuming IID… means that no context can be exploited
– If source is not IID we can do better by exploiting context model

• Group into n-symbol blocks  
– map between original alphabet &       a new “extended” alphabet

Block Huffman Codes (or “Extended” Huffman Codes)
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Need mn codewords… use Huffman procedure on probs of blocks

Block probs determined using IID: ( ) ( ) ( ) ( ), ,i j p i j pP a a a P a P a P a=… "
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• Let S(n) denote the block source (with the scalar source IID)
R(n) denote the rate of the block Huffman code (bits/block)
H(S(n)) be the entropy of the block source

• Then, using bounds discussed earlier

• Now, how is H(S(n)) related to H(S)?
– See p. 53 of 3rd edition, which uses independence & properties of log
– After much math manipulation we get

Performance of Block Huffman Codes

( ) ( ) ( )( ) ( ) 1n n nH S R H S≤ < +

# bits per n symbols 
R = R(n)/n # bits/symbol

( ) ( )( ) ( ) 1n nH S H SR
n n n

≤ < +

( )( ) ( )nH S nH S=
Makes Sense: - Each symbol in block gives H(S) bits of info

- Indep. no “shared” info between sequence
- Info is additive for Indep. Seq. ( )( ) ( ) ( ) ( )

( )
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• As blocks get larger, Rate approaches H(S)
• Thus, longer blocks lead to the “Holy Grail” of 

compressing down to the entropy…
BUT… # of codewords grows Exponentially: mn

Final Result for Huffman Block Codes w/ IID Source
1( ) ( )H S R H S
n

≤ < +
n = 1 is case of “ordinary”
single symbol Huffman 
case we looked at earlier

H(S) H(S) + 1H(S) + 1/2H(S)+1/4

…
H(S)+1/8

Impractical!!!


