Ch. 2 Math Preliminaries for
Lossless Compression

Section 2.4 Coding

Some General Considerations
Definition: An Instantaneous Code maps each symbol into a codeword

Notation: a; > ¢ (&)
Ex. 1:
a, > 0
For Ex. 1: ¢ (a;) =00
a —> 1
a; — 00
a, — 11
Ex. 2: This code has a tree structure:
a, > 0
a, > 10 o! 1
a, —» 110 o011
0|1
a, — 111 (W
4, A A 8

What characteristics must a code ¢ have?
Unambiguous (UA): For a; # a;, #a;) # #(a)
The codes in EX. 1 and Ex.2 each are UA

Is UA enough?? No! Consider Ex. 1 coding two different
source sequences:
dp dp & & A A

4 & 3 3 d; dp, a; 4 A, QA
U U S U

They each get coded to the bitstream:0 1 0 0 1 1
_'_l_'_l\ Y J \ Y J
a, &, a; 4,

Can’t unigquely decode this bit sequence!!

So... UA guarantees that can decode each symbol by itself
but not necessarily a stream of coded symbols!!

Define mapping of sequences under code ¢
D(a; &, a, a, ...q;)=0(a;) #(a,) #a;,) 4(a;,) ...4(a)
) Y NG _
~—
Concatenation of code words

Don’t want two sequences of symbols to map to the same bit stream:

@

>

Source Sequence Space Code Sequence Space

Leads to need for...
Uniquely Decodable (UD): Let S; & S; be two sequences from the

same source (not necessarily of the same length).
Then code ¢ is UD if the only way that ®(S;) = ®(S)) Is for S; = S;

Does UD = UA??? YESI!

UA Codes

UD Codes

Then UD Is enough??? YES!

But in practice it is helpful to restrict to a subset of UD codes
called “Prefix Codes”.

Prefix Code: A UD code in which no codeword may be the prefix

of another codeword.

EX. 2 above Is a prefix code:

EX. 2:
a, > 0 O! l
01
a; —»> 110 (W
a, — 111
a a a3 aq,

This code is not prefix

..........

Does Prefix = UD?7? YES!

UA Codes

UD Codes

Prefix Codes

Do we lose anything by restricting
to prefix codes?

No... as we’ll see later!

How do we compare various UD codes???
(i.e., What is our measure of performance?)

Average Code Length: Info theory says to use average code
length per symbol... For a source with symbols a,, a,, ... ayand a
code ¢ the average code Iength IS define by

1(¢) = Z P(a)n{¢(a)}

Prob. of a;
of bits in
codeword for a,

Optimum Code: The UD code with the smallest average code
length

Example: For P(a;) =% P(a,) =%
This source has a entropy of 1.75 bits

P(a,) = P(a,) = 1/8

Here are three possible codes and their average lengths:

better than H(S)!!

BUT... not usable
because it is Non-UD

)

Symbol UA Non-UD Code | Prefix Code | UD Non-Prefix | Info of symbol
(Ex. 1) (Ex. 2) (Ex. 3) -log,[P(a)]
a, 0 0 0 1
a, 1 10 01 2
as 00 110 011 3
a, 11 111 0111 3
Avg. Length: 1.25 bits 1.75 bits 1.875 bits H(S) = 1.75 bits
Length ‘

[Prefix Code gives smallest usable code!!]

Info Theory Says: Optimum Code is always a prefix code!!

UA Codes

UD Codes

Prefix Codes

The proof of this uses the Kraft-McMillan Inequality which
we’ll discuss next.

How do we find the optimum prefix code?

(Note: not just any prefix code will be optimum!)
We’ll discuss this later....

2.4.3 Kraft-McMillan Inequality

This result tells us that an optimal code can always be chosen to be
a prefix code!!! The Theorem has 2 parts....

Theorem Part #1: Let C be a code having N codewords... with
codeword lengths of 1, I, 15, ..., I

If C is uniquely decodable, then iz—'i <1
i=1

For notation: K(C)éiZ"i
i=1

Proof: Here is the main idea used in the proof...
If K(C) > 1, then [K(C)]" grows exponentially w.r.t. n

So... If we can show that [K(C)]" grows, say, no more than
linearly we have our proof. Thus we need to show that

[K(C)]' <an+p

\S—— Some constants

10

For arbitrary

e wer (5] [g 5

different
dummy

i=1 h=1 =1 .
variables!

I, =

} Note use of n

:%:%:.HyNzZ-(lil+|i2+---+|in) (*)

i=li,=1 i =1
Note that this exponent is nothing more than the length of a sequence of selected

codewords of code C... Let this be L(il, Iy, I3, ..., 1) and we can re-write (%) as
KO =3 yz) | L) | o L082) gy L)
h=1l1i,=1
The smallest L(i, I, i3, ..., 1) can be is n (when each codeword in the
sequence is 1 bit long)
The longest L(iy, I,, I3, ..., 1,) can be is nl where | is the longest codeword in C.
Sothen: [K(C)]" =2 -0t 27 tbb2) oLy o NN

A2+ AL2 O bt A2

[Ak:#times Liy, iy gy - i) = nJ

(% %) [[KOT -3 A2"

11

Remember that we are trying to establish this bound: [K(C)]n <an+p

we don’t need the A, values exactly... just need a good upper bound on them!

The “If” part of
the theorem!

Second: If our code is uniquely decodable, then each of these

can represent one and only one sequence of codewords

e .
ghere may “/whose total length = k bits
e some in k
the 2k that :> Ak < 2
\are not valid)

We can now use this bound in (* %) to get a bound on [K(C)]"

[K©C)] =i/§2k si&_ﬁ:nl -n+1

k=n =1

First: The # of k-bit binary sequences = 2k

Thus... [K(C)]" grows slower than exponentially

Hence... K(C)<1 <End of Proof>

12

Part #1 says: If code with lengths {l,, I,, ... I} is uniquely
decodable, then the lengths satisfy the inequality

Part #2 says: Given lengths {l, I,, ... I} that satisfy the inequality,
then we can always find a prefix code w/ these lengths

N
Theorem Part #2: Given integers {l,, |,, ... 1y} such that 22‘“ <1
=1
We can always find a prefix code with lengths {l, I,, ... I}

Proof: This is a “Proof by Construction”: we will show how to construct the
desired prefix code. “WLOG”.... Assume that |, <1, < ... < |

Define the numbers w,, w,, ..., wy using

w, =0

-1
w =27 j>1
i=1

Think of this in terms of a
binary representation (see next slide for an example)

13

Example of Creating the w,

5
=1 1,=3 1,=3 1,=5 I,=5 > 27" =0.8125<1

i=1

w, =) 2" =21 =4 =100,

w, =) 287 =271+ 2°° =5=101,

For j > 1, the binary representation of w; uses rlog2 Wﬂ bits

Easy to show (see textbook) that: “# bits inw;” < I, = [log, w; <1, forj>1

=1

N
[This is where we use that 22‘“ <1 }

Now use the binary reps of the w; to construct the prefix
codewords having lengths {I, I, ... , I}

/rlog2 Wﬂ =|; then set j™" codeword = binary w,

If
\rlogz Wﬂ <|; then set j™" codeword = [binary w; 0 ...0]
H_l
Append
So now we’ve constructed a code with the f’: 32?? oS
desired lengths... Is it a prefix code??? total bits

Show it is by using contradiction... Assume that it is NOT a
prefix code and show that it leads to something that
contradicts a known condition...

15

Suppose that the constructed code is not prefix... thus, for some j < k the
codeword C; is a prefix of codeword C,...

m) | (I, MSBsofw)=w,

B) | Right-Shift & Chop W, = W,

- 3] o

o]

There is always a

k1 “But” in a proof by
E_: iction!
i=1

So see if (*) contradicts this required condition:

Put this w, into (*) and show that something goes wrong

16

(%) mmp b :iz'i'i

o]

_Zz L2
%f—“gwjbyDefn |

k-1
=w 274 D20 > w; +1
i=j+1
Thus, | > W, +1>w,
2 k
\7 Integer Integer ‘ {Zlklj J e Wj +1
Must fall here
...which contradicts (%)
| st : :
w, o owtl So code is prefix!

<End of Proof>

Meaning of Kraft-McMillan Theorem

Question: So what do these two parts of the theorem tell us???
ANSWer: Shortest Avg. Length |

e We are looking for the optimal UD code.

e Once we find it we know its codeword lengths satisfy the
K-M inequality
— Part #1 of the theorem tells us that!!!

* Once we have such lengths (that satisfy the K-M ineq.) we
can construct a prefix code having those optimal lengths...

— This Is guaranteed by Part #2 of the theorem
— This gives us a prefix code that is optimal!!!

So... everytime we find the optimal code, If it isn’t already prefix
we can replace it with a prefix code that is just as optimal!

Can focus on finding optimal prefix codes... w/o worrying that
we could find a better code that is not prefix! 18

