Ch. 2 Math Preliminaries for Lossless Compression

1

Section 2.4 Coding

Some General Considerations

Definition: An Instantaneous Code maps each symbol into a codeword

<u>Ex. 1</u> :	$\begin{array}{rrrr} a_1 \rightarrow & 0 \\ a_2 \rightarrow & 1 \\ a_3 \rightarrow & 00 \\ a_4 \rightarrow & 11 \end{array}$	Notation: $a_i \rightarrow \phi(a_i)$ For Ex. 1: $\phi(a_3) = 00$
<u>Ex. 2</u> :	$\begin{array}{l} a_1 \rightarrow \ 0 \\ a_2 \rightarrow \ 10 \\ a_3 \rightarrow \ 110 \\ a_4 \rightarrow \ 111 \end{array}$	This code has a tree structure: $ \begin{array}{c c} 0 & 1 \\ \hline 0 &$

What characteristics must a code ϕ have?

<u>Unambiguous (UA)</u>: For $a_i \neq a_j$, $\phi(a_i) \neq \phi(a_j)$

The codes in Ex. 1 and Ex.2 each are UA

Is UA enough?? No! Consider Ex. 1 coding two different source sequences:

Can't <u>uniquely decode</u> this bit <u>sequence</u>!!

So... UA guarantees that can decode each symbol by itself but not necessarily a <u>stream</u> of coded symbols!!

Define mapping of <u>sequences</u> under code ϕ $\Phi(\underbrace{a_{i_1} a_{i_2} a_{i_3} a_{i_4} \dots a_{i_N}}_{S_i}) = \phi(a_{i_1}) \phi(a_{i_2}) \phi(a_{i_3}) \phi(a_{i_4}) \dots \phi(a_{i_N})$ Concatenation of code words

Don't want two sequences of symbols to map to the same bit stream:

Leads to need for...

<u>Uniquely Decodable (UD)</u>: Let $S_i \& S_j$ be two sequences from the same source (not necessarily of the same length).

Then code ϕ is UD if the only way that $\Phi(S_i) = \Phi(S_j)$ is for $S_i \neq S_j$

Does UD → UA??? YES!

UA Codes					
	UD Codes				

Then UD is enough??? YES!

But in practice it is helpful to restrict to a subset of UD codes called "<u>Prefix Codes</u>".

<u>Prefix Code</u>: A UD code in which no codeword may be the prefix of another codeword.

This code is not prefix

Does Prefix → UD??? YES!

Do we lose anything by restricting to prefix codes?

No... as we'll see later!

How do we compare various UD codes??? (i.e., What is our measure of performance?)

<u>Average Code Length</u>: Info theory says to use average code length per symbol... For a source with symbols $a_1, a_2, \ldots a_N$ and a code ϕ the average code length is define by

$$\overline{I}(\phi) = \sum_{i=1}^{N} P(a_i) n\{\phi(a_i)\}$$
Prob. of a_i
of bits in codeword for a_i

Optimum Code: The UD code with the smallest average code length

Example: For $P(a_1) = \frac{1}{2}$ $P(a_2) = \frac{1}{4}$ $P(a_3) = P(a_3) = \frac{1}{8}$ This source has a entropy of 1.75 bits

Here are three possible codes and their average lengths:

<u>Symbol</u>	UA Non-UD Code	Prefix Code	UD Non-Prefix	Info of symbol		
	(Ex. 1)	(Ex. 2)	(Ex. 3)	$-\log_2[\mathbf{P}(a_i)]$		
<i>a</i> ₁	0	0	0	1		
a ₂	1	10	01	2		
<i>a</i> ₃	00	110	011	3		
<i>a</i> ₄	11	111	0111	3		
Avg. Length:	1.25 bits	1.75 bits	1.875 bits	H(S) = 1.75 bits		
LengthLengthLengthlargerbetter than $H(S)$!!equals $H(S)$ than $H(S)$						
<u>BUT</u> not usable because it is <u>Non</u> -UD						
Prefix Code gives smallest usable code!!						

Info Theory Says: Optimum Code is <u>always</u> a prefix code!!

The proof of this uses the Kraft-McMillan Inequality which we'll discuss next.

How do we find the optimum prefix code? (Note: not just any prefix code will be optimum!) We'll discuss this later....

2.4.3 Kraft-McMillan Inequality

This result tells us that an optimal code can <u>always</u> be chosen to be a prefix code!!! The Theorem has 2 parts....

Theorem Part #1: Let C be a code having N codewords... with
codeword lengths of $l_1, l_2, l_3, ..., l_N$ If C is uniquely decodable, then $\sum_{i=1}^{N} 2^{-l_i} \le 1$

For notation: $K(C) \stackrel{\Delta}{=} \sum_{i=1}^{N} 2^{-l_i}$

<u>Proof</u>: Here is the main idea used in the proof...

If K(C) > 1, then $[K(C)]^n$ grows exponentially w.r.t. *n*

So... if we can show that $[K(C)]^n$ grows, say, no more than linearly we have our proof. Thus we need to show that

$$\left[K(C)\right]^n \le \alpha n + \beta$$
 Some constants

For arbitrary
integer *n*:
$$\begin{bmatrix} K(C) \end{bmatrix}^n = \begin{bmatrix} \sum_{i=1}^N 2^{-l_i} \end{bmatrix}^n = \begin{bmatrix} \sum_{i_1=1}^N 2^{-l_{i_1}} \end{bmatrix} \begin{bmatrix} \sum_{i_2=1}^N 2^{-l_{i_2}} \end{bmatrix} \cdots \begin{bmatrix} \sum_{i_n=1}^N 2^{-l_{i_n}} \end{bmatrix}$$
Note use of *n*
different
dummy
variables!
$$= \sum_{i_1=1}^N \sum_{i_2=1}^N \cdots \sum_{i_n=1}^N 2^{-(l_{i_1}+l_{i_2}+\dots+l_{i_n})}$$
(\bigstar)

Note that this exponent is nothing more than the length of a sequence of selected codewords of code C... Let this be $L(i_1, i_2, i_3, ..., i_n)$ and we can re-write (\bigstar) as

$$\left[K(C)\right]^{n} = \sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N} \cdots \sum_{i_{n}=1}^{N} 2^{-L(i_{1},i_{2},\cdots,i_{n})} = 2^{-L(1,1,\cdots,1)} + 2^{-L(1,1,\cdots,2)} + \cdots + 2^{-L(N,N,\cdots,N)}$$

The smallest $L(i_1, i_2, i_3, ..., i_n)$ can be is *n* (when each codeword in the sequence is 1 bit long)

The longest $L(i_1, i_2, i_3, ..., i_n)$ can be is *nl* where *l* is the longest codeword in *C*.

So then:
$$[K(C)]^n = 2^{-L(1,1,\dots,1)} + 2^{-L(1,1,\dots,2)} + \dots + 2^{-L(N,N,\dots,N)}$$

= $A_n 2^{-n} + A_{n+1} 2^{-(n+1)} + \dots + A_{nl} 2^{-(nl)}$
 $(\bigstar \bigstar) [K(C)]^n = \sum_{k=n}^{nl} A_k 2^{-k}$ $A_k = \# \text{ times } L(i_1, i_2, i_3, \dots, i_n) = n$

Remember that we are trying to establish this bound: $[K(C)]^n \le \alpha n + \beta$

we don't need the A_k values <u>exactly</u>... just need a <u>good</u> upper bound on them!

<u>First</u>: The # of *k*-bit binary sequences = 2^k

The "If" part of the theorem!

There may be some in the 2^k that are not valid

We can now use this bound in $(\star \star)$ to get a bound on $[K(C)]^n$:

$$\left[K(C)\right]^{n} = \sum_{k=n}^{nl} A_{k} 2^{-k} \le \sum_{k=n}^{nl} 2^{k} 2^{-k} = nl - n + 1$$

Thus... $[K(C)]^n$ grows slower than exponentially

Hence... $K(C) \le 1$ <End of Proof>

<u>Part #1 says</u>: If code with lengths $\{l_1, l_2, \dots, l_N\}$ is uniquely decodable, then the lengths satisfy the inequality

<u>Part #2 says</u>: Given lengths $\{l_1, l_2, \dots, l_N\}$ that satisfy the inequality, then we can always find a prefix code w/ these lengths

<u>Theorem Part #2</u>: Given integers $\{l_1, l_2, \dots, l_N\}$ such that $\sum_{i=1}^{N} 2^{-l_i} \le 1$

We can always find a <u>prefix</u> code with lengths $\{l_1, l_2, \dots, l_N\}$

<u>Proof</u>: This is a "Proof by Construction": we will show how to construct the desired prefix code. "WLOG".... Assume that $l_1 \le l_2 \le ... \le l_N$

Define the numbers $w_1, w_2, ..., w_N$ using

Think of this in terms of a binary representation (see next slide for an example)

Example of Creating the
$$w_j$$

 $l_1 = 1$ $l_2 = 3$ $l_3 = 3$ $l_4 = 5$ $l_5 = 5$ $\sum_{i=1}^{5} 2^{-l_i} = 0.8125 < 1$
 $w_1 = 0$
 $w_2 = \sum_{i=1}^{1} 2^{l_2 - l_i} = 2^{3-1} = 4 = 100_2$
 $w_3 = \sum_{i=1}^{2} 2^{l_3 - l_i} = 2^{3-1} + 2^{3-3} = 5 = 101_2$
 $w_4 = \sum_{i=1}^{3} 2^{l_4 - l_i} = 2^{5-1} + 2^{5-3} + 2^{5-3} = 24 = 11000_2$
 $w_5 = \sum_{i=1}^{4} 2^{l_5 - l_i} = 2^{5-1} + 2^{5-3} + 2^{5-3} = 25 = 11001_2$

For j > 1, the binary representation of w_j uses $\lceil \log_2 w_j \rceil$ bits

Easy to show (see textbook) that: "# bits in w_j " $\leq l_j \quad \Rightarrow \lceil \log_2 w_j \rceil \leq l_j$, for $j \geq 1$ This is where we use that $\sum_{i=1}^N 2^{-l_i} \leq 1$ Now use the binary reps of the w_j to construct the prefix codewords having lengths $\{l_1, l_2, \dots, l_N\}$

If $[\log_2 w_j] = l_j$ then set j^{th} codeword = binary w_j $[\log_2 w_j] < l_j$ then set j^{th} codeword = [binary $w_j 0 \dots 0$] Append So now we've constructed a code with the desired lengths... Is it a prefix code???

Show it is by using contradiction... Assume that it is NOT a prefix code and show that it leads to something that contradicts a known condition...

Suppose that the constructed code is <u>not</u> prefix... thus, for some j < k the codeword C_i is a prefix of codeword C_k ...

So see if (\bigstar) contradicts this required condition:

Put this w_k into (\star) and show that something goes wrong

$$\Rightarrow \left\lfloor \frac{w_k}{2^{l_k - l_j}} \right\rfloor \ge w_j + 1$$

...which contradicts (*)
So code is prefix!

Meaning of Kraft-McMillan Theorem

Question: So what do these two parts of the theorem tell us???Answer:Shortest Avg. Length

- We are looking for the optimal UD code.
- Once we find it we know its codeword lengths satisfy the K-M inequality
 - Part #1 of the theorem tells us that!!!
- Once we have such lengths (that satisfy the K-M ineq.) we can *construct* a prefix code having those <u>optimal</u> lengths...
 - This is guaranteed by Part #2 of the theorem
 - This gives us a prefix code that is optimal!!!

So... everytime we find the optimal code, if it isn't already prefix we can replace it with a prefix code that is just as optimal!

Can focus on finding optimal prefix codes... w/o worrying that we could find a better code that is not prefix!