Ch. 2 Math Preliminaries for Lossless Compression

Section 2.4 Coding

Some General Considerations

Definition: An Instantaneous Code maps each symbol into a codeword

Ex. 1:

$$
\begin{aligned}
& a_{1} \rightarrow 0 \\
& a_{2} \rightarrow 1 \\
& a_{3} \rightarrow 00 \\
& a_{4} \rightarrow 11
\end{aligned}
$$

Ex. 2:

$$
\begin{aligned}
& a_{1} \rightarrow 0 \\
& a_{2} \rightarrow 10 \\
& a_{3} \rightarrow 110 \\
& a_{4} \rightarrow 111
\end{aligned}
$$

This code has a tree structure:

What characteristics must a code ϕ have?

Unambiguous (UA): For $a_{i} \neq a_{j}, \phi\left(a_{i}\right) \neq \phi\left(a_{j}\right)$
The codes in Ex. 1 and Ex. 2 each are UA

Is UA enough?? No! Consider Ex. 1 coding two different source sequences:

$$
\begin{array}{lllll}
a_{1} & a_{2} & a_{1} & a_{1} & a_{2} \\
a_{1} & a_{2} & a_{3} & a_{4} &
\end{array}
$$

They each get coded to the bit stream: $\underbrace{\overbrace{0}}_{a_{1}} \underbrace{1}_{a_{2}} \underbrace{\overbrace{0}}_{a_{3}} \underbrace{1}_{a_{4}}$
Can't uniquely decode this bit sequence!!
So... UA guarantees that can decode each symbol by itself but not necessarily a stream of coded symbols!!

Define mapping of sequences under code ϕ

$$
\Phi(\underbrace{\left(a_{i_{1}} a_{i_{2}} a_{i_{3}} a_{i_{4}} \ldots a_{i_{N}}\right.}_{S_{i}})=\underbrace{\phi\left(a_{i_{1}}\right) \phi\left(a_{i_{2}}\right) \phi\left(a_{i_{3}}\right) \phi\left(a_{i_{4}}\right) \ldots \phi\left(a_{i_{N}}\right)}_{\text {Concatenation of code words }}
$$

Don't want two sequences of symbols to map to the same bit stream:

Leads to need for...
Uniquely Decodable (UD): Let $S_{i} \& S_{j}$ be two sequences from the same source (not necessarily of the same length).
Then code ϕ is UD if the only way that $\Phi\left(S_{i}\right)=\Phi\left(S_{j}\right)$ is for $S_{i} \neq S_{j}$

Does UD \rightarrow UA??? YES!

Then UD is enough??? YES!

But in practice it is helpful to restrict to a subset of UD codes called "Prefix Codes".

Prefix Code: A UD code in which no codeword may be the prefix of another codeword.

Ex. 2 above is a prefix code:

This code is not prefix

$$
\begin{aligned}
& \text { Ex. 3: } \\
& a_{1} \rightarrow 0 \\
& a_{2} \rightarrow 01 \\
& a_{3} \rightarrow 011 \\
& a_{4} \rightarrow 0111
\end{aligned}
$$

Do we lose anything by restricting to prefix codes?

No... as we'll see later!

How do we compare various UD codes???

(i.e., What is our measure of performance?)

Average Code Length: Info theory says to use average code length per symbol... For a source with symbols $a_{1}, a_{2}, \ldots a_{N}$ and a code ϕ the average code length is define by

Optimum Code: The UD code with the smallest average code length

Example: For $P\left(a_{1}\right)=1 / 2 \quad P\left(a_{2}\right)=1 / 4 \quad P\left(a_{3}\right)=P\left(a_{3}\right)=1 / 8$ This source has a entropy of 1.75 bits

Here are three possible codes and their average lengths:

Symbol	UA Non-UD Code (Ex. 1)	Prefix Code (Ex. 2)	UD Non-Prefix (Ex. 3)	$\begin{gathered} \text { Info of symbol } \\ -\log _{2}\left[\mathrm{P}\left(a_{i}\right)\right] \end{gathered}$
a_{1}	0	0	0	1
a_{2}	1	10	01	2
a_{3}	00	110	011	3
a_{4}	11	111	0111	3
Avg. Length:	1.25 bits	1.75 bits	1.875 bits	$H(S)=1.75$ bits

Prefix Code gives smallest usable code!!

Info Theory Says: Optimum Code is always a prefix code!!

The proof of this uses the Kraft-McMillan Inequality which we'll discuss next.

How do we find the optimum prefix code?
 (Note: not just any prefix code will be optimum!)

We'll discuss this later....

2.4.3 Kraft-McMillan Inequality

This result tells us that an optimal code can always be chosen to be a prefix code!!! The Theorem has 2 parts....

Theorem Part \#1: Let C be a code having N codewords... with codeword lengths of $l_{1}, l_{2}, l_{3}, \ldots, l_{N}$
If C is uniquely decodable, then $\sum_{i=1}^{N} 2^{-l_{i}} \leq 1$
For notation: $K(C)^{\triangleq} \sum_{i=1}^{N} 2^{-l_{i}}$
Proof: Here is the main idea used in the proof... If $K(C)>1$, then $[K(C)]^{n}$ grows exponentially w.r.t. n

So... if we can show that $[K(C)]^{n}$ grows, say, no more than linearly we have our proof. Thus we need to show that

$$
[K(C)]^{n} \leq \underbrace{\alpha n+\beta} \text { Some constants }
$$

For arbitrary integer n :

$$
\begin{aligned}
{[K(C)]^{n}=\left[\sum_{i=1}^{N} 2^{-l_{i}}\right]^{n} } & =\left[\sum_{i_{1}=1}^{N} 2^{-l_{i n}}\right]\left[\sum_{i_{i}=1}^{N} 2^{-l_{i}}\right] \cdots\left[\sum_{i_{n}=1}^{N} 2^{-l_{n}}\right] \\
& =\sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{N} \cdots \sum_{i_{n}=1}^{N} 2^{-\left(l_{i}+l_{2}+\cdots+l_{n}\right)}
\end{aligned}
$$

Note that this exponent is nothing more than the length of a sequence of selected codewords of code $C \ldots$ Let this be $L\left(i_{1}, i_{2}, i_{3}, \ldots, i_{n}\right)$ and we can re-write (\star) as

$$
[K(C)]^{n}=\sum_{i_{i}=1}^{N} \sum_{i} \cdots \cdots \sum_{i_{n}=1}^{N} 2^{-L\left(i_{1}, i_{2}, \cdots, i_{n}\right)}=2^{-L\left(1,1, \cdots, 1^{1}\right)}+2^{-L(1,1, \cdots, 2)}+\cdots+2^{-L(N, N, \cdots, N)}
$$

The smallest $L\left(i_{1}, i_{2}, i_{3}, \ldots, i_{n}\right)$ can be is n (when each codeword in the sequence is 1 bit long)

The longest $L\left(i_{1}, i_{2}, i_{3}, \ldots, i_{n}\right)$ can be is $n l$ where l is the longest codeword in C.
So then: $[K(C)]^{n}=2^{-L(1,1, \cdots, \cdots)}+2^{-L(1,1, \cdots, 2)}+\cdots+2^{-L(N, N, \cdots, N)}$

$$
=A_{n} 2^{-n}+A_{n+1} 2^{-(n+1)}+\cdots+A_{n l} 2^{-(n l)}
$$

$(\boldsymbol{\star} \boldsymbol{\star})[K(C)]^{n}=\sum_{k=n}^{n n} A_{k} 2^{-k}$

$$
A_{k}=\# \text { times } L\left(i_{1}, i_{2}, i_{3}, \ldots, i_{n}\right)=n
$$

Remember that we are trying to establish this bound:

$$
[K(C)]^{n} \leq \alpha n+\beta
$$

we don't need the A_{k} values exactly... just need a good upper bound on them!
First: The \# of k-bit binary sequences $=2^{k}$
The "If" part of the theorem!

Second: If our code is uniquely decodable, then each of these There may /whose total length $=k$ bits be some in the 2^{k} that can represent one and only one sequence of codewords are not valid

We can now use this bound in $\left(\star \star\right.$) to get a bound on $[K(C)]^{n}$:

$$
[K(C)]^{n}=\sum_{k=n}^{n l} A_{k} 2^{-k} \leq \sum_{k=n}^{n l} \underbrace{2^{k} 2^{-k}}_{=1}=n l-n+1
$$

Thus... $[K(C)]^{n}$ grows slower than exponentially
Hence... $K(C) \leq 1 \quad<$ End of Proof>

Part \#1 says: If code with lengths $\left\{l_{1}, l_{2}, \ldots l_{N}\right\}$ is uniquely decodable, then the lengths satisfy the inequality
Part \#2 says: Given lengths $\left\{l_{1}, l_{2}, \ldots l_{N}\right\}$ that satisfy the inequality, then we can always find a prefix code w/ these lengths
Theorem Part \#2: Given integers $\left\{l_{1}, l_{2}, \ldots l_{N}\right\}$ such that $\sum_{i=1}^{N} 2^{-l_{i}} \leq 1$
We can always find a prefix code with lengths $\left\{l_{1}, l_{2}, \ldots l_{N}\right\}$

Proof: This is a "Proof by Construction": we will show how to construct the desired prefix code. "WLOG".... Assume that $l_{1} \leq l_{2} \leq \ldots \leq l_{N}$
Define the numbers $w_{1}, w_{2}, \ldots, w_{N}$ using

$$
\underbrace{w_{1}=}_{\text {Think of this in terms of a }} \begin{gathered}
0 \\
w_{j}=\sum_{i=1}^{\sum_{\text {binary representation (see next slide for an example) }}^{j-1} 2^{l_{j}-l_{i}}}, \quad j>1 \\
\hline
\end{gathered}
$$

> Example of Creating the w_{j}
> $l_{1}=1 \quad l_{2}=3 \quad l_{3}=3 \quad l_{4}=5 \quad l_{5}=5 \quad \sum_{i=1}^{5} 2^{-l_{i}}=0.8125<1$
> $w_{1}=0$
> $w_{2}=\sum_{i=1}^{1} 2^{l_{2}-l_{i}}=2^{3-1}=4=100_{2}$
> $w_{3}=\sum_{i=1}^{2} 2^{l_{3}-l_{i}}=2^{3-1}+2^{3-3}=5=101_{2}$
> $w_{4}=\sum_{i=1}^{3} 2^{l_{4}-l_{i}}=2^{5-1}+2^{5-3}+2^{5-3}=24=11000_{2}$
> $w_{5}=\sum_{i=1}^{4} 2^{l_{5}-l_{i}}=2^{5-1}+2^{5-3}+2^{5-3}+2^{5-5}=25=11001_{2}$

For $j>1$, the binary representation of w_{j} uses $\left\lceil\log _{2} w_{j}\right\rceil$ bits
Easy to show (see textbook) that: "\# bits in $w_{j}^{\prime "} \leq l_{j} \rightarrow\left\lceil\log _{2} w_{j}\right\rceil \leq l_{j}$, for $j \geq 1$

$$
\text { This is where we use that } \sum_{i=1}^{N} 2^{-l_{i}} \leq 1
$$

Now use the binary reps of the w_{j} to construct the prefix codewords having lengths $\left\{l_{1}, l_{2}, \ldots, l_{N}\right\}$

Show it is by using contradiction... Assume that it is NOT a prefix code and show that it leads to something that contradicts a known condition...

Suppose that the constructed code is not prefix... thus, for some $j<k$ the codeword C_{j} is a prefix of codeword $C_{k} \ldots$

So see if (\star) contradicts this required condition:
Put this w_{k} into (\star) and show that something goes wrong

$$
\begin{aligned}
(\star) \longmapsto \frac{W_{k}}{2^{l_{k}-l_{j}}} & =\sum_{i=1}^{k-1} 2^{l_{j}-l_{i}} \\
& =\underbrace{\sum_{i=1}^{j-1} 2^{l_{j}-l_{i}}}+\underbrace{}_{w_{j=j}^{k-1} 2^{l_{j}-l_{i}}} \underbrace{w_{j} \text { by Defn }} \\
& =w_{j}+2^{0}+\sum_{i=j+1}^{k-1} 2^{l_{j}-l_{i}} \geq w_{j}+1
\end{aligned}
$$

Meaning of Kraft-McMillan Theorem

Question: So what do these two parts of the theorem tell us???

Answer: Shortest Avg. Length

- We are looking for the optimal UD code.
- Once we find it we know its codeword lengths satisfy the K-M inequality
- Part \#1 of the theorem tells us that!!!
- Once we have such lengths (that satisfy the K-M ineq.) we can construct a prefix code having those optimal lengths...
- This is guaranteed by Part \#2 of the theorem
- This gives us a prefix code that is optimal!!!

So... everytime we find the optimal code, if it isn't already prefix we can replace it with a prefix code that is just as optimal!

Can focus on finding optimal prefix codes... w/o worrying that we could find a better code that is not prefix!

