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Ch. 2 Math Preliminaries for 
Lossless Compression 

Section 2.4 Coding
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Some General Considerations
Definition: An Instantaneous Code maps each symbol into a codeword

Ex. 1:
a1 → 0
a2 → 1
a3 → 00
a4 → 11

Ex. 2:
a1 → 0
a2 → 10
a3 → 110
a4 → 111

This code has a tree structure:

0 1

0 1
0 1

a1 a2 a3 a4

Notation: ai → φ (ai)

For Ex. 1: φ (a3) = 00
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What characteristics must a code φ have?
Unambiguous (UA):    For ai ≠ aj, φ(ai) ≠ φ(aj)

The codes in Ex. 1 and Ex.2 each are UA

Is UA enough?? No!  Consider Ex. 1 coding two different 
source sequences:

a1 a2 a1 a1 a2 a2
a1 a2 a3 a4

They each get coded to the bit stream: 0   1   0   0   1   1

a1 a2 a1 a1 a2 a2

a1 a2 a3 a4

Can’t uniquely decode this bit sequence!!
So… UA guarantees that can decode each symbol by itself 
but not necessarily a stream of coded symbols!!
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Define mapping of sequences under code φ
1 2 3 4 1 2 3 4

( ) ( ) ( ) ( ) ( ) ( )
N N

i

i i i i i i i i i i

S

a a a a a a a a a aφ φ φ φ φΦ =… …

Concatenation of code words

Don’t want two sequences of symbols to map to the same bit stream:

Source Sequence Space Code Sequence Space

Φ

Φ

Si

Sj

Leads to need for…
Uniquely Decodable (UD): Let Si & Sj be two sequences from the 
same source (not necessarily of the same length).
Then code φ is UD if the only way that Φ(Si) = Φ(Sj) is for Si ≠ Sj
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Does UD UA??? YES!

UA Codes

UD Codes

Then UD is enough??? YES!

But in practice it is helpful to restrict to a subset of UD codes 
called “Prefix Codes”.
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Prefix Code: A UD code in which no codeword may be the prefix 
of another codeword.

Ex. 2 above is a prefix code:
Ex. 2:
a1 → 0
a2 → 10
a3 → 110
a4 → 111

0 1

0 1
0 1

a1 a2 a3 a4

This code is not prefix
Ex. 3:
a1 → 0
a2 → 01
a3 → 011
a4 → 0111

Does Prefix UD??? YES!
UA Codes

UD Codes

Prefix Codes

Do we lose anything by restricting 
to prefix codes?

No… as we’ll see later! 



7

Average Code Length: Info theory says to use average code 
length per symbol… For a source with symbols a1, a2, … aN and a 
code φ the average code length is define by

How do we compare various UD codes???
(i.e., What is our measure of performance?)

1

( ) ( ) { ( )}
N

i i
i

l P a n aφ φ
=

= ∑

Prob. of ai
# of bits in 

codeword for ai

Optimum Code: The UD code with the smallest average code 
length
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Example: For P(a1) = ½ P(a2) = ¼ P(a3) = P(a3) = 1/8 
This source has a entropy of 1.75 bits  

Here are three possible codes and their average lengths:

H(S) = 1.75 bits1.875 bits1.75 bits1.25 bitsAvg. Length:

3011111111a4

301111000a3

201101a2

1000a1

Info of symbol
-log2[P(ai)]

UD Non-Prefix
(Ex. 3)

Prefix Code
(Ex. 2)

UA Non-UD Code
(Ex. 1)

Symbol

Length larger 
than H(S)

Length 
equals H(S)

Length 
better than H(S)!!

BUT… not usable 
because it is Non-UD

Prefix Code gives smallest usable code!!
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Info Theory Says: Optimum Code is always a prefix code!!
UA Codes

UD Codes

Prefix Codes

The proof of this uses the Kraft-McMillan Inequality which 
we’ll discuss next.

How do we find the optimum prefix code?
(Note: not just any prefix code will be optimum!)

We’ll discuss this later….
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2.4.3 Kraft-McMillan Inequality
This result tells us that an optimal code can always be chosen to be 
a prefix code!!!       The Theorem has 2 parts….

Theorem Part #1:  Let C be a code having N codewords… with 
codeword lengths of l1, l2, l3, …, lN

If C is uniquely decodable, then 
1

2 1i

N
l

i

−

=

≤∑

Proof: Here is the main idea used in the proof…
If K(C) > 1, then [K(C)]n grows exponentially w.r.t. n

So… if we can show that [K(C)]n grows, say, no more than 
linearly we have our proof.  Thus we need to show that

[ ]( ) nK C nα β≤ +

Some constants

1

( ) 2 i

N
l

i

K C Δ −

=

=∑For notation:
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For arbitrary 
integer n: [ ]

( )

1 2

1 2

1 2

1 2

1 1 1 1

1 1 1

( ) 2 2 2 2

2

ii ii n

n

i i in

n

nN N N N
n ll ll

i i i i

N N N
l l l

i i i

K C −− −−

= = = =

− + + +

= = =

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=

∑ ∑ ∑ ∑

∑∑ ∑

Note use of n
different
dummy 

variables!

( )
Note that this exponent is nothing more than the length of a sequence of selected 
codewords of code C… Let this be L(i1, i2, i3, …, in) and we can re-write ( ) as

The smallest L(i1, i2, i3, …, in) can be is n (when each codeword in the 
sequence is 1 bit long)

The longest L(i1, i2, i3, …, in) can be is nl where l is the longest codeword in C.

[ ] ( ) ( ) ( ) ( )1 2

1 2

, , , 1,1, ,1 1,1, ,2 , , ,

1 1 1

( ) 2 2 2 2n

n

N N N
n L i i i L L L N N N

i i i

K C − − − −

= = =

= = + + +∑∑ ∑

So then: [ ] ( ) ( ) ( )1,1, ,1 1,1, ,2 , , ,

( 1) ( )
1

( ) 2 2 2

2 2 2

n L L L N N N

n n nl
n n nl

K C

A A A

− − −

− − + −
+

= + + +

= + + +

Ak = # times L(i1, i2, i3, …, in) = n

( ) [ ]( ) 2
nl

n k
k

k n

K C A −

=

= ∑
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Remember that we are trying to establish this bound: [ ]( ) nK C nα β≤ +

we don’t need the Ak values exactly… just need a good upper bound on them!

First: The # of k-bit binary sequences =  2k

Second: If our code is uniquely decodable, then each of these 
can represent one and only one sequence of codewords
whose total length = k bits

The “If” part of 
the theorem!

There may 
be some in 
the 2k that 

are not valid 
2k

kA ≤

We can now use this bound in ( ) to get a bound on [K(C)]n:

[ ]
1

( ) 2 2 2 1
nl nl

n k k k
k

k n k n

K C A nl n− −

== =

= ≤ = − +∑ ∑

Thus… [K(C)]n grows slower than exponentially

Hence… K(C) ≤ 1      <End of Proof>
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Part #1 says: If code with lengths {l1, l2, … lN} is uniquely 
decodable, then the lengths satisfy the inequality

Theorem Part #2: Given integers {l1, l2, … lN} such that

We can always find a prefix code with lengths {l1, l2, … lN}
1

2 1i

N
l

i

−

=

≤∑

Part #2 says: Given lengths {l1, l2, … lN} that satisfy the inequality, 
then we can always find a prefix code w/ these lengths

Proof: This is a “Proof by Construction”: we will show how to construct the 
desired prefix code.          “WLOG”…. Assume that l1 ≤ l2 ≤ … ≤ lN

Define the numbers w1, w2, …, wN using

1
1

1

0

2 , 1j i
j

l l
j

i

w

w j
−

−

=

=

= >∑

Think of this in terms of a 
binary representation (see next slide for an example)
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2

3

4

5

5

1 2 3 4 5
1

1
1

3 1
2 2

1
2

3 1 3 3
3 2

1
3

5 1 5 3 5 3
4 2

1
4

5 1 5 3 5 3 5 5
5

1

1 3 3 5 5 2 0.8125 1

0

2 2 4 100

2 2 2 5 101

2 2 2 2 24 1100

Example of Creating the

2

 

0

2 2 2 2 2

i

i

i

i

i

l

i

l l

i

l l

i

l l

i

j

l l

i

l l l l l

w

w

w

w

w

w

−

=

− −

=

− − −

=

− − − −

=

− − − − −

=

= = = = = = <

=

= = = =

= = + = =

= = + + = =

= = + + + =

∑

∑

∑

∑

∑ 25 11001=

For j > 1, the binary representation of wj uses ⎡log2 wj⎤ bits

Easy to show (see textbook) that:  “# bits in wj” ≤ lj ⎡log2 wj⎤ ≤ lj, for j ≥ 1

This is where we use that 
1

2 1i

N
l

i

−

=

≤∑
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Now use the binary reps of the wj to construct the prefix 
codewords having lengths {l1, l2, … , lN} 

If

⎡log2 wj⎤ = lj then set jth codeword = binary wj

⎡log2 wj⎤ < lj then set jth codeword = [binary wj 0 …0]

Append 
enough 0’s 
to get lj
total bits

So now we’ve constructed a code with the 
desired lengths… Is it a prefix code???

Show it is by using contradiction… Assume that it is NOT a 
prefix code and show that it leads to something that 
contradicts a known condition…
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Suppose that the constructed code is not prefix… thus, for some j < k the 
codeword Cj is a prefix of codeword Ck…

(lj MSBs of wk) = wj

Right-Shift & Chop wk = wj

2 k j

k
jl l

w w−
⎢ ⎥ =⎢ ⎥⎣ ⎦

( )

But… by “design”:

There is always a 
“But” in a proof by 

contradiction!1

1

2 k i

k
l l

k
i

w
−

−

=

= ∑

So see if ( ) contradicts this required condition:  

Put this wk into ( ) and show that something goes wrong
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1

1

2
2

j i

k j

k
l lk

l l
i

w −
−

−
=

= ∑( )

1 1

1

2 2j i j i
j k

l l l l

i i j

− −
− −

= =

= +∑ ∑

1
0

1

2 2 j i
k

l l
j

i j

w
−

−

= +

= + + ∑

wj by Defn

1jw≥ +

Thus, 1
2 k j

k
j jl l

w w w− ≥ + >

Integer Integer

wj wj + 1

Must fall here

1
2 k j

k
jl l

w w−
⎢ ⎥ ≥ +⎢ ⎥⎣ ⎦

…which contradicts ( )

So code is prefix!

<End of Proof>
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Meaning of Kraft-McMillan Theorem
Question: So what do these two parts of the theorem tell us???
Answer:
• We are looking for the optimal UD code.
• Once we find it we know its codeword lengths satisfy the 

K-M inequality
– Part #1 of the theorem tells us that!!!

• Once we have such lengths (that satisfy the K-M ineq.) we 
can construct a prefix code having those optimal lengths…
– This is guaranteed by Part #2 of the theorem
– This gives us a prefix code that is optimal!!!

Shortest Avg. Length

So… everytime we find the optimal code, if it isn’t already prefix 
we can replace it with a prefix code that is just as optimal!

Can focus on finding optimal prefix codes… w/o worrying that 
we could find a better code that is not prefix!


