
1

Ch. 2 Math Preliminaries for
Lossless Compression

Section 2.2 Info Theory

Section 2.3 Models

2

• Gives Mathematical Foundation for Compression
– How do we mathematically describe how much

“information” is in “data”?
– How do we model information and data?

• Provides Theoretical Limits for Compression
– For a given type of data, what is the smallest number

of bits that can be used to represent it?
– What aspects of the data impact this lower bound?

• Motivates Practical Algorithms for Compression
– Theoretically, what aspects of data can we exploit?
– What kinds of processing is best?
– How close do the real-world algorithms come to the

theoretical limits

Motivation for Info Theory & Models

Next

3

Section 2.2
Information Theory

4

• Probability is involved…
– Rare events… convey large amounts of info
– Common events… convey small amounts of info

• Info is additive for independent events
– i(A and B) = i(A) + i(B)

Defining Information
Needed Characteristics:

Define Info of an Event A:

[]

2

2

1() log ()
()

log ()

i A bits
P A
P A

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
= −

It is easy to verify that this definition satisfies the
two “needed characteristics” above

Next

5

Each source symbol conveys some amount of info – generally,
not all symbols convey the same amount of info

Q: On average, how much info does a source put out per symbol
A: First consider a source S putting out a stream of symbols (i.e.,
RVs) that are Independent & Identically Distributed (iid)…
Assume source “alphabet” consists of symbol set {A1, A2, … , AN}
Recall that the info of the kth symbol is i(Ak) = –log2[P(Ak)]
Then… the source’s average info is just the average of the symbol
informations…

1

Source's Avg. Info { ()} () ()
N

i i i
i

E i A i A P A
=

= = ∑

[]2
1

() () log ()
N

i i
i

H S P A P A
=

= −∑ (bits/symbol)For iid source:

Entropy of the source = Avg. Info conveyed per symbol (in bits)

“Entropy
of Source”

Simplest Form of Avg. Info of a Source (Entropy)

Next

6

But… most real sources are NOT independent
(Recall: English text… prob. of next letter depends on current letter)

2 2
1 1

() (,) log (,)
N N

i j i j
i j

G S P A A P A A
= =

⎡ ⎤= − ⎣ ⎦∑∑ (bits/symbol-pair)

More General Form of Entropy of a Source

So… need to capture the (possibly infinite-order) dependence
between subsequent symbols emitted by a source

Define 2nd-Order Entropy… “Avg. Info/Pair of Symbols”

We’ll use an asymptotic (or limiting) approach…

3 2
1 1 1

() (, ,) log (, ,)
N N N

i j k i j k
i j k

G S P A A A P A A A
= = =

⎡ ⎤= − ⎣ ⎦∑∑∑ (bits/symbol-triple)

Define 3rd-Order Entropy… “Avg. Info/Triple of Symbols”

•
•
•

Etc. 4th, 5th, 6th, …
Next

7

Now… Need to convert each of these into a “per symbol” form:
1() ()n nH S G S
n

= (bits/symbol)Define:
As we increase n we

capture more and more of
the inter-symbol structure

In the limit we capture all the structure…
Define the Entropy of the Source S to be:

1() lim () lim ()n nn n
H S H S G S

n→∞ →∞
= = (bits/symbol)

(For General Source)

“nth-order Entropy”

Can verify that if the source is iid, then this general entropy
collapses to

[]2
1

() lim () () log ()
N

n i in i

H S H S P A P A
→∞

=

= = −∑
Same as we defined before for iid!

Next

8

Typical Behavior of General Form of Entropy

1 2 3 4 5 • • • n

Gn(S)

For non-independent source:
At first… goes up slower than linear
Later… Goes up linearly with slope of H(s)

nH(S)

1 2 3 4 5 • • • n

Hn(S) = Gn(S)/n

Asymptotically approaches
H(S) from above

H(S)

A decreasing “return”
as the order increases!

Next

9

Two Views of Entropy H(S)
• Expresses the Avg Info per symbol conveyed by source

– Although each symbol conveys a different amount of information,
H(S) gives the overall average amount

– Sources with the same number of symbols can have different
entopy values

• H(S) gives a Lower Bound on the average # of bits/symbol
needed to code the source
– This provides a measure of what the best level of compression we

can expect for a given source

Recall “Lossless Example to Motivate…”
If the source is assumed to be iid, with symbol probabilities of

P(A) = 0.5 P(B) = 0.25 P(C) = 0.125 P(D) = 0.125

Then H(S) = 1.75 bits… which is exactly what our best
decodable code achieved!!!

So… H(S) tells us exactly the lowest rate the best lossless
compression scheme can compress source S to!!!

Next

10

Section 2.3
Models

11

1. Prob. Model... Can’t capture symbol-to-symbol dependence
– Symbols: A1, A2, … , AN
– Probabilities: P(A1), P(A2), … , P(AN)

2. Joint Prob. Model... Can capture sym-to-sym dependence

– 2nd-Order Model:
P(A1,A1), P(A1,A2), …, P(A1,AN), P(A2,A1), … , P(A2,AN), … , P(AN,AN)

– 3rd-Order Model:
P(A1,A1,A1), P(A1,A1,A2), …, P(A1,A1,AN), … , P(AN,AN,AN)

– Etc., Etc., Etc…

Type of Models
What kind of models can capture the prob. structure of a source?

1st-Order Model? Just a Prob. Model…
… Called 1st-Order Prob Model

Next

12

3. Cond. Prob. Model... Can capture sym-to-sym dependence

Called a “Context Model”… Most useful model of the three…

A special Cond. Prob. Model is called a “Markov Model” (MM) which is
also called a “Discrete-Time Markov Chain”

Suppose that the source output sequence is x1, x2, x3, …
and each xi can take on any symbol A1, A2, …, AN.

– 1st-Order MM – Context beyond one symbol has no effect:
P(xn|xn-1, xn-2, xn-3, xn-4,…) = P(xn|xn-1)

– kth-Order MM:
P(xn|xn-1, xn-2 , … , xn-k, xn-(k+1),…) = P(xn|xn-1, xn-2, … , xn-k)

Extra context has no effect

Note: A 0th-Order MM is just a 1st-Order Prob. Model

If source really does have only finite context, what is its entropy?
For 1st-Order MM the result of finding H(S) via the limiting approach is:

2
1 1

() (,) log (|)
N N

i j i j
i j

H S P A A P A A
= =

⎡ ⎤= − ⎣ ⎦∑∑
Next

13

Using MMs for Compression
How does one use a kth-Order MM for compression?

For an N symbol alphabet… build a set of N codewords for each
k-symbol context… Called “Context Coding”
There will be Nk contexts… so there will be Nk+1 codewords!
In building compression algorithms… there is a trade-off:

model complexity vs. model accuracy

Higher-order MM more accurately captures source structure…
… BUT… increases the number of codewords

Next

14

Example: Context Coding via 1st–Order MM
Consider in English text… how should one code the letter u?

It depends on the context…
If current letter = q… then next letter is very likely u…

in this context the codeword for u should be short
But… if current letter = u… then next letter is unlikely u…

in this context the codeword for u should be long
Note that the decoder – once it decodes the current symbol – can choose the
correct set of codewords to decode the next symbol

Example: 3-symbol alphabet, source model is 1st-Order MM
(Assume that repeated symbols are not likely to occur)

Current Symbol / Next Symbol

A1

A2

A3

A1 A2 A3

1 00 01

00 1 01

00 01 1

Codewords for next
symbol conditioned
on current symbol

Next

15

Demo of Text Generation Via Models
A model that accurately captures a source’s conditional
probability structure is useful for compression… a way to
visualize how well a model captures this structure is to use the
model to generate a symbol sequence and see if it “looks right”
This is most easily visually checked for the case of English
text…

• For 1st-Order Prob. Model
– Use computer to analyze large sample of text to estimate prob. of each

symbol: P(a) = (# of a’s)/(total # of characters)
– Then… generate stream of symbols drawn according to measured prob.

• For kth-Order MM
– Use computer to analyze large sample of text to estimate prob. of each

symbol under each k-symbol context: for example, for k = 1
P(a|b) = (# of a’s preceded by b)/(total # of characters preceded by b)

Next

16

>> char(gen_text_0(70))

dwndroffhdpbjfxukvvpqwodrsaqwiquylyxvntkoupisqlcamrjxycstrpkzqupkpnxyo

“0th-Order” Probability Model
(i.e., Assume equal probabilities for a-z & space)

>> char(gen_text_0(70))

tgpgmmvi lhaedxyx wzgkpdsufeflmcqsjehhantyxmmwzwxuxghmimiixdbmrvsiionp

>> char(gen_text_0(70))

xpcnv gvaelshgvbprabbdzcvrve qmganfcqddrzdiycxdbkhyrkjdzklq vbtd jhrcw

>> char(gen_text_0(70))

dsxuwnqjvnywokiaxdttjmtjwcmotln oqcxbkzllwshhifwkvjs lsoazhazmlrzshjfd

>> char(gen_text_0(70))

andjmaxgxkphlqitpjwugpt ahfqfklahakcwmzpyrgfwglnrnsicojmhthixmtwjxtmrt

17

>> char(gen_text(probs,70))

x Hcnd ceh eelacoulsbrke atmitr kun i ekes tal eaddp nootltiNot iac

1st-Order Probability Model
(i.e., estimated probabilities for a-z, A-Z & space)

>> char(gen_text(probs,70))

oe pciA otwcrfa art bb fw iufnktl uibldt is slPe d sto faeb Lldeo st

>> char(gen_text(probs,70))

lka lo ekosa eocekdptbcfy manoAaomrxe riu c cs eieucl Za cs impiakoj

>> char(gen_text(probs,70))

pjd dot stlAa o ue gil oe k sl ourls islllaelsadu m g snb yh e

>> char(gen_text(probs,70))

pjd dot stlAa o ue gil oe k sl ourls islllaelsadu m g snb yh e

18

>> char(gen_text_2(cond_probs_2,70))

lly Munebest hn rte leara scujowh Kuram t Honologri b Lithy cr acaval

1st-Order Markov Model – Conditioned on Single Letter
(i.e., estimated cond. probs. for a-z, A-Z & space)

>> char(gen_text_2(cond_probs_2,70))

ho lenaf b me t chontha ffes ntarub fulep eot Errol sibl uxiritha fte

>> char(gen_text_2(cond_probs_2,70))

flug cee Roly nararme sp grirme sork d ak focamase asnolot bartan hov

>> char(gen_text_2(cond_probs_2,70))

se fu slovelop t ta d gi Morn puea schel be friilgud a d pe Prilabe b

>> char(gen_text_2(cond_probs_2,70))

cmel wntoi aga f bube mewil ceng g Dave gilar peedeazy st h wl cist m

19

>> char(gen_text_3(cond_probs_2,cond_probs_3,70,MAX))

walift Peny lue it cork faile gly wass Age jaxon Gaink hoy aiteck rit

2nd-Order Markov Model – Conditioned on Letter Pairs
(i.e., estimated cond. probs. for a-z, A-Z & space)

>> char(gen_text_3(cond_probs_2,cond_probs_3,70,MAX))

loft dick patace preend buff Cob Rit Goga co Kan brack hast kinc fieu

>> char(gen_text_3(cond_probs_2,cond_probs_3,70,MAX))

te dump flip cam boup hoodeem tald twilt Hoyawn warchiz Boin Mact tid

>> char(gen_text_3(cond_probs_2,cond_probs_3,70,MAX))

mock lubeate clavy dary ick sivarsart fown solavere dod gi Nage Luke

>> char(gen_text_3(cond_probs_2,cond_probs_3,70,MAX))

wearn la sk Haass Ohin Chowl west se deub Guada molext heap dierk sai

