Review of Probability

(for Lossless Section)

For Details See:
Appendix A In text book
Ch. 10 in Lathi’s Book



Probability

Motivate with Frequency of Occurrence Viewpoint

Consider N Events: o,, ®,, ... ®y

Conduct Experiment n; times...
and let n, = # of times event w; occurred.

Then we can “roughly define” the probability as P(w ) = i
n

T

We know that the law of large numbers implies that this rough
definition will converge to the true probability as ny — oo

Example: 6-sided Die ;=1 0,=2, ... 04=6
From classic Prob. Theory we know that P(w;) = 1/6

Also... for sets of events: P(w; < 3) = 1/2



Axioms of Probability Rules probability must follow.
Let S be the set of all possible events

Al: For any event set A, P(A) >0 M

A2:P(S)=1 . From these:
0<PA) <1

A3: If AnB=d, then P(AuB)=P(A)+P(B) B

Examples of A3 for 6-sided Die

S B 1. A={12} B={3}
@ P(AUB)=P(@ <2)+P(w =3)

2 1 1
=—+—=— as before

=+ — =
6 6 2
2.A={12} B={3}
P(AUB) # P(A) + P(B)

=P(A)

P(A) = P(A)+%




Some Properties of Probability

P1:

P2:

P3:

P(A® UA)=1 (Because S=A U AC)

P(A* UA)=P(A")+P(A

Follows from A3 because A N A=

S

AC@

P1 & P2 together give P(A®) =1-P(A)

If AnB =@, then P(AUB) = P(A)+P(B)-P(ANB)

B

kAmB gets counted twice...
so subtract off one




Joint Probability

Consider two separate “experiments”:
The probability that... the 15t experiment had outcome A
...AND... the 2nd experiment had outcome B

IS denoted as P(A,B)

Often A & B come from a single experiment having multiple
observations...

Experiment. Randomly choose a person
Observations: Height & Weight of chosen person

P(H>6",W > 170 Ibs) = prob the selected person is taller than 6’
AND weighs more than 170 Ibs




Conditional Probability & Independence

Consider two separate observations (from 1 or 2 experiments)

Given that you know what was observed for one of the outcomes,
what is the probability that you will get the other outcome??

P(A|B) = probability that you observe A given that B has occured

(%) P(A|B) = P(A,B)
| “Prob of A given B?/ P(B)

Note that P(A|B) > P(A,B)
because P(B) <1

Independence: If B provides no information about A, then
knowledge of B does not change the probability of observing A:

P(A|B)=P(A) Inthiscase, A & B are called independent events

If A & B are independent then P(A,B) = P(A)P(B)
“Proof ”: from (*) P(A B)=P(A|B)P(B)=P(A)P(B)

=P (A)
by Indep



Prob. vs. Conditional Prob. vs. Joint Prob.

A -/ \_ )
"l Y
These measure single events This measures multiple events

We know that P(A|B) > P(A,B)

IAVARS

What about P(A) vs. P(AIB)?  P(A) = P(A|B)

AN

We know that if A & B are independent then “=”

Otherwise, P(A|B) could be higher or lower than P(A) depending
on how B restricts the occurance.

P(W > 100 Ibs | H < 2’) is smaller than P(W > 100 Ibs)

P(W >100 Ibs|H > 7’) is larger than P(W > 100 lbs)




Example: Prob of Characters in English Text

1. What is the prob. of getting a specific letter?

Most probable letter ise: P(e) =~ 0.127
q and z are least probable: P(g) = P(z) = 0.001

2. If you know the current letter... What is the prob. of getting a

specific letter in the next position?

Say current letter is q}@ess&

P(u|q) = 0.99

P(e|q) ~ 0.001

Note:

P(elq) < P(e)
P(u|g) > P(u)

prior info decreases prob
prior info increases prob

|

Knowing the current letter completely redistributes the probability of
the next letter (i.e., sequential letters are not independent)

|
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Random Variables (RVS)

Mathematical tool to assign #’s to events
Note: a problem may provide a natural assignment

To each outcome w; assign a number X(w;)

Examples: o ASCII code for symbols
e | etter grades get mapped to {0, 1, 2, 3, 4}

Purpose: to allow numerical analyses such as...
e Plots...
e Sums (means, variances)...
e Sets define via inequalities...
e Prob. Functions...
o EtcC.




Discrete RVs

For now we will limit ourselves to Discrete RVs
(Later for lossy compression we will need Continuous RVSs)

A Discrete RV X can take on values only from
e A finite set
A countably infinite set (e.g., the integers but not the reals)

The finite-set case Is the more important one here

Examples
X can take only values in the set {0, 0.5, 1, 1.5, ..., 9.5, 10}

e X can take only values inthe set {0, 1, 2, 3, ... }
* An RV X that can take any value in the interval [0, 1] iIs NOT
discrete; it Is continuous
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Probability Function for Discrete RVs
For discrete RV X the probability function is f,(x), defined as:

f, (X)=P(X =X) > e (x)=1

X
RV Symﬁ:mmy Varlable “Prob. That RV X
Upper case lower case takes on value x”

Example: et events be letter grades... A, B,C,D, F
RV X maps these to numbers: 4, 3,2, 1,0

Assume these probabilities:

P(X =0) =0.05 f,(0)=0.05 | fx(X)

P(X =1)=0.15 f,(1)=0.15 | oal R
P(X=2)=0.3 f(2) = 0.3 O e
P(X=3)=04 fx(3) = 0.4 3-1[
P(X=4)=0.1 f,(4) = 0.1 | | |
1 2 3 4 X
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Cumulative Distribution Function (CDF)

For RV X the CDF F,(x) is defined as:

F, (x) =P(X £X)

X

For a discrete RV the CDF and PF are related by: F, ()= > f,(y)
For Our Example:

£,(0) = 0.05
f(1) = 0.15
£(2)=0.3
£(3)=0.4
f(4)=0.1

Y=Xmin

fxg?()

04l .

03l el

02

0.1 T ................. P
1 2 3 4 X

0. .
Starts @ 0 @2

Jump:
I:x (3) - Fx(s-) - fx(3)

T

1
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Mean of RV

Mean = Average = Expected Value,

Y
Call it E{X}

Motivation First w/ Data Analysis View
Consider RV X = Score on atest Data: X;, X,,... Xy
Possible values of X : Vy V; V... Vg

O 1 2 ..100
N I\|OV0+
Test _ Zizlxi _\N1V1 +NoVy +...NpVigg mfv&
Average — N - N — i

N. = # of scores of value V,
N = > n; (Total # of scores)

i=1

This is called Data Analysis or Empirical Viewﬁ Statistics js




Theoretical View of Mean
Data Analysis View leads to Probability Theory:

= For Discrete random Variables :

E{X}= Z X: f Xg
n=l Probability |

Notation: E{X}= X =m,

Property: E{aX +b}=aE{X}+b
where X is an RV and a and b are just numbers
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Aside: Probability vs. Statistics

Probability Theory Statistics

» Given a PDF Model » GIven a set of data
» Predict how the » Determine how the

data will behave data did behave

N
E{ X X T, (X ~ Avg == S X,
03=3 ( W m | mo=g2x
“Law of Large
# Numbers” Data
Dummy Variable !

There is no PDF herell!!
The Statistic measures how
the data did behave

There is no DATA herell!!
The PDF models how data will behave
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" There are similar Data vs. Theory
Variance of RV (o iee Lats aotoihe theory
Variance measures extent of Deviation Around the

Mean 02 _ E{(X _mX)Z}

Variance:
— Z(Xi — mx)2 1:x (Xi)

Canshowthat: o° = E{X 2}— X?

Note : If zero mean... o’ =E{X*}
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Correlation Between RV's

Motivation First w/ Data Analysis View

Consider a random experiment with two outcomes

II~ 2 RVs X and Y of height and weight respectively

y I

) Ib";‘:-./ Positively Correlated
A
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Three main Categories of Correlation

Positive correlation
“Best Friends”

Height
&
Weight

Zero Correlation Negative Correlation
l.e. uncorrelated “Worst Enemies”
“Complete Strangers”

Height Student Loans
& &
$ in Pocket Parents’ Salary
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Now the Theory...

To capture this, define Covariance :

oxy =E{(X = X)(Y =Y )}

Oxy = ZZ(XI - X)(yj' -Y) Pyy (X yj')

If the RVs are both Zero-mean :‘va = E{XY}‘

If X =Y: 2

Oxy =0O0x =0y

2

If X & Y are independent, then:

GXY =O
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if oxy =E{(X = X)(Y =Y )}=0

Say that X and Y are “uncorrelated”

if oxy =E{(X=X)(Y -Y)}=0

Then E{XY}= XY

Called “Correlation of X &Y”

So... RVs Xand Y are said to be uncorrelated
If E{XY}=E{CE{Y}
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Independence vs. Uncorrelated

X &Y are ||] X &Y are
Independent Uncorrelated
fyy (X, Y) %‘ E{XY}

= E{X}E{Y}

= Tx () fy (y)

PDFs Separate Means Separate
Uncorrelated

< Independence>

INDEPENDENCE IS A STRONGER CONDITION !!!!
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Confusing Terminology...

Covariance : |oyy = E{(X — )?)(Y —Y_)}

Correlation : E{XY} J Same if zero mean

O xy
O x Oy

Correlation Coefficient: | Oxy =

—1pry <1
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For Random Vectors...

X=[Xy Xq - XpnT'

Correlation Matrix :

Ry = E{xxT}z

Covariance Matrix :

Cy = E{(x-X)(x-%)"}
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