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Review of Probability 
(for Lossless Section)

For Details See: 

Appendix A in text book

Ch. 10 in Lathi’s Book



2

Motivate with Frequency of Occurrence Viewpoint
Consider N Events: ω1, ω2, … ωN

Conduct Experiment nT times…
and let  ni = # of times event ωi  occurred.  

Then we can “roughly define” the probability as

Probability

( ) i
i

T

nP
n

ω =

We know that the law of large numbers implies that this rough 
definition will converge to the true probability as nT→∞

Example: 6-sided Die ω1 = 1, ω2 = 2, … ω6 = 6
From classic Prob. Theory we know that P(ωi) = 1/6

Also… for sets of events: P(ωi ≤ 3) = 1/2
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Let S be the set of all possible events

A1: For any event set A, P(A) ≥ 0

A2: P(S) = 1

A3: If 

Axioms of Probability

, ( ) ( ) ( )A B then P A B P A P B∩ =∅ ∪ = +

S A B

From these: 
0 ≤ P(A) ≤ 1

Rules probability must follow.

Examples of A3 for 6-sided Die
1. A = {1,2}  B = {3}

2. A = {1,2}  B = {3}

( ) ( 2) ( 3)
2 1 1
6 6 2

i iP A B P Pω ω∪ = ≤ + =

= + = as before

( )
( ) ( ) ( )

1( ) ( )
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P A B P A P B

P A P A

=
∪ ≠ +
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Some Properties of Probability
1: ( ) 1CP P A A∪ =

2 : ( ) ( ) ( )C CP P A A P A P A∪ = +

3: , ( ) ( ) ( ) ( )P If A B then P A B P A P B P A B∩ ≠∅ ∪ = + − ∩

S A B

A∩B gets counted twice…
so subtract off one

S 

AAC
(Because S = A ∪ AC)

Follows from A3 because A ∩ AC = ∅

P1 & P2 together give  P(AC) = 1 – P(A)
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Joint Probability
Consider two separate “experiments”: 
The probability that… the 1st experiment had outcome A

…AND… the 2nd experiment had outcome B

is denoted as P(A,B)

Often A & B come from a single experiment having multiple 
observations…

Experiment: Randomly choose a person
Observations: Height  & Weight of chosen person

P(H > 6’ , W > 170 lbs) = prob the selected person is taller than 6’
AND weighs more than 170 lbs
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Conditional Probability & Independence
Consider two separate observations (from 1 or 2 experiments)

Given that you know what was observed for one of the outcomes, 
what is the probability that you will get the other outcome??

P(A|B) = probability that you observe A given that B has occured

( , )( | )
( )

P A BP A B
P B

= Note that P(A|B) ≥ P(A,B) 
because P(B) ≤ 1

“Prob of A given B”

Independence:  If B provides no information about A, then 
knowledge of B does not change the probability of observing A:

( | ) ( )P A B P A= In this case, A & B are called independent events

If A & B are independent then P(A,B) = P(A)P(B)
“Proof ”: from ( )

( )
by Indep

( , ) ( | ) ( ) ( ) ( )
P A

P A B P A B P B P A P B
=

= =

( )
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Prob. vs. Conditional Prob. vs. Joint Prob.

These measure single events This measures multiple events

We know that P(A|B)  ≥ P(A,B)

What about P(A) vs. P(A|B)?

?
( ) ( | )P A P A B

>
=
<

We know that if A & B are independent then   “=”

Otherwise, P(A|B) could be higher or lower than P(A) depending 
on how B restricts the occurance.

P(W > 100 lbs | H < 2’) is smaller than P(W > 100 lbs)

P(W > 100 lbs | H > 7’) is larger than P(W > 100 lbs)
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Example: Prob of Characters in English Text
1. What is the prob. of getting a specific letter?

Most probable letter is e:  P(e) ≈ 0.127

q and z are least probable: P(q) ≈ P(z) ≈ 0.001

2. If you know the current letter… What is the prob. of getting a 
specific letter in the next position?

Say current letter is q:  

P(u|q) ≈ 0.99 P(e|q) ≈ 0.001

Just Guesses!Just Guesses!

Note: P(e|q) < P(e) prior info decreases prob
P(u|q) > P(u)   prior info increases prob

Knowing the current letter completely redistributes the probability of 
the next letter (i.e., sequential letters are not independent)
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Random Variables (RVs)
Mathematical tool to assign #’s to events

Note: a problem may provide a natural assignment

To each outcome ωi assign a number X(ωi)

Examples:  • ASCII code for symbols

• Letter grades get mapped to {0, 1, 2, 3, 4} 

Purpose: to allow numerical analyses such as…
• Plots…
• Sums (means, variances)…
• Sets define via inequalities…
• Prob. Functions…
• Etc.
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Discrete RVs
For now we will limit ourselves to Discrete RVs 

(Later for lossy compression we will need Continuous RVs)

A Discrete RV X can take on values only from
• A finite set
• A countably infinite set (e.g., the integers but not the reals)

The finite-set case is the more important one here

Examples
• X can take only values in the set {0, 0.5, 1, 1.5, … , 9.5, 10}
• X can take only values in the set {0, 1, 2, 3, … }
• An RV X that can take any value in the interval [0, 1] is NOT 
discrete; it is continuous 
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Probability Function for Discrete RVs
For discrete RV X the probability function is fX(x), defined as:

( ) ( )Xf x P X x= =

RV symbol…
upper case

Dummy Variable…
lower case

“Prob. That RV X
takes on value x”

Example: Let events be letter grades… A, B, C, D, F
RV X maps these to numbers: 4, 3, 2, 1, 0

Assume these probabilities:

P(X = 0) = 0.05 fX(0) = 0.05
P(X = 1) = 0.15 fX(1) = 0.15
P(X = 2) = 0.3 fX(2) = 0.3
P(X = 3) = 0.4 fX(3) = 0.4
P(X = 4) = 0.1 fX(4) = 0.1

( ) 1X
x

f x =∑

x

fX(x)

0.2
0.1

0.3
0.4

1 2 3 4



12

x

FX(x)

0.2
0.1

0.3
0.4

1 2 3 4

0.5
0.6
0.7
0.8
0.9
1.0

Cumulative Distribution Function (CDF)
For RV X the CDF FX(x) is defined as: ( ) ( )XF x P X x= ≤

For Our Example: 
fX(0) = 0.05
fX(1) = 0.15
fX(2) = 0.3
fX(3) = 0.4
fX(4) = 0.1

min

( ) ( )
x

X X
y x

F x f y
=

= ∑For a discrete RV the CDF and PF are related by:

x

fX(x)

0.2
0.1

0.3
0.4

1 2 3 4

Non
-D

ec
re

as
in

g
Starts @ 0

Ends @ 1

Jump:  
FX (3) – FX(3-) = fX(3) 
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Motivation First w/ Data Analysis View
Consider RV X = Score on a test     Data:  X1, X2,… XN
Possible values of X : V0 V1 V2...  V100

0    1   2  … 100

This is called Data Analysis or Empirical View

Mean of RV
Mean = Average = Expected Value

Call it E{X}

Test 
Average

≈ P(X=Vi)

∑∑
=

= =
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100
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X

Ni = # of scores of value Vi

N = (Total # of scores)∑
=

n

i
iN

1

Statistics

0

N0 V0 +
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Theoretical View of Mean

For Discrete random Variables :

Data Analysis View leads to Probability Theory:

1

{ } ( )
n

i X i
n

X x f x
=

Ε = ∑
Probability

Notation: { } XX X mΕ = =

{ } { }E aX b aE X b+ = +Property:

where X is an RV and a and b are just numbers
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Aside: Probability vs. Statistics
Probability Theory
» Given a PDF Model
» Predict how the 

data will behave

Statistics
» Given a set of data
» Determine how the 

data did behave

∑
=

=
n

i
iX

N
Avg

1

1

Data

There is no DATA here!!!
The PDF models how data will behave

There is no PDF here!!!
The Statistic measures how 
the data did behave

{ } ( )i X i
i

X x f xΕ =∑

Dummy Variable

PDF

≈
“Law of Large

Numbers”
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Variance of RV
Variance measures extent of Deviation Around the 
Mean

There are similar Data vs. Theory 
Views here… Let’s go to the theory

Variance: 
2 2

2

{( ) }

( ) ( )

x

i x X i
i

E X m

x m f x

σ = −

= −∑

Note : If zero mean… 2 2

2

{ }
( )i X

i

E X
x f x

σ =

=∑

2 2 2{ }E X Xσ = −Can show that:
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Correlation Between RV’s

Consider a random experiment with two outcomes

2 RVs X and Y of height and weight respectively

y

X

Positively Correlated

mx

my

Motivation First w/ Data Analysis View
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Three main Categories of Correlation

Positive correlation
“Best Friends”

Negative Correlation
“Worst Enemies”

Zero Correlation
i.e. uncorrelated
“Complete Strangers”

Height 
& 

Weight

Height 
& 

$ in Pocket

Student Loans
& 

Parents’ Salary

YY − YY − YY −

XX −XX −XX −
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To capture this, define Covariance :

If the RVs are both Zero-mean :

)})({( YYXXEXY −−=σ

}{XYXY Ε=σ

If X = Y: 22
YXXY σσσ ==

If X & Y are independent, then:  0=XYσ

Now the Theory…

( )( ) ( , )XY i j XY i j
i j

x X y Y p x yσ = − −∑∑
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If 0)})({( =−−= YYXXEXYσ

Say that X and Y are “uncorrelated”

If 0)})({( =−−= YYXXEXYσ

Then YXXYE =}{

Called “Correlation of X &Y”

So… RVs X and Y are said to be uncorrelated 

if   E{XY} = E{X}E{Y}
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X & Y are 
Independent

Implies X & Y  are 
Uncorrelated

Uncorrelated

Independence

INDEPENDENCE IS A STRONGER CONDITION !!!!

)()(

),(

yfxf

yxf

YX

XY

= }{}{

}{

YEXE

XYE

=

Independence vs. Uncorrelated

PDFs Separate Means Separate
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Covariance : )})({( YYXXEXY −−=σ
Confusing Terminology…

Correlation : }{XYE

Correlation Coefficient :
YX

XY
XY σσ

σρ =

11 ≤≤− XYρ

Same if zero mean
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Correlation Matrix :
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22212

12111

}{xxRx

For Random Vectors…
T

NXXX ][ 11=x

Covariance Matrix :

}))({( TE xxxxCx −−=


