Review of Probability (for Lossless Section)

For Details See:
Appendix A in text book
Ch. 10 in Lathi's Book

Probability

Motivate with Frequency of Occurrence Viewpoint
Consider N Events: $\omega_{1}, \omega_{2}, \ldots \omega_{N}$
Conduct Experiment n_{T} times... and let $\quad n_{i}=\#$ of times event ω_{i} occurred.

Then we can "roughly define" the probability as $P\left(\omega_{i}\right)=\frac{n_{i}}{n_{T}}$
We know that the law of large numbers implies that this rough definition will converge to the true probability as $n_{T} \rightarrow \infty$

Example: 6-sided Die $\quad \omega_{1}=1, \omega_{2}=2, \ldots \omega_{6}=6$

From classic Prob. Theory we know that $P\left(\omega_{i}\right)=1 / 6$
Also... for sets of events: $P\left(\omega_{i} \leq 3\right)=1 / 2$

Axioms of Probability Rules probability must follow.
Let S be the set of all possible events
A1: For any event set $A, P(A) \geq 0$
A2: $P(S)=1$

From these: $0 \leq P(A) \leq 1$

A3: If $A \cap B=\varnothing$, then $P(A \cup B)=P(A)+P(B)$
Examples of A3 for 6-sided Die 1. $A=\{1,2\} \quad B=\{3\}$

$$
\begin{aligned}
P(A \cup B) & =P\left(\omega_{i} \leq 2\right)+P\left(\omega_{i}=3\right) \\
& =\frac{2}{6}+\frac{1}{6}=\frac{1}{2} \quad \text { as before }
\end{aligned}
$$

2. $\mathrm{A}=\{1,2\} \quad \mathrm{B}=\{3\}$

$$
\begin{gathered}
P(A \cup B) \neq P(A)+P(B) \\
P(A) \neq P(A)+\frac{1}{6}
\end{gathered}
$$

Some Properties of Probability

P1: $\quad P\left(A^{C} \cup A\right)=1 \quad\left(\right.$ Because $\left.S=A \cup A^{C}\right)$
P2: $\quad P\left(A^{C} \cup A\right)=P\left(A^{C}\right)+P(A)$
Follows from A3 because $A \cap A^{C}=\varnothing$

$$
\text { P1 \& P2 together give } P\left(A^{C}\right)=1-P(A)
$$

P3: If $A \cap B \neq \varnothing$, then $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$\mathrm{A} \cap \mathrm{B}$ gets counted twice... so subtract off one

Joint Probability

Consider two separate "experiments":
The probability that... the $1^{\text {st }}$ experiment had outcome A ... AND... the $2^{\text {nd }}$ experiment had outcome B
is denoted as $P(\mathrm{~A}, \mathrm{~B})$

Often A \& B come from a single experiment having multiple observations...

Experiment: Randomly choose a person
Observations: Height \& Weight of chosen person

$$
\begin{array}{r}
P\left(H>6^{\prime}, W>170 \mathrm{lbs}\right)=\text { prob the selected person is taller than } 6^{\prime} \\
\\
\text { AND weighs more than } 170 \mathrm{lbs}
\end{array}
$$

Conditional Probability \& Independence

Consider two separate observations (from 1 or 2 experiments)
Given that you know what was observed for one of the outcomes, what is the probability that you will get the other outcome??
$P(A \mid B)=$ probability that you observe A given that B has occured

Independence: If B provides no information about A, then knowledge of B does not change the probability of observing A :
$P(A \mid B)=P(A) \quad$ In this case, $\mathrm{A} \& \mathrm{~B}$ are called independent events
If $A \& B$ are independent then $P(A, B)=P(A) P(B)$

$$
\text { "Proof ": from }(\star) \quad P(A, B)=\underbrace{P(A \mid B)}_{\substack{=P(A) \\ \text { by ndep }}} P(B)=P(A) P(B)
$$

Prob. vs. Conditional Prob. vs. Joint Prob.

These measure single events
This measures multiple events
We know that $P(A \mid B) \geq P(A, B)$

What about $P(A)$ vs. $P(A \mid B)$? $\quad P(A)=P(A \mid B)$
$<$
We know that if $A \& B$ are independent then "="
Otherwise, $P(A \mid B)$ could be higher or lower than $P(A)$ depending on how B restricts the occurance.

$$
\begin{array}{|l|}
\hline P\left(W>100 \mathrm{lbs} \mid H<2^{\prime}\right) \text { is smaller than } P(W>100 \mathrm{lbs}) \\
\hline P\left(W>100 \mathrm{lbs} \mid H>7^{\prime}\right) \text { is larger than } P(W>100 \mathrm{lbs}) \\
\hline
\end{array}
$$

Example: Prob of Characters in English Text

1. What is the prob. of getting a specific letter?

Most probable letter is $e: P(e) \approx 0.127$
q and z are least probable: $P(q) \approx P(z) \approx 0.001$
2. If you know the current letter... What is the prob. of getting a specific letter in the next position?
Say current letter is q :

$$
P(u \mid q) \approx 0.99 \quad P(e \mid q) \approx 0.001
$$

Note: $\quad P(e \mid q)<P(e) \quad$ prior info decreases prob $P(u \mid q)>P(u) \quad$ prior info increases prob

Knowing the current letter completely redistributes the probability of the next letter (i.e., sequential letters are not independent)

Random Variables (RVs)

Mathematical tool to assign \#'s to events
Note: a problem may provide a natural assignment

To each outcome ω_{i} assign a number $\mathrm{X}\left(\omega_{i}\right)$

Examples: • ASCII code for symbols

- Letter grades get mapped to $\{0,1,2,3,4\}$

Purpose: to allow numerical analyses such as...

- Plots...
- Sums (means, variances)...
- Sets define via inequalities...
- Prob. Functions...
- Etc.

Discrete RVs

For now we will limit ourselves to Discrete RVs
(Later for lossy compression we will need Continuous RVs)
A Discrete RV X can take on values only from

- A finite set
- A countably infinite set (e.g., the integers but not the reals)

The finite-set case is the more important one here

Examples

- X can take only values in the set $\{0,0.5,1,1.5, \ldots, 9.5,10\}$
- X can take only values in the set $\{0,1,2,3, \ldots\}$
- An RV X that can take any value in the interval $[0,1]$ is NOT discrete; it is continuous

Probability Function for Discrete RVs

For discrete RV X the probability function is $f_{X}(x)$, defined as:

Example: Let events be letter grades... A, B, C, D, F RV X maps these to numbers: $4,3,2,1,0$

Assume these probabilities:

$$
\begin{array}{ll}
P(X=0)=0.05 & f_{X}(0)=0.05 \\
P(X=1)=0.15 & f_{X}(1)=0.15 \\
P(X=2)=0.3 & f_{X}(2)=0.3 \\
P(X=3)=0.4 & f_{X}(3)=0.4 \\
P(X=4)=0.1 & f_{X}(4)=0.1
\end{array}
$$

Cumulative Distribution Function (CDF)

For RV X the $\operatorname{CDF} F_{X}(x)$ is defined as: $\quad F_{X}(x)=P(X \leq x)$
For a discrete RV the CDF and PF are related by: $F_{X}(x)=\sum_{y=x_{\text {min }}}^{x} f_{x}(y)$ For Our Example:

$$
\begin{aligned}
& f_{X}(0)=0.05 \\
& f_{X}(1)=0.15 \\
& f_{X}(2)=0.3 \\
& f_{X}(3)=0.4 \\
& f_{X}(4)=0.1
\end{aligned}
$$

Mean of RV

Mean $=$ Average $=$ Expected Value

Call it $\mathrm{E}\{\mathrm{X}\}$
Motivation First w/ Data Analysis View
Consider RV X = Score on a test Data: $X_{1}, X_{2}, \ldots X_{N}$ Possible values of X : $\mathrm{V}_{0} \mathrm{~V}_{1} \mathrm{~V}_{2} \ldots \mathrm{~V}_{100}$ $012 \ldots 100$

$$
\begin{aligned}
\text { Test } \\
\text { Average }
\end{aligned}=\frac{\sum_{i=1}^{N} X_{i}}{N}=\frac{N_{0} V_{0}+}{N_{1} V_{1}+N_{2} V_{2}+\ldots N_{n} V_{100}} \frac{N}{100} \sum_{i=1} V_{i} \frac{N_{i}}{N}
$$

This is called Data Analysis or Empirical View \quad Statistics

Theoretical View of Mean

Data Analysis View leads to Probability Theory:

- For Discrete random Variables :

$$
\mathrm{E}\{X\}=\sum_{n=1}^{n} x_{i} f_{X}\left(x_{i}\right)
$$

Probability
Notation: $\mathrm{E}\{X\}=\bar{X}=m_{X}$

Property: $E\{a X+b\}=a E\{X\}+b$
where X is an RV and a and b are just numbers

Aside: Probability vs. Statistics

Probability Theory
» Given a PDF Model
» Predict how the data will behave

Statistics

» Given a set of data
» Determine how the data did behave

There is no DATA here!!!
The PDF models how data will behave

There is no PDF here!!!
The Statistic measures how the data did behave

Variance of RV

There are similar Data vs. Theory Views here... Let's go to the theory

Variance measures extent of Deviation Around the Mean

Variance: $\sigma^{2}=E\left\{\left(X-m_{x}\right)^{2}\right\}$

$$
=\sum_{i}\left(x_{i}-m_{x}\right)^{2} f_{X}\left(x_{i}\right)
$$

Can show that: $\quad \sigma^{2}=E\left\{X^{2}\right\}-\bar{X}^{2}$

Note : If zero mean...

$$
\begin{aligned}
\sigma^{2} & =E\left\{X^{2}\right\} \\
& =\sum_{i} x_{i}^{2} f_{X}(x)
\end{aligned}
$$

Correlation Between RV's

Motivation First w/ Data Analysis View

Consider a random experiment with two outcomes
$\| 2$ RVs X and Y of height and weight respectively

Three main Categories of Correlation

Positive correlation "Best Friends"

Zero Correlation
i.e. uncorrelated
"Complete Strangers"

Negative Correlation "Worst Enemies"

Student Loans
\&
Parents' Salary

Now the Theory...

To capture this, define Covariance :

$$
\begin{aligned}
& \sigma_{X Y}=E\{(X-\bar{X})(Y-\bar{Y})\} \\
& \sigma_{X Y}=\sum_{i} \sum_{j}\left(x_{i}-\bar{X}\right)\left(y_{j}-\bar{Y}\right) p_{X Y}\left(x_{i}, y_{j}\right)
\end{aligned}
$$

If the RVs are both Zero-mean : $\sigma_{X Y}=\mathrm{E}\{X Y\}$
If $X=Y$:

$$
\sigma_{X Y}=\sigma_{X}^{2}=\sigma_{Y}^{2}
$$

If $\mathrm{X} \& \mathrm{Y}$ are independent, then: $\sigma_{X Y}=0$

$$
\text { If } \sigma_{X Y}=E\{(X-\bar{X})(Y-\bar{Y})\}=0
$$

Say that X and Y are "uncorrelated"

$$
\text { If } \sigma_{X Y}=E\{(X-\bar{X})(Y-\bar{Y})\}=0
$$

Called "Correlation of X \&Y"

> So... RVs X and Y are said to be uncorrelated $$
\text { if } E\{X Y\}=E\{X\} E\{Y\}
$$

Independence vs. Uncorrelated

INDEPENDENCE IS A STRONGER CONDITION !!!!

Confusing Terminology....

Covariance: $\sigma_{X Y}=E\{(X-\bar{X})(Y-\bar{Y})\}$

Correlation : $E\{X Y\}$
Same if zero mean

Correlation Coefficient : $\rho_{X Y}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}$

$$
-1 \leq \rho_{X Y} \leq 1
$$

For Random Vectors...

$$
\mathbf{x}=\left[\begin{array}{llll}
X_{1} & X_{1} & \cdots & X_{N}
\end{array}\right]^{T}
$$

Correlation Matrix :

$$
\mathbf{R}_{\mathbf{x}}=E\left\{\mathbf{x x}^{T}\right\}=\left[\begin{array}{cccc}
E\left\{X_{1} X_{1}\right\} & E\left\{X_{1} X_{2}\right\} & \cdots & E\left\{X_{1} X_{N}\right\} \\
E\left\{X_{2} X_{1}\right\} & E\left\{X_{2} X_{2}\right\} & \cdots & E\left\{X_{2} X_{N}\right\} \\
\vdots & \vdots & \ddots & \vdots \\
E\left\{X_{N} X_{1}\right\} & E\left\{X_{N} X_{2}\right\} & \cdots & E\left\{X_{N} X_{N}\right\}
\end{array}\right]
$$

Covariance Matrix :

$$
\mathbf{C}_{\mathbf{x}}=E\left\{(\mathbf{x}-\overline{\mathbf{x}})(\mathbf{x}-\overline{\mathbf{x}})^{T}\right\}
$$

