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Ch. 13 
Kalman Filters
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Introduction
In 1960, Rudolf Kalman developed a way to solve some of the 
practical difficulties that arise when trying to apply Weiner filters.

There are D-T and C-T versions of the Kalman Filter… we will 
only consider the D-T version.

The Kalman filter is widely used in:
• Control Systems
• Navigation Systems 
• Tracking Systems

It is less widely used in signal processing applications

KF initially arose in the 
field of control systems –

in order to make a 
system do what you 

want, you must know 
what it is doing now



3

The Three Keys to Leading to the Kalman Filter

Wiener Filter: LMMSE of a Signal (i.e., a Varying Parameter) 

Sequential LMMSE: Sequentially Estimate a Fixed Parameter  

State-Space Models:  Dynamical Models  for Varying Parameters

Kalman Filter: Sequential LMMSE Estimation for a time-
varying parameter vector – but the time variation is 

constrained to follow a “state-space” dynamical model.

Aside: There are many ways to mathematically model dynamical systems…
• Differential/Difference Equations
• Convolution Integral/Summation
• Transfer Function via Laplace/Z transforms
• State-Space Model
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13.3 State-Variable Dynamical Models
System State:  the collection of variables needed to know how to determine how 
the system will “exist” at some future time (in the absence of an input)… 

For an RLC circuit…  you need to know all of its current capacitor voltages and all 
of its current inductor currents

Motivational Example: Constant Velocity Aircraft in 2-D
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A/C positions (m) For the constant velocity model we 
would constrain vx(t) & vy(t) to be 
constants Vx & Vy.A/C velocities (m/s)

If we know s(to) and there is no input we know how the A/C 
behaves for all future times:  rx(to + τ) = Vxτ + rx(to)

rx(to + τ) = rx(to) + Vxτ
ry(to + τ) = ry(to) + Vyτ
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D-T State Model for Constant Velocity A/C
Because measurements are often taken at discrete times… we often
need D-T models for what are otherwise C-T systems

(This is the same as using a difference equation to approximate a differential equation)

If every increment of n corresponds to a duration of ∆ sec and 
there is no driving force then we can write a D-T State Model as:
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]1[][ −= nn Ass

State Transition Matrix

rx[n] = rx[n-1] + vx[n-1]∆

ry [n] = ry[n-1] + vy[n-1]∆

vx[n] = vx[n-1]∆

vy[n] = vy[n-1]∆

We can include the effect of a vector input:

][]1[][ nnn BuAss +−=

Input could be deterministic and/or random.
Matrix B combines inputs & distributes them to states.
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Thm 13.1 Vector Gauss-Markov Model Don’t confuse 
with the G-M 
Thm. of Ch. 6This theorem characterizes the probability model for a 

specific state-space model with Gaussian Inputs

][]1[][ nnn BuAss +−=Linear State Model: n ≥ 0

p×1 p×p
known

p×r
known

r×1

s[n]: “state vector” is a vector Gauss-Markov process
A: “state transition matrix”;  assumed |λi| < 1 for stability
B: “input matrix”
u[n]: “driving noise” is vector WGN w/ zero mean
s[-1]: “initial state” ~ N(µs,Cs) and independent of u[n]

eigenvalues

u[n] ~ N(0,Q)
E{u[n] uT[m]} = 0, n ≠ m
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Theorem:
• s[n] for n ≥ 0 is Gaussian with the following characteristics…
• Mean of state vector is { } sµAs 1][ += nnE diverges if e-values 

have |λi| ≥ 1
• Covariance between state vectors at m and n is
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( ) ∑

−=

+++ +=

−−=≥

m

nmk

Tkn-mTkTnm

TnEnmEmEnmnm

)(

]}][{][]}][[{][[],[:for   

11 ABQBAACA

ssssC

s

s

],[],[:for   mnnmnm T
ss CC =< State Process is Not WSS!

• Covariance Matrix:  C[n] = Cs[n,n]     (this is just notation)
• Propagation of Mean & Covariance:
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Proof: (only for the scalar case: p = 1)
For the scalar case the model is: s[n] = a s[n-1] + b u[n] n ≥ 0

differs a bit from (13.1) etc.

Now we can just iterate this model and surmise its general form:
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Now easy to find the mean:
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… as claimed!
z.i. response
… exponential

z.s. response
… convolution
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Covariance between s[m] and s[n] is:
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For mean & cov. propagation:  from s[n] = a s[n – 1] + b u[n]
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… which propagates as in theorem < End of Proof >

So we now have:
• Random Dynamical Model (A State Model)
• Statistical Characterization of it
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Random Model for “Constant” Velocity A/C 
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Deterministic Propagation 
of Constant-Velocity

Random Perturbation 
of Constant Velocities
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Ex. Set of “Constant-Velocity” A/C Trajectories
Red Line is Non-Random 

Constant Velocity Trajectory

Acceleration of 
(5 m/s)/1s = 5m/s2
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Observation Model
So… we have a random state-variable model for the dynamics of 
the “signal”  (… the “signal” is often some true A/C trajectory)

We need to have some observations (i.e., measurements) of the 
“signal”

• In Navigation Systems… inertial sensors make noisy measurements       
at intervals of time

• In Tracking Systems… sensing systems make noisy measurements 
(e.g., range and angles) at intervals of time

][][][][ nnnn wsHx +=Linear Observation Model:

Measured “observation” 
vector at each time

allows multiple 
measurements at each time

Observation Matrix 
…can change w/ time

State Vector Process 
being observed

Vector Noise 
Process
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The Estimation Problem
Observe a Sequence of Observation Vectors {x[0], x[1], … x[n]}

Compute an Estimate of the State Vector  s[n]

]|[ˆ nns
estimate state at n

using observation up to n

Notation: ]|[ˆ mns = Estimate of s[n] using {x[0], x[1], … x[m]}

Want Recursive Solution:
Given: ]|[ˆ nns and a new observation vector x[n + 1]
Find: ]1|1[ˆ ++ nns

Three Cases of Interest:
• Scalar State – Scalar Observation
• Vector State – Scalar Observation
• Vector State – Vector Observation 
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