Ch. 13
Kaman Filters



| ntroduction
In 1960, Rudolf Kalman developed away to solve some of the
practical difficultiesthat arise when trying to apply Weiner filters.

There are D-T and C-T vearsions of the Kalman Filter... we will

only consider the D-T version. KF initially aroseinthe
: : : . field of control systems —
The Kalman filter iswidely used in: i order to make a

 Control Systems | system do what you
* Navigation Systems want, you must know
e Tracki ng Sy sfems what it is doing now/

It islesswidely used in signal processing applications




he Three Keysto Leading to the Kalman Filter

[<

"Wiener Filter: LMMSE of aSignal (i.e., a Varying Parameter)

Sequential LM M SE: Sequentially Estimate a Fixed Parameter

 State-Space Models: Dynamical Models for Varying Parameters

K’ Kalman Filter: Sequential LMMSE Estimation for a time-
varying parameter vector - but the time variation is

constrained to follow a “state-space” dynamical model.

Aside: There are many ways to mathematically model dynamical systems...

 Differential/Difference Equations

« Convolution Integral/Summation

» Transfer Function via Laplace/Z transforms
o State-Space Model




13.3 State-Variable Dynamical M odels

System State: the collection of variables needed to know how to deter mine how
the system will “exist” at some futuretime (in the absence of an input)...

For an RLC circuit... you need to know all of its current capacitor voltages and all
of iIts current inductor currents

Motivational Example: Constant Velocity Aircraft in 2-D
| I (t) 15
ry(t)
vy (t)

vy ()|

- AJC positions (m) For the constant velocity model we

would constrain v,(?) & v(7) to be
constants V, & V.

s(t) =

J\

- A/C velocities (m/s)

If we know s(t,) and there is no input we know how the A/C
behavesfor all futuretimes: r (t, + t) = V.t + r(t,)

rX(tO + T) - rX(tO) + VXT
r(to + 1) =ry(ty) +Vyt



D-T State Model for Constant Velocity A/C

Because measurements are often taken at discrete times... we often
need D-T models for what are otherwise C-T systems

(Thisisthe same as using a difference equation to approximate a differential equation)

If every increment of n corresponds to a duration of A sec and

there 1s no driving force then we can write a D-T State Model as:

s[n]=As[n-1

o
A
0

o O B
O L O
R O D>

_O O O 1_
State Transition Matrix

rx[n] = rx[n'l] + Vx[n'l]A
l‘ r,[n] =r,[n-1] + v [n-1]A

Vx[n] = Vx:n'l: A

v,[n] = v,[n-1]A

s[n] = As[n—1] + Bu[n]

Input could be deterministic and/or random.
Matrix B combines inputs & distributes them to states.

We can include the effect of avector input:

.



Thm 13.1 Vector Gauss-M arkov M odel

Don’'t confuse
_ - — with the G-M
This theorem characterizes the probability model for a Thm. of Ch. 6

specific state-space model with Gaussian Inputs

Linear State Model:

s[n] = As[n 1]+Bu[n] n>0

s{nj:

ufny:

g-1]:

PxP Pxr
known known

“gtate vector” I1s avector Gauss-Markov process

“state transition matrix”; assumed |A;| < 1 for stability
“Input matrix”

eigenvalues
“driving noise’ Isvector WGN w/ zero mean

“Initial state” ~ N(n,,C.) and independent of u@

uln] ~N(0,Q)

E{u[nfu[m]} =0, nm




Theorem:

e gn] for n> 01s Gaussian with the following characteristics...
» Mean of state vector is |E{gn]}= A4y [——— divergesif evaluei

. . have |\.|> 1
e Covariance between state vectors at m and nis L ve M

for m>n: Cymin] = E{[s{m] - E{mI}[sin] - (] |

T m
— Am+1CS(A n-l-l) + ZAKBQBT (A n-m-l-k)T

ate Processis Not WSSD

for m<n: Cg[m,n]= Cl[n,m]

» Covariance Matrix: C[n] =CJn,n] (thisisjust notation)
 Propagation of Mean & Covariance:

E{snlj= AE{sn—1]|
C[n]=AC[n-1AT +BQB'




Proof: (only for the scalar case: p=1)

differsabit from (13.1) etc. ]

For the scalar case the model is: §n] =a gn-1] + b u[n] n>0

Now we can just iterate this model and surmise its general form:

0] = ag-1] + bu[Q] /

Now easy to find the meaV

1] = ag0] + bu[1]
= a’g-1] + abu[0]+ bu[1] -

2] = aq[1] + bu[2
2] = ad]] ; u[2] J
= a’q-1] + a’bu[0] + abu[1] + bu[2]

E{gn]} =

a"E{-1} + Zn:akbg{u[n — K]}

a

n+1
Hs

:/LIS

qn] = a"ig-1] + Zn:akbu[n—k]
k=0

k=0 -0

... asclamed!

\ J U J/
Y Y

Z.l. response Z.S. response

... exponentia || ... convolution




Covariance between fm| and g[n] is:
Colm,nl = E{fsim] —a™ug](sin] - a™ ] |

- E{ (am+1[3[m] — Hs]+ Zakbu[m— k]) * Must use different
k;i/[dummy variables!! ]
G tamow | (&t~ 2 alin-1)}

= aMign+l 2+ZZakbE{u[m k]u[n—l]}ba
k=01=0

—o25]l (n m+k)]

m
FOF m> n Cs[m, n] m+1an+1082 4 Zakb(fgban_m—i_k
k=m-n

For m< n: Cs[m,n]=Cg[n, m]



For mean & cov. propagation: fromgn] =agn—1] + b u[n]

E{sinl} = aE{s{n—1]} + bE{u[n]}

propagatesasin theorem -0
var{s{n]} = E{ (s[n] - E{s[n]})?
- E{ (asin—1)+ bun) - aE{s{n - 11})2|
_ ag{(g[n-lj - E{s[n—l]})z}a+ og{uz[n]}b

=var{s[n-1]} —o2

.. which propagates asin theorem < End of Proof >

4 ™\
So we now have:

e Random Dynamical Model (A State Model)

L e Statistical Characterization of it y

10



Random Modedl for “ Constant” Velocity A/C

gn]=

[ r[n]
ry[n]

Vx[n]

| vy[n]

1 0 A O] ryn-1]
0 1 0 A|ry[n-1
0 0 1 Offvwn-1
0 0 0 1)vy[n-1]
J/

Y

Deter ministic Propagation
of Constant-Velocity

..............

...............

cov{u[n]} =

0

0
0
0

0

0
0
0

Random Perturbation
of Constant Veocities
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Ex. Set of “Constant-VVelocity” A/C Trajectories

14000 ————————— TfRed LineisNon-Random | ——
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Observation M odel

So... we have arandom state-variable model for the dynamics of
the“signal” (... the“signal” is often some true A/C trajectory)

We need to have some observations (i.e., measurements) of the
11 S‘ gnal 7

 In Navigation Systems... inertial sensors make noisy measurements
at intervals of time

* In Tracking Systems... sensing systems make noisy measurements
(e.g., range and angles) at intervals of time

Linear Observation Model: |X[n] = H[n]gn] + W[n]

Observation Matrix ﬁ/eCtOF Noise
...can change w/ time Process

allows multiple State Vector Process
measurements at each time being observed 13

Measured “ observation”
vector at each time




The Estimation Problem
Observe a Sequence of Observation Vectors {x[0], x[1], ... X[n]}

Compute an Estimate of the State Vector gn|
— _
~—

gn|n]
LK/ using observation up to n

estimate state at n

[ Notation: §n |m] = Estimate of {n] using {x[0], x[1], ... x[m]}}

Want Recursive Solution:
Given: §n|n] and anew observation vector x[n + 1]

Find: gn+1|n+1]

Three Cases of Interest:
e Scalar State - Scalar Observation
e Vector State - Scalar Observation

e Vector State - Vector Observation y
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