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12.6 Sequential LMMSE Estimation
Same kind if setting as for Sequential LS…

Fixed number of parameters (but here they are modeled as random)

Increasing number of data samples

][][][ nnn wθHx +=Data Model:

(n+1)×1
x[n] = [x[0] … x[n]]T

p×1
unknown PDF

known mean & cov

(n+1)×1
w[n] = [w[0] … w[n]]T

unknown PDF
known mean & cov
Cw must be diagonal 

with elements σ2
n

θ & w are uncorrelated
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Goal: Given an estimate ]1[ˆ −nθ based on x[n – 1], when new
data sample x[n] arrives, update the estimate to  ][ˆ nθ
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Development of Sequential LMMSE Estimate
Our Approach Here:  Use vector space ideas to derive solution 
for “DC Level in White Noise” then write down general 
solution. ][][ nwAnx +=

For convenience… Assume both A and w[n] have zero mean

Given x[0] we can find the LMMSE estimate 
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Now we seek to sequentially update this estimate 
with the info from x[1]…
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• From Vector Space View: A

x[0]

x[1]0Â

1Â

• First project x[1] onto x[0] to get ]0|1[x̂

Estimate new data 
given old data… 

Prediction!

Notation: the estimate 
“at 1” based “on 0”• Use Orthogonality Principle

]0|1[ˆ]1[]1[~ xxx −=∆ is  ⊥ to  x[0]

⇒ This is the new, non-redundant info provided by data x[1]
It is called the “innovation”

x[0]

x[1]0Â

]1[~x
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• Find Estimation Update by Projecting A onto Innovation
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Gain: k1

• Recall Property: Two Estimates from ⊥ data just add:
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The Innovations Sequence
The Innovations Sequence is… 

• Key to the derivation & implementation of  Seq. LMMSE
• A sequence of orthogonal (i.e., uncorrelated) RVs
• Broadly significant in Signal Processing and Controls

]0[x

{ }…],2[~],1[~],0[~ xxx

]0|1[ˆ]1[ xx −

]1|2[ˆ]2[ xx −

Means: “Based on 
ALL data up to n = 1 

(inclusive) 
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General Sequential LMMSE Estimation
Initialization No Data Yet!  ⇒ Use Prior Information

}{ˆ
1 θθ E=−

Estimate

θθCM =−1 MMSE Matrix

Update Loop For n = 0, 1, 2, …
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T
nnn MhkIM MMSE Matrix Update
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Sequential LMMSE Block Diagram
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Exact Same Structure as for Sequential Linear LS!!



8

Comments on Sequential LMMSE Estimation
1. Same structure as for sequential linear LS.  BUT… they solve 

the estimation problem under very different assumptions.

2. No matrix inversion required… So computationally Efficient

3. Gain vector kn weighs confidence in new data (σ2
n) against all 

previous data (Mn-1)
• when previous data is better, gain is small… don’t use new data much
• when new data is better, gain is large… new data is heavily used

4. If you know noise statistics σ2
n and observation rows hn

T over 
the desired range of n:

• Can run MMSE Matrix Recursion without data measurements!!!
• This provides a Predictive Performance Analysis
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12.7 Examples � Wiener Filtering 
During WWII, Norbert Wiener developed the mathematical ideas 
that led to the Wiener filter when he was working on ways to 
improve anti-aircraft guns.

He posed the problem in C-T form and sought the best linear 
filter that would reduce the effect of noise in the observed A/C
trajectory.  

He modeled the aircraft motion as a wide-sense stationary 
random process and used the MMSE as the criterion for 
optimality.  The solutions were not simple and there were many 
different ways of interpreting and casting the results.

The results were difficult for engineers of the time to understand.

Others (Kolmogorov, Hopf, Levinson, etc.) developed these ideas 
for the D-T case and various special cases.
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Weiner Filter: Model and Problem Statement 

Signal Model:    x[n] = s[n] + w[n]

Observed: Noisy Signal
Model as WSS, Zero-Mean

Cxx  = Rxx

covariance matrix

correlation
matrix }{ TE xxRxx =

}}){})({{( TEEE xxxxCxx −−=

Desired Signal
Model as WSS, Zero-Mean

Css  = Rss

Noise
Model as WSS, Zero-Mean

Cww  = Rww

Same if zero-mean

Problem Statement:   Process x[n] using a linear filter to provide 
a “de-noised” version of the signal that has minimum MSE
relative to the desired signal

LMMSE Problem!
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Filtering, Smoothing, Prediction
Terminology for three different ways to cast the Wiener filter problem

Filtering Smoothing Prediction
Given: x[0], x[1], …, x[n] Given: x[0], x[1], …, x[N-1] Given: x[0], x[1], …, x[N-1] 

Find: ]1[ˆ,],1[ˆ],0[ˆ −Nsss … 0,][ˆ >+ llNxFind: ][ˆ ns Find:

xCCθ xxθx
1ˆ −=

x[n]

]0[ŝ

2
1 n

]1[ŝ

]2[ŝ

]3[ŝ

3

x[n]

2
1

x[n]

]5[x̂

2
1 4 5

Note!!

n n3 3

]0[ŝ ]1[ŝ ]2[ŝ ]3[ŝ

All three solved using General LMMSE Est.
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Filtering Smoothing
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Comments on Filtering: FIR Wiener
xaxRRr
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In Principle: Solve WHF Eqs for filter h at each n
In Practice: Use Levinson Recursion to Recursively Solve
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Comments on Filtering: IIR Wiener

Can Show: as n →∞ Wiener filter becomes Time-Invariant
Thus:  h(n)[k] → h[k]

Then the Wiener-Hopf Equations become:

…,1,0][][][
0

==−∑
∞

=
llrklrkh ss

k
xx

and these are solved using so-called “Spectral Factorization”

And… the Wiener Filter becomes IIR Time-Invariant:
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Revisit the FIR Wiener: Fixed Length L
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The way the Wiener filter was formulated above, the length of filter 
grew so that the current estimate was based on all the past data

Reformulate so that current estimate is based on only L most recent 
data:   …  x[3]  x[4]  x[5]  x[6]  x[7]  x[8]  x[9] …
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Wiener-Hopf Filtering Equations for WSS Process w/ Fixed FIR
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Solve W-H Filtering Eqs ONCE for filter h
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Comments on Smoothing: FIR Smoother
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Comments on Smoothing: IIR Smoother

Estimate s[n] based on {…, x[–1], x[0], x[1],…} 

∑
∞

−∞=
−=

k
knxkhns ][][][ˆ Time-Invariant &

Non-Causal IIR Filter

The Wiener-Hopf Equations become:
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Differs From Filter Case
Sum over all k

Differs From Filter Case
Solve for all l

H( f ) ≈ 1  when Pss( f ) >> Pww( f )
H( f ) ≈ 0  when Pss( f ) << Pww( f )
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Relationship of Prediction to AR Est. & Yule-Walker
Wiener-Hopf Prediction Equations
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For l=1 we get EXACTLY the Yule-Walker Eqs used in
Ex. 7.18 to solve for the ML estimates of the AR parameters!!
! FIR Prediction Coefficients are estimated AR parms   

Recall: we first estimated the ACF lags rxx[k] using the data
Then used the estimates to find estimates of the AR parameters

xxxx rhR ˆˆ =
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Relationship of Prediction to Inverse/Whitening Filter
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Inverse Filter: 1�a(z)

FIR Pred.

Signal Observed
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1-Step Prediction
Imagination 
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Results for 1-Step Prediction: For AR(3)
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Signal Prediction
Error

At each k we predict x[k] using past 3 samples

Application to Data Compression
Smaller Dynamic Range of Error gives More Efficient Binary Coding 

(e.g., DPCM – Differential Pulse Code Modulation)
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