12.6 Sequential LMMSE Estimation
Same kind if setting as for Sequential LS...

Fixed number of parameters (but here they are modeled as random)

Increasing number of data samples

(nt+1)x1
Data Model: x[n]=H[n]0 + w[x] W[”]u;lggvc)[v(iln-ﬁDv‘I’:[n]]T
known mean & cov

(n+1)x1 px1 C,, must be diagonal
x[n] = [x[0] ... x[n]]” unknown PDF with elements o2,
known mean & cov | § & w are uncorrelated

(n+1)xp H[n -1]
known |HL7] _[ T }
h' [n]

Goal: Given an estimate 0[» — 1] based on x[z — 1], when new
data sample x[n] arrives, update the estimate to [ ]



Development of Sequential LMMSE Estimate

Our Approach Here: Use vector space ideas to derive solution
for “DC Level in White Noise” then write down general
solution.

x[n] = A4+ wln]

For convenience... Assume both 4 and w[#n] have zero mean

Given x[0] we can find the LMM SE estimate

2
;10{E{Ax[on}x[o]{E{A(Aw[n])}}xm]: i Lo

E{x°[0]} E{(4+w(n])?) of+o”

Now we seek to sequentially update this estimate
with the info from x[1]...



e From Vector Space View:

FEsti mate new data
: : n given old data...
e First project x[1] onto x[0] to get x[1|0] ~__ Prediction!

——

: . Notation: the estimate
* Use Orthogonality Principle “at 1" based “on O’

F[UA X1 - *[1]0] is L to x[O]

= Thisisthe new, non-redundant info provided by datax[1]
It is called the “innovation”

: 3L
Ao x[1]
x[0]




 Find Estimation Update by Projecting A onto Innovation

=4 F > Ay _ [, ;[1]_{15{/1%[1]}}5[1]
1 < eral /el \ )P E{(x°[1]}
\ Y J

Gain: k,

* Recall Property: Two Estimates from _L data just add.

A . _
A = Ay + A4 x[1] L x[O]

= 120 + kl.;(;[l]
A = Ay +hy x[l] x[1|0]] 7[1)

'X[l]
old New Predicted x[O]
Estimate Data New Data

Innovatlon is 1 Old Data




The Innovations Sequence

The Innovations Sequence is...
» Key to the derivation & implementation of Seq. LMMSE
A sequence of orthogonal (i.e., uncorrelated) RVs
e Broadly significant in Signal Processing and Controls

{x[0], x[1], X[2], ... }
X at _
0] \ X[Z]_X[lelk

x[1] - x[1]0]
Means: “Based on
ALL dataupton =1

(inclusive)




General Sequential LMMSE Estimation

Initialization No DataYet! — Use Prior Information

N

0_,=FE{0}| Estimate

M—l = C(_)e MMSE Matrix

Update Loop Forn=0,1, 2, ...

Gain Vector Calculation

kK = Mn—lhn
h 2 T
O, + hn Mn—lhn
~ ~ A
Gn — Bn—l + kn x[n] - hn On—l

Estimate Update

M, = [I_knh;{] M, MMSE Matrix Update




Sequential LMMSE Block Diagram

Data Model
M, (, h, c? x[n] = H[n]0 + w[n]

. [H[n—l]]
Hn|=
: : Compute
I
| Observation | | nnovation | Gain

h' [n]
x[n] + x[n] + 0,1 +k,

(x(n1 -6, )

wwl)

An|n-1=nle,_,

Delay Updated
Estimate

Previous
Estimate

Predicted h,
Observation

[ Exact Same Structure as for Sequential Linear LS! ]




Comments on Sequential LMMSE Estimation

1.

Same structure as for sequential linear LS. BUT... they solve
the estimation problem under very different assumptions.

No matrix inversion required... So computationally Efficient

Gain vector k, weighs confidence in new data (c2,) against all
previous data (M, ,)
« when previous datais better, gainissmall... don’t use new data much
* when new datais better, gainislarge... new datais heavily used

If you know noise statistics 62, and observation rows h 7 over
the desired range of »:

e Canrun MMSE Matrix Recursion without data measurements!!!

» Thisprovides a Predictive Performance Analysis



12.7 Examples — Wiener Filtering

During WWII, Norbert Wiener developed the mathematical ideas
that led to the Wiener filter when he was working on ways to
Improve anti-aircraft guns.

He posed the problem in C-T form and sought the best linear
filter that would reduce the effect of noise in the observed A/C
traectory.

He modeled the aircraft motion as a wide-sense stationary
random process and used the MM SE as the criterion for
optimality. The solutions were not simple and there were many
different ways of interpreting and casting the results.

The results were difficult for engineers of the time to understand.

Others (Kolmogorov, Hopf, Levinson, etc.) developed these ideas
for the D-T case and various special cases.



Weiner Filter: Model and Problem Statement

Signal Model:  x[r] = s[n] + wx] ﬁﬂodd Ny GZero-Mea]
wa — RWW

Observed: Noisy Signal Desired Signal
Mode as WSS, Zero-Mean Model as WSS, Zero-Mean

CXX = RXX CSS = RSS
torrel ation B Ty )
matrix o = Eixx7}

. . > Same if zero-mean
covariance matrix

Cyx = E{(x - E{x})(x - E{x})"} |

................
R AN

..............
...................

reI aivetothe desired signal e l ........................

LMMSE Problem!
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Filtering, Smoothing, Prediction

Terminology for three different ways to cast the Wiener filter problem

Filtering

Given: x[0], x[1], ..., x[#x]
Find: s[#]

x[n]

~
~

~§[2]
53]

Smoothing

Given: x[0], x[1], ..., x[N-1]
Find: s[0O], s[1], ..., s[N —1]

x[n]

n

\ 7

|T1%I) >

S[0] 511 4[2] 5[3]

Prediction

Given: x[0], x[1], ..., x[N-1]

Find: x[N+/], [>0

x[n]

1t

\ 7

]

All three solved using General LMMSE Est.

6: COXC;):}X
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6 = CBXC;)%X

Filtering Smoothing Prediction

0 = s[n] (scalar)

Cox = Efnx" |

= E{s[n]sT}

= [rss[n]'”rss[o]]
=T, (vector!)

C,.= E{(s+w)(s+w)T}
= E{ssT +WWT}

= Rss + wa

0 =s (vector)

Y

{s(s+w) }

= E{ssT -I-SWT}

Cox

E
E

=R, (Matrix!)

C,.= E{(s+w)(s+w)T}
= E{ssT -I—WWT}

— Rss + wa

A 2 ~T 1
S[I’l] = I (Rss + wa) X

[1x(n+2) [ (n+)x(n+1) | [(n+2)x1]

~ 1
= Rss (Rss + wa) X

[NxN][NxN][Nx1]

0 =x[N —1+1] (scaar)

?X not S ’

Cop = ER[N —1+1]x" |
el

= [N 14 7)o

=1 (vector!)

C,.= E{xxT}
=R

AN -1+1=rIR X

[IxN][NxN][Nx1]
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Comments on Filtering: FIR Wiener

~ ~T -1 T
S[n] = \rss (Rss +wa) jX =a X

'

aT

an an_l

h= [h(”)[O] A .

ao]

T

h(n)[n]]T

Wiener-Hopf Filtering Equations

stnl =Y W [k]xln - k]
k=0

Wiener Filter as

\

SRss + wazh =T

X

R.X,'
rSS = [rSS [O]

r [l ..

rln]]”

)

Time-Varying FIR
Filter
e Causal!
 Length Grows!/
0] ] recln] | R[0]| [ rlO]]
relll g0 =2 A || [
rlnl =1 reclO] | ]| [rsln]
Symmetri C& Toeplitz

In Principle: Solve WHF Egsfor filter h at each

In Practice: Use Levinson Recursion to Recursively Solve
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Comments on Filtering: IIR Wiener

Can Show: asn — o Wiener filter becomes Time-Invariant
Thus: AW[k] — h[k]

Then the Wiener-Hopf Equations become:

ih[k]rxx[l—k]zrss[l] 1=0,1...
k=0

and these are solved using so-called “ Spectral Factorization”

And... the Wiener Filter becomes |IR Time-Invariant:

s[n] = Zh[k]x[n — k]

k=0
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Revisit the FIR Wiener: Fixed Length L

The way the Wiener filter was formulated above, the length of filter
grew so that the current estimate was based on all the past data

Reformulate so that current estimate is based on only L most recent

data: ... x[3] x[4] x[5] x[6] x[7] x[8] x[9] ...
| > 5[8] ) -1

| Ly 5171 S[n] =D hlk]x[n — k]

| Ly 516] £=0

Wiener-Hopf Filtering Equations for WSS Process w/ Fixed FIR

_rxx[O] e 11 e L1] 1 A[0] ] _rss[O]_

SRss +wa2h =K rxx[l] rxx[o] rxx[n _1] h[l] rss[l]

R ‘ : : 3 : L

r, =[r 0] 71 .. rnl]"

Crxx[n] rxx[n_l] rxx[o] _J_h[n]_ _rss[n]_
Symmetri c& Toeplitz

Solve W-H Filtering Eqs ONCE for filter h 15




Comments on Smoothing: FIR Smoother

- . N
s=R (R, +RWW)—1X _ Wx<ﬁ9h row of W likeaFIR Filter

* Time-Varying
W L * Non-Causal!
* Block-Based -

To interpret this— Consider N=1 Case:
s[O] :|: 755 0] :|x[0] = [ SNR :| x[0]

SNR +1

/

r[0] +7,,,,[ O]

1, HighSNR
710, Low SNR
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Comments on Smoothing: IIR Smoother

Estimate s[n] based on{ ..., x[-1], x[O], x[1],...}

Time-lnvariant &
Non-Causal |IR Filter

s[n] = Zh[k]x[n — k]
k=—00

The Wiener-Hopf Equations become:

S hklrll K] = rgll] o0 << oo ‘ hn]*r. [n] = r,[n]
k=—o0

\ \ NG

Differs From Filter Casi Differs From Filter Casi H(f) ] Pxx (f)

Sum over al & Solve for dl /
P (f)

—_— =
@) ~1 when P_(f) >> wa(f)f P (f)+ P, (f)
H(f)~0 when P.(f) << P. (/)
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Relationship of Prediction to AR Est. & Yule-Walker
Wiener-Hopf Prediction Equations

Rxxh:rxx
ro =[ro (1 roll+1 ... r [l+N-1]"

1 |

| rxx[o] rxx[l] rxx[N_l]__h[O]_ I rxx[l]

Pyx [1 rxx[o] rxx[N —2] | A1 _ rxx[l +1]
_rxx[N_l] rxx[N_z] rxx[o] __h[n]_ _rxx[l"i'N_l]_
) Symmetricv& Toeplitz ’

For /=1 we get EXACTLY the Yule-Walker Egs used Iin
Ex. 7.18 to solve for the ML estimates of the AR parameters!!
= FIR Prediction Coefficients are estimated AR parms

Recall: wefirst estimated the ACF lags »_[k] using the data
Then used the estimates to find estimates of the AR parameters

Rxxh =Ty
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Relationship of Prediction to Inverse/Whitening Filter

Signal Observed

AR Modd

White Noi sej

White Noi sej L b

Imagination : Physical Redlity

&
Modeling

1-Step Prediiction ]
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Results for 1-Step Prediction: For AR(3)

At each k we predict x[4] using past 3 samples
4 \ \ \ |

Signal Value

0 20 40 60 80 100
Sample Index, k
Application to Data Compression
Smaller Dynamic Range of Error gives More Efficient Binary Coding
(e.g., DPCM — Differential Pulse Code Modulation) 20
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