Ch. 12 Linear Bayesian Estimators

Introduction

In chapter 11 we saw:
the MMSE estimator takes a simple form when \mathbf{x} and $\boldsymbol{\theta}$ are jointly Gaussian - it is linear and used only the $1^{\text {st }}$ and $2^{\text {nd }}$ order moments (means and covariances).

Without the Gaussian assumption, the General MMSE estimator requires integrations to implement - undesirable!

So what to do if we can't "assume Gaussian" but want MMSE?
Keep the MMSE criteria
But...restrict the form of the estimator to be LINEAR
\Rightarrow "LMMSE Estimator"

Something
similar to
BLUE!

Bayesian Approaches

$$
\text { Estimate: } \hat{\boldsymbol{\theta}}=E\{\boldsymbol{\theta}\}+\mathbf{C}_{\boldsymbol{\theta} \mathbf{x}} \mathbf{C}_{\mathbf{x x}}^{-1}(\mathbf{x}-E\{\mathbf{x}\}) \text { Same! }
$$

$$
\text { Err. Cov.: } \mathbf{M}_{\hat{\boldsymbol{\theta}}}=\mathbf{C}_{\boldsymbol{\theta} \boldsymbol{\theta}}-\mathbf{C}_{\boldsymbol{\theta} \mathbf{x}} \mathbf{C}_{\mathbf{x x}}^{-1} \mathbf{C}_{\mathbf{x} \boldsymbol{\theta}}
$$

Estimate: $\hat{\boldsymbol{\theta}}=E\{\boldsymbol{\theta}\}+\mathbf{C}_{\boldsymbol{\theta} \mathbf{x}} \mathbf{C}_{\mathbf{x} \mathbf{x}}^{-1}(\mathbf{x}-E\{\mathbf{x}\})$ Err. Cov.: $\mathbf{M}_{\hat{\boldsymbol{\theta}}}=\mathbf{C}_{\boldsymbol{\theta} \boldsymbol{\theta}}-\mathbf{C}_{\boldsymbol{\theta} \mathbf{x}} \mathbf{C}_{\mathbf{x x}}^{-1} \mathbf{C}_{\mathbf{x} \boldsymbol{\theta}}$
Bayesian Linear Model
(Yields Linear Estimate)

Estimate: $\hat{\boldsymbol{\theta}}=E\{\boldsymbol{\theta}\}+\mathbf{C}_{\boldsymbol{\theta}} \mathbf{H}^{T}\left(\mathbf{H} \mathbf{C}_{\boldsymbol{\theta}} \mathbf{H}^{T}+\mathbf{C}_{w}\right)^{-1}\left(\mathbf{x}-\mathbf{H} \boldsymbol{\mu}_{\boldsymbol{\theta}}\right)$
Err. Cov. : $\mathbf{M}_{\hat{\boldsymbol{\theta}}}=\mathbf{C}_{\boldsymbol{\theta}}-\mathbf{C}_{\boldsymbol{\theta}} \mathbf{H}^{T}\left(\mathbf{H C}_{\boldsymbol{\theta}} \mathbf{H}^{T}+\mathbf{C}_{w}\right)^{-1} \mathbf{H} \mathbf{C}_{\boldsymbol{\theta}}$

12.3 Linear MMSE Estimator Solution

Scalar Parameter Case:

Estimate: $\quad \theta$, a random variable realization
Given: data vector $\mathbf{x}=[x[0] x[1] \ldots x[N-1]]^{T}$
Assume:

- Joint PDF $p(\mathbf{x}, \theta)$ is unknown
- But...its $1^{\text {st }}$ two moments are known
- There is some statistical dependence between \mathbf{x} and θ
- E.g., Could estimate $\theta=$ salary using $\mathbf{x}=10$ past years' taxes owed
- E.g., Can't estimate $\theta=$ salary using $\mathbf{x}=10$ past years' number of Christmas cards sent
Goal: Make the best possible estimate while using an affine form for the estimator

$$
\hat{\theta}=\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}>\underbrace{}_{\begin{array}{c}
\text { Handles Non-Zero } \\
\text { Mean Case }
\end{array}}
$$

Choose $\left\{a_{\mathrm{n}}\right\}$ to minimize $\operatorname{Bmse}(\hat{\theta})=E_{\mathbf{x} \theta}\left\{(\theta-\hat{\theta})^{2}\right\}$

Derivation of Optimal LMMSE Coefficients

Using the desired affine form of the estimator, the Bmse is

$$
\operatorname{Bmse}(\hat{\theta})=E\left\{\left[\theta-\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}\right]^{2}\right\}
$$

Step \#1: Focus on $a_{N} \quad \frac{\partial \operatorname{Bmse}(\hat{\theta})}{\partial a_{N}}=0$
Passing $\partial / \partial a_{N}$ through $E\left\}\right.$ gives $-2 E\left\{\theta-\sum_{n=0}^{N-1} a_{n} x[n]+a_{N}\right\}=0$

Note: $a_{N}=0$ if $E\{\theta\}=E\{x[n]\}=0$

Step \#2: Plug-In Step \#1 Result for a_{N}

$$
\begin{aligned}
\operatorname{Bmse}(\hat{\theta}) & =E\left\{\left[\sum_{n=0}^{N-1} a_{n}(x[n]-E\{x[n]\})-(\theta-E\{\theta\})\right]^{2}\right\} \\
& =E\{[\underbrace{\mathbf{a}^{T}(\mathbf{x}-E\{\mathbf{x}\})}_{\text {scalar }}-\underbrace{(\theta-E\{\theta\})}_{\text {scalar }}]^{2}\}
\end{aligned}
$$

where $\mathbf{a}=\left[\begin{array}{llll}a_{0} & a_{1} & \ldots & a_{N-1}\end{array}\right]^{\mathrm{T}}$
Only up to $N-1$

Note: $\mathbf{a}^{\mathrm{T}}(\mathbf{x}-E\{\mathbf{x}\})=(\mathbf{x}-E\{\mathbf{x}\})^{T} \mathbf{a}$ since it is scalar

Thus, expanding out $\left[\mathbf{a}^{\mathrm{T}}(\mathbf{x}-E\{\mathbf{x}\})-(\boldsymbol{\theta}-E\{\boldsymbol{\theta}\})\right]^{2}$ gives

$$
\operatorname{Bmse}(\hat{\theta})=E\left\{\mathbf{a}^{T}(\mathbf{x}-E\{\mathbf{x}\})(\mathbf{x}-E\{\mathbf{x}\})^{T} \mathbf{a}\right\}+E t c
$$

$$
=\mathbf{a}^{T} E\left\{(\mathbf{x}-E\{\mathbf{x}\})(\mathbf{x}-E\{\mathbf{x}\})^{T}\right\} \mathbf{a}+E t c
$$

$$
=\mathbf{a}^{T} \mathbf{C}_{\mathbf{x x}} \mathbf{a}+E t c
$$

$$
=\mathbf{a}^{T} \mathbf{C}_{\mathbf{x x}} \mathbf{a}-\mathbf{a}^{T} \mathbf{c}_{\mathbf{x} \theta}-\mathbf{c}_{\theta \mathbf{x}} \mathbf{a}+c_{\theta \theta}
$$

$$
\begin{gathered}
\mathbf{c}_{\mathbf{x} \theta}=E\{(\mathbf{x}-E\{\mathbf{x}\})(\theta-E\{\theta\})\} \quad \mathbf{c}_{\theta \mathbf{x}}=E\left\{(\theta-E\{\theta\})(\mathbf{x}-E\{\mathbf{x}\})^{T}\right\} \\
c_{\theta \theta}=E\left\{(\theta-E\{\theta\})^{2}\right\} \\
\hline
\end{gathered}
$$

Note: $\mathbf{c}_{\theta \mathbf{x}}^{T}=\mathbf{c}_{\mathbf{x} \theta}$ $\operatorname{Bmse}(\hat{\theta})=\mathbf{a}^{T} \mathbf{C}_{\mathbf{x x}} \mathbf{a}-2 \mathbf{a}^{T} \mathbf{c}_{\mathbf{x} \theta}+c_{\theta \theta}$

Step \#3: Minimize w.r.t. $a_{1}, a_{2}, \ldots, a_{N-1}$

$$
\frac{\partial \operatorname{Bmse}(\hat{\theta})}{\partial \mathbf{a}}=0
$$

$$
2 \mathbf{C}_{\mathbf{x x}} \mathbf{a}-2 \mathbf{c}_{\mathbf{x} \theta}=\mathbf{0} \quad \square
$$

Step \#4: Combine Results

$$
\begin{aligned}
\hat{\theta} & =\sum_{n=0}^{N-1} a_{n} x[n]+a_{N} \\
& =\mathbf{a}^{T} \mathbf{x}+\left[E\{\theta\}-\mathbf{a}^{T} E\{\mathbf{x}\}\right]=E\{\theta\}+\mathbf{a}^{T}(\mathbf{x}-E\{\mathbf{x}\})
\end{aligned}
$$

So the Optimal LMMSE Estimate is:
$\hat{\theta}=E\{\theta\}+\mathbf{c}_{\theta \mathbf{x}} \mathbf{C}_{\mathbf{x} \mathbf{x}}^{-1}(\mathbf{x}-E\{\mathbf{x}\})$

Note: LMMSE Estimate Only Needs $1^{\text {st }}$ and $2^{\text {nd }}$ Moments... not PDFs!!

Step \#5: Find Minimum Bmse

Substitute into Bmse result and simplify:

$$
\begin{aligned}
\operatorname{Bmse}(\hat{\theta})= & \mathbf{a}^{T} \mathbf{C}_{\mathbf{x x}} \mathbf{a}-2 \mathbf{a}^{T} \mathbf{c}_{\mathbf{x} \theta}+c_{\theta \theta} \\
= & \mathbf{c}_{\theta \mathbf{x}} \mathbf{C}_{\mathbf{x x}}^{-1} \mathbf{C}_{\mathbf{x x}} \mathbf{C}_{\mathbf{x x}}^{-1} \mathbf{c}_{\mathbf{x} \theta}-2 \mathbf{c}_{\theta \mathbf{x}} \mathbf{C}_{\mathbf{x x}}^{-1} \mathbf{c}_{\mathbf{x} \theta}+c_{\theta \theta} \\
= & \mathbf{c}_{\theta \mathbf{x}} \mathbf{C}_{\mathbf{x x}}^{-1} \mathbf{c}_{\mathbf{x} \theta}-2 \mathbf{c}_{\theta \mathbf{x}} \mathbf{C}_{\mathbf{x x}}^{-1} \mathbf{c}_{\mathbf{x} \theta}+c_{\theta \theta} \\
& \operatorname{Bmse}(\hat{\theta})=c_{\theta \theta}-\mathbf{c}_{\theta \mathbf{x}} \mathbf{C}_{\mathbf{x x}}^{-1} \mathbf{c}_{\mathbf{x} \theta}
\end{aligned}
$$

Note: If θ and \mathbf{x} are statistically independent then $\mathbf{C}_{\theta \mathbf{x}}=\mathbf{0}$

Ex. 12.1 DC Level in WGN with Uniform Prior

Recall: Uniform prior gave a non-closed form requiring integration
...but changing to a Gaussian prior fixed this.
Here we keep the uniform prior and get a simple form:

- by using the Linear MMSE

For this problem the LMMSE estimate is: $\hat{A}=\mathbf{C}_{A \mathbf{x}} \mathbf{C}_{\mathbf{x x}}^{-1} \mathbf{x}$
Need $\left\{\begin{aligned} & \mathbf{C}_{\mathbf{x x}}=E\left\{(A \mathbf{1}+\mathbf{w})(A \mathbf{1}+\mathbf{w})^{T}\right\} \\ &=\sigma_{A}^{2} \mathbf{1 1}^{T}+\sigma^{2} \mathbf{I} \\ & \mathbf{c}_{\theta \mathbf{x}}=E\{A \mathbf{x}\}=E\left\{A(A \mathbf{1}+\mathbf{w})^{T}\right\} \\ &=\sigma_{A}^{2} \mathbf{1}^{T} \\ & \begin{array}{c}A \text { \& } \mathbf{w} \text { are } \\ \text { uncorrelated }\end{array} \\ & \hline \hat{A}=\left[\frac{\sigma_{A}^{2}}{\sigma_{A}^{2}+\sigma^{2} / N}\right] \bar{X}\end{aligned}\right.$

12.4 Geometrical Interpretations

Abstract Vector Space

Mathematicians first tackled "physical" vector spaces like R^{N} and C^{N}, etc.

But... then abstracted the "bare essence" of these structures into the general idea of a vector space.

We’ve seen that we can interpret Linear LS in terms of "Physical" vector spaces.

We'll now see that we can interpret Linear MMSE in terms of "Abstract" vector space ideas.

Abstract Vector Space Rules

An abstract vector space consists of a set of "mathematical objects" called vectors and another set called scalars that obey:

1. There is a well-defined operation of "addition" of vectors that gives a vector in the set, and...

- "Adding" is commutative and associative
- There is a vector in the set - call it $\mathbf{0}$ - for which "adding" it to any vector in the set gives back that same vector
- For every vector there is another vector s.t. when the 2 are added you get the $\mathbf{0}$ vector

2. There is a well-defined operation of "multiplying" a vector by a "scalar" and it gives a vector in the set, and...

- "Multiplying" is associative
- Multiplying a vector by the scalar 1 gives back the same vector

3. The distributive property holds

- Multiplication distributes over vector addition
- Multiplication distributes over scalar addition

Examples of Abstract Vector Spaces

1. Scalars $=$ Real Numbers

Vectors $=N^{\text {th }}$ Degree Polynomials w/ Real Coefficients
2. Scalars $=$ Real Numbers

Vectors $=M \times N$ Matrices of Real Numbers
3. Scalars = Real Numbers

Vectors $=$ Functions from [0,1] to R
4. Scalars $=$ Real Numbers

Vectors $=$ Real-Valued Random Variables with Zero Mean

Colliding Terminology... a scalar RV is a vector!!!

Inner Product Spaces

An extension of the idea of Vector Space... must also have:
There is a well-defined concept of inner product s.t. all the rules of "ordinary" inner product still hold

- $\left\langle a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}, \mathbf{y}\right\rangle=a_{1}\left\langle\mathbf{x}_{1}, \mathbf{y}\right\rangle+a_{2}\left\langle\mathbf{x}_{2}, \mathbf{y}\right\rangle$
- $\langle\mathbf{x}, \mathbf{x}>\geq 0 ;<\mathbf{x}, \mathbf{x}>=0$ iff $\mathbf{x}=\mathbf{0}$

Note: an inner product "induces" a norm (or length measure):

$$
\|\mathbf{x}\|^{2}=\langle\mathbf{x}, \mathbf{x}\rangle
$$

So an inner product space has:

1. Two sets of elements: Vectors and Scalars
2. Algebraic Structure (Vector Addition \& Scalar Multiplication)
3. Geometric Structure

- Direction (Inner Product)
- Distance (Norm)

Inner Product Space of Random Variables

Vectors: Set of all real RVs w/ zero mean \& finite variance (ZMFV)
Scalars: Set of all real numbers
Inner Product: $\langle X, Y\rangle=E\{X Y\}$

Inner Product is Correlation!
Uncorrelated $=$ Orthogonal

Claim... This is an Inner Product Space
First... this is a vector space...
Addition Properties: $X+Y$ is another ZMFV RV

1. It is Associative and Commutative: $X+(Y+Z)=(X+Y)+Z ; X+Y=Y+X$
2. The zero RV has variance of 0 (What is an RV with var $=0$???)
3. The negative of RV X is $-X$

Multiplication Properties: For any real \# $a, a X$ is another ZMFV RV

1. It is Associative: $a(b X)=(a b) X$
2. $1 X=X$

Distributive Properties:

1. $a(X+Y)=a X+a Y$
2. $(a+b) X=a X+b X$

Next...This is an inner product space...

- $<a_{1} X_{1}+a_{2} X_{2}, Y>=E\left\{\left(a_{1} X_{1}+a_{2} X_{2}\right) Y\right\}$

$$
=a_{1} E\left\{X_{1} Y\right\}+a_{2} E\left\{X_{2} Y\right\}
$$

- $\|X\|^{2}=<X, X>=E\left\{X^{2}\right\}=\operatorname{var}\{X\} \geq 0$

Use IP Space Ideas for Section 12.3

Apply to the Estimation of a zero-mean scalar RV: $\hat{\theta}=\sum_{n=0}^{N-1} a_{n} \times[n]$ Trying to estimate the realization of RV θ via a linear combination of N other RVs $x[0], x[1]$, $x[2], \ldots x[N-1]$

$$
\begin{aligned}
& \text { Zero-Mean... } \\
& \text { don’t need } a_{N}
\end{aligned}
$$

Now...using our new vector space view of RVs, this is the same structural mathematics that we saw for the Linear LS !
$N=2$ Case

Recall Orthogonality Principle!!!!
Estimation Error \perp Data Space

$$
E\{(\theta-\hat{\theta}) \times[n]\}=0
$$

Now apply this Orthogonality Principle...

$$
\begin{gathered}
E\left\{(\theta-\hat{\theta}) \mathbf{x}^{T}\right\}=\mathbf{0}^{T} \text { with } \hat{\theta}=\mathbf{a}^{T} \mathbf{x} \\
E\left\{\left(\theta-\mathbf{a}^{T} \mathbf{x}\right) \mathbf{x}^{T}\right\}=\mathbf{0}^{T} \Rightarrow E\left\{\theta \mathbf{x}^{T}\right\}=\mathbf{a}^{T} E\left\{\mathbf{x x}^{T}\right\} \Rightarrow E\left\{\mathbf{x} \theta^{T}\right\}=E\left\{\mathbf{x x}^{T}\right\} \mathbf{a}
\end{gathered}
$$

$$
\mathbf{C}_{\mathbf{x x}} \mathbf{a}=\mathbf{C}_{\mathbf{x} \theta} \quad \text { "The Normal Equations" }
$$

Assuming that \mathbf{C}_{xx} is invertible...

$$
\mathbf{a}=\mathbf{C}_{\mathbf{x} \mathbf{x}}^{-1} \mathbf{c}_{\mathbf{x}} \theta \longmapsto \hat{\theta}=\mathbf{a}^{T} \mathbf{x}=\mathbf{c}_{\theta \mathbf{x}} \mathbf{C}_{\mathbf{x} \mathbf{x}}^{-1} \mathbf{x}
$$

Same as before!!!

12.5 Vector LMMSE Estimator
 Meaning a "Physical" Vector

Estimate: Realization of $\boldsymbol{\theta}=\left[\begin{array}{llll}\theta_{1} & \theta_{2} & \cdots & \theta_{p}\end{array}\right]^{T}$
Linear Estimator: $\quad \hat{\boldsymbol{\theta}}=\mathbf{A x}+\mathbf{a}$
Goal: Minimize Bmse for each element

View $i^{\text {th }}$ row in \mathbf{A} and $i^{\text {th }}$ element in \boldsymbol{a} as forming a scalar LMMSE estimator for θ_{i}

Already know the individual element solutions!

- Write them down
- Combine into matrix form

Solutions to Vector LMMSE

The Vector LMMSE estimate is:

$$
\text { If } E\{\theta\}=\mathbf{0} \& E\{\mathbf{x}\}=\mathbf{0} \quad \Longrightarrow \hat{\boldsymbol{\theta}}=\mathbf{C}_{\boldsymbol{\theta} \mathbf{x}} \mathbf{C}_{\mathbf{x x}}^{-1} \mathbf{x}
$$

Can show similarly that Bmse Matrix is

$$
\mathbf{M}_{\hat{\boldsymbol{\theta}}}=E\left\{(\boldsymbol{\theta}-\hat{\boldsymbol{\theta}})(\boldsymbol{\theta}-\hat{\boldsymbol{\theta}})^{T}\right\}
$$

Two Properties of LMMSE Estimator

1. Commutes over affine transformations

If $\boldsymbol{\alpha}=\mathbf{A} \boldsymbol{\theta}+\mathbf{b}$ and $\hat{\boldsymbol{\theta}}$ is LMMSE Estimate
Then $\hat{\boldsymbol{\alpha}}=\mathbf{A} \hat{\boldsymbol{\theta}}+\mathbf{b}$ is LMMSE Estimate for $\boldsymbol{\alpha}$
2. If $\boldsymbol{\alpha}=\boldsymbol{\theta}_{1}+\boldsymbol{\theta}_{2}$ then $\hat{\boldsymbol{\alpha}}=\hat{\boldsymbol{\theta}}_{1}+\hat{\boldsymbol{\theta}}_{2}$

Bayesian Gauss-Markov Theorem

 the BLUELet the data be modeled as $\mathbf{x}=\mathbf{H} \boldsymbol{\theta}+\mathbf{w}$

$N \times 1$ random zero mean Cov Mat $\mathbf{C}_{\text {w }}$ (Not Gaussian)

Application of previous results, evaluated for this data model gives:

$$
\begin{gathered}
\hat{\boldsymbol{\theta}}=\boldsymbol{\mu}_{\boldsymbol{\theta}}+\mathbf{C}_{\boldsymbol{\theta} \boldsymbol{\theta}} \mathbf{H}^{T}\left(\mathbf{H C}_{\boldsymbol{\theta} \boldsymbol{\theta}} \mathbf{H}^{T}+\mathbf{C}_{\mathbf{w}}\right)^{-1}\left[\mathbf{x}-\mathbf{H} \boldsymbol{\mu}_{\boldsymbol{\theta}}\right] \\
\mathbf{C}_{\boldsymbol{\varepsilon}}=\mathbf{C}_{\boldsymbol{\theta} \boldsymbol{\theta}}-\mathbf{C}_{\boldsymbol{\theta} \boldsymbol{\theta}} \mathbf{H}^{T}\left(\mathbf{H C}_{\boldsymbol{\theta} \boldsymbol{\theta}} \mathbf{H}^{T}+\mathbf{C}_{\mathbf{w}}\right)^{-1} \mathbf{H} \mathbf{C}_{\boldsymbol{\theta} \boldsymbol{\theta}}
\end{gathered}
$$

MMSE Matrix:

$$
\mathbf{M}_{\hat{\boldsymbol{\theta}}}=\mathbf{C}_{\varepsilon}
$$

Same forms as for Bayesian Linear Model (which include Gaussian assumption)
Except here... the result is suboptimal... unless the optimal estimate is linear In practice... generally don't know if linear estimate is optimal... but we use LMMSE for its simple form!

The challenge is to "guess" or estimate the needed means \& cov matrices

