11.5 MAP Estimator

Recall that the "hit-or-miss" cost function gave the MAP estimator... it maximizes the a posteriori PDF

Q: Given that the MMSE estimator is "the most natural" one... why would we consider the MAP estimator?

<u>A</u>: If x and θ are not jointly Gaussian, the form for MMSE estimate requires integration to find the conditional mean.

MAP avoids this Computational Problem!

Note: MAP doesn't require this integration

Trade "natural criterion" vs. "computational ease"

What else do you gain? More flexibility to choose the prior PDF

1

Notation and Form for MAP

Notation: $\hat{\theta}_{MAP}$ maximizes the posterior PDF

$$\hat{\theta}_{MAP} = \arg \max_{\theta} p(\theta \,|\, \mathbf{x})$$

"arg max" extracts the value of θ that causes the maximum

Vector MAP

< Not as straight-forward as vector extension for MMSE >

The obvious extension leads to problems:

Choose $\hat{\theta}_i$ to minimize $\mathcal{R}(\hat{\theta}_i) = E\{C(\theta_i - \hat{\theta}_i)\}\}$ Exp. over $p(\mathbf{x}, \theta_i)$ $\Rightarrow \quad \hat{\theta}_i = \arg \max_{\theta_i} p(\theta_i | \mathbf{x})$ Need to integrate to get it!! $p(\theta_1 | \mathbf{x}) = \int \cdots \int p(\theta | \mathbf{x}) d\theta_2 \cdots d\theta_p$

<u>Problem</u>: The whole point of MAP was to avoid doing the integration needed in MMSE!!!

Is there a way around this? Can we find an Integration-Free Vector MAP?

Circular Hit-or-Miss Cost Function

First look at the *p*-dimensional cost function for this "troubling" version of a vector map:

It consists of *p* individual applications of 1-D "Hit-or-Miss"

$$\begin{array}{c} & \epsilon_{2} \\ & \delta_{-} \\ \hline & -\delta_{-} \\ \hline & \epsilon_{1} \\ \hline & C(\varepsilon_{1}, \varepsilon_{2}) = \begin{cases} 0, \ (\varepsilon_{1}, \varepsilon_{2}) \text{ in square} \\ 1, \ (\varepsilon_{1}, \varepsilon_{2}) \text{ not in square} \\ 1, \ (\varepsilon_{1}, \varepsilon_{2}) \text{ not in square} \\ \hline & -\delta_{-} \\ \hline & -\delta_{$$

The corners of the square "let too much in" \Rightarrow use a circle!

This actually seems more natural than the "square" cost function!!!

Not in Book

MAP Estimate using Circular Hit-or-Miss

So... what vector Bayesian estimator comes from using this circular hit-or-miss cost function?

Can show that it is the following "Vector MAP"

$$\hat{\boldsymbol{\theta}}_{MAP} = \arg \max_{\boldsymbol{\theta}} p(\boldsymbol{\theta} \mid \mathbf{x}) - \underbrace{\text{Does Not Require}}_{\text{Integration}!!!}$$

That is... find the maximum of the joint conditional PDF

in all
$$\theta_i$$
 conditioned on **x**

Back to

How Do These Vector MAP Versions Compare

The vector MAP using Circular Hit-or-Miss is: $\hat{\boldsymbol{\theta}} = \begin{bmatrix} 2.5 & 0.5 \end{bmatrix}^T$ To find the vector MAP using the element-wise maximization:

"Bayesian MLE"

Recall... As we keep getting good data, $p(\theta|\mathbf{x})$ becomes more concentrated as a function of θ . But... since:

$$\hat{\boldsymbol{\theta}}_{MAP} = \arg \max_{\boldsymbol{\theta}} p(\boldsymbol{\theta} | \mathbf{x}) = \arg \max_{\boldsymbol{\theta}} [p(\mathbf{x} | \boldsymbol{\theta}) p(\boldsymbol{\theta})]$$

... $p(\mathbf{x}|\boldsymbol{\theta})$ should also become more concentrated as a function of $\boldsymbol{\theta}$.

- Note that the prior PDF is nearly constant where $p(\mathbf{x}|\theta)$ is non-zero
- This becomes truer as $N \to \infty$, and $p(\mathbf{x}|\theta)$ gets more concentrated

 $\approx \arg \max_{\boldsymbol{\theta}} p(\mathbf{x} \mid \boldsymbol{\theta})$

"Bayesian MLE"

Uses conditional PDF rather than the parameterized PDF

11.6 Performance Characterization

The performance of Bayesian estimators is characterized by looking at the estimation error: $\varepsilon = \theta - \hat{\theta}$

Performance characterized by error's PDF $p(\varepsilon)$ We'll focus on Mean and Variance If ε is Gaussian then these tell the whole story This will be the case for the Bayesian Linear Model (see Thm. 10.3)

We'll also concentrate on the MMSE Estimator

Performance of Scalar MMSE Estimator

The estimator is:
$$\hat{\theta} = E\{\theta \mid \mathbf{x}\}$$

 $= \int \theta p(\theta \mid \mathbf{x}) d\theta$ Function of \mathbf{x}
So the estimation error is: $\varepsilon = \theta - E\{\theta \mid \mathbf{x}\} = f(\mathbf{x}, \theta)$
General Result for a function of two RVs: $Z = f(X, Y)$

$$E\{Z\} = \iint f(x, y) p_{XY}(x, y) \, dx \, dy$$

$$\operatorname{var}\{Z\} = E\left\{ (Z - E\{Z\})^2 \right\} = \iint (f(x, y) - E\{Z\})^2 p_{XY}(x, y) \, dx \, dy$$

So... the MMSE estimation error has:

If
$$\varepsilon$$
 is Gaussian then $\varepsilon \sim N(0, Bmse(\hat{\theta}))$

Ex. 11.6: DC Level in WGN w/ Gaussian Prior

So... \hat{A} is Gaussian

$$\varepsilon \sim N\left(0, \frac{1}{N/\sigma^2 + 1/\sigma_A^2}\right)$$

<u>Note</u>: As *N* gets large this PDF collapses around 0. This estimate is "consistent in the Bayesian sense" Bayesian Consistency: For large $N \ \hat{A} \approx A$ (regardless of the realization of A!)

Performance of Vector MMSE Estimator

Vector estimation error: $\mathbf{\varepsilon} = \mathbf{\theta} - \hat{\mathbf{\theta}}$ The mean result is obvious.

Must extend the variance result:

$$\operatorname{cov}\left\{\mathbf{\varepsilon}\right\} = \mathbf{C}_{\varepsilon} = E_{\mathbf{x},\boldsymbol{\theta}}\left\{\mathbf{\varepsilon}\mathbf{\varepsilon}^{T}\right\} \stackrel{\Delta}{=} \mathbf{M}_{\hat{\boldsymbol{\theta}}}$$

Some New Notation... **"Bayesian Mean Square Error Matrix"**

Look some more at this:

$$\mathbf{M}_{\hat{\boldsymbol{\theta}}} = E_{\mathbf{x},\boldsymbol{\theta}} \left\{ \begin{bmatrix} \boldsymbol{\theta} - E\{\boldsymbol{\theta} \mid \mathbf{x}\} \end{bmatrix} \begin{bmatrix} \boldsymbol{\theta} - E\{\boldsymbol{\theta} \mid \mathbf{x}\} \end{bmatrix}^T \right\}$$

$$= E_{\mathbf{x}} \left\{ E_{\boldsymbol{\theta} \mid \mathbf{x}} \left\{ \begin{bmatrix} \boldsymbol{\theta} - E\{\boldsymbol{\theta} \mid \mathbf{x}\} \end{bmatrix} \begin{bmatrix} \boldsymbol{\theta} - E\{\boldsymbol{\theta} \mid \mathbf{x}\} \end{bmatrix}^T \right\} \right\}$$

$$= C_{\boldsymbol{\theta} \mid \mathbf{x}}$$

$$= C_{\boldsymbol{\theta} \mid \mathbf{x}}$$
In general this is a function of \mathbf{x}

$$= C_{\boldsymbol{\theta} \mid \mathbf{x}}$$
In general this is a function of \mathbf{x}

$$= C_{\boldsymbol{\theta} \mid \mathbf{x}}$$

$$= C_{\boldsymbol{\theta} \mid \mathbf{x}$$

$$= C_{\boldsymbol{\theta} \mid \mathbf{x}}$$

$$= C_{\boldsymbol{\theta} \mid \mathbf{x}}$$

$$= C_{\boldsymbol{\theta} \mid \mathbf{x}$$

$$= C_{\boldsymbol{\theta} \mid \mathbf{x}}$$

$$= C_{\boldsymbol{\theta} \mid \mathbf{x}$$

$$= C_{\boldsymbol{\theta} \mid \mathbf{x}}$$

$$= C_{\boldsymbol{\theta} \mid \mathbf{x}$$

Why do we call the error covariance the "Bayesian MSE Matrix"?

The <u>Diagonal</u> Elements of $\mathbf{M}_{\hat{\boldsymbol{\theta}}}$ are Bmse's of the Estimates

To see this:

$$\begin{bmatrix} E_{\mathbf{x},\boldsymbol{\theta}} \{ \mathbf{\epsilon} \mathbf{\epsilon}^T \} \end{bmatrix}_{ii}^{i} = \int_{\mathbf{x}} \int_{\theta_1} \cdots \int_{\theta_p} [\theta_i - E\{\theta_i \mid \mathbf{x}\}]^2 \ p(\mathbf{x},\boldsymbol{\theta}) \ d\mathbf{x} \ d\mathbf{\theta}$$

Integrate over all the other parameters...
$$= \int_{\mathbf{x}} \int_{\theta_i} [\theta_i - E\{\theta_i \mid \mathbf{x}\}]^2 \ p(\mathbf{x},\theta_i) \ d\mathbf{x} \ d\theta_i$$

$$= Bmse(\theta_i)$$

Perf. of MMSE Est. for Jointly Gaussian Case

Let the data vector \mathbf{x} and the parameter vector $\boldsymbol{\theta}$ be jointly Gaussian.

Nothing new to say about the mean result: $E \{ \boldsymbol{\varepsilon} \} = \boldsymbol{0}$

Now... look at the Error Covariance (i.e., Bayesian MSq Matrix):

Recall General Result:
$$\mathbf{C}_{\mathbf{\epsilon}} = \mathbf{M}_{\hat{\mathbf{\theta}}} = E_{\mathbf{x}} \{ C_{\mathbf{\theta} | \mathbf{x}} \}$$

Thm 10.2 says that for Jointly Gaussian Vectors we get that... $C_{\theta|x}$ does NOT depend on x

Thm 10.2 also gives the form as:

$$\mathbf{C}_{\varepsilon} = \mathbf{M}_{\hat{\theta}} = C_{\theta|\mathbf{x}}$$
$$= \mathbf{C}_{\theta} - \mathbf{C}_{\theta\mathbf{x}} \mathbf{C}_{\mathbf{x}}^{-1} \mathbf{C}_{\mathbf{x}\theta}$$

Summary of MMSE Est. Error Results

1. For all cases: Est. Error is zero mean

$$E\{\mathbf{\varepsilon}\}=\mathbf{0}$$

2. Error Covariance for three "Nested" Cases:

$$Bmse(\theta_i) = \left[\mathbf{M}_{\hat{\boldsymbol{\theta}}}\right]_{ii}$$

$$\begin{array}{ll} \hline \textbf{General Case:} & \textbf{C}_{\varepsilon} = \textbf{M}_{\hat{\theta}} = E_{x} \left\{ C_{\theta \mid x} \right\} \\ \hline \textbf{Jointly Gaussian:} & \textbf{C}_{\varepsilon} = \textbf{M}_{\hat{\theta}} = C_{\theta \mid x} = \textbf{C}_{\theta} - \textbf{C}_{\theta x} \textbf{C}_{x}^{-1} \textbf{C}_{x\theta} \\ \hline \textbf{Bayesian Linear:} \\ \textbf{Jointly Gaussian} \\ \& \text{Linear Observation} & \textbf{C}_{\varepsilon} = \textbf{M}_{\hat{\theta}} = C_{\theta \mid x} = \textbf{C}_{\theta} - \textbf{C}_{\theta} \textbf{H}^{T} \left(\textbf{H} \textbf{C}_{\theta} \textbf{H}^{T} + \textbf{C}_{w} \right)^{-1} \textbf{H} \textbf{C}_{\theta} \\ & = \left(\textbf{C}_{\theta}^{-1} + \textbf{H}^{T} \textbf{C}_{w}^{-1} \textbf{H} \right)^{-1} \end{array}$$

11.7 Example: Bayesian Deconvolution

This example shows the power of Bayesian approaches over classical methods in signal estimation problems (i.e. estimating the signal rather than some parameters)

Sampled-Data Formulation

We have modeled s(t) as zero-mean WSS process with known ACF...

So... s[n] is a D-T WSS process with known ACF $R_s[m]$...

So... vector **s** has a known covariance matrix (Toeplitz & Symmetric) given by:

	$R_s[0]$	$R_s[1]$	$R_s[2]$		$R_s[n_s-1]$
	$R_s[1]$	$R_s[0]$	$R_s[1]$	•.	:
C _s =	$R_s[2]$	$R_s[1]$	$R_s[0]$	·.	$R_s[2]$
	•	·.	·.	·.	$R_s[1]$
	$R_s[n_s-1]$		$R_s[2]$	$R_s[1]$	$R_s[0]$

Model for Prior PDF is
then
$$\mathbf{s} \sim N(\mathbf{0}, \mathbf{C}_{\mathbf{s}})$$

MMSE Solution for Deconvolution

We have the case of the Bayesian Linear Model... so:

$$\hat{\mathbf{s}} = \mathbf{C}_{\mathbf{s}} \mathbf{H}^T \left(\mathbf{H} \mathbf{C}_{\mathbf{s}} \mathbf{H}^T + \sigma^2 \mathbf{I} \right)^{-1} \mathbf{x}$$

Note that this is a <u>linear</u> estimate This matrix is called "The Weiner Filter"

The performance of the filter is characterized by:

$$\mathbf{C}_{\mathbf{\epsilon}} = \mathbf{M}_{\hat{\mathbf{s}}} = \left(\mathbf{C}_{\mathbf{s}}^{-1} + \mathbf{H}^T \mathbf{H} / \sigma^2\right)^{-1}$$

Sub-Example: No Inverse Filtering, Noise Only

Direct observation of **s** with $\mathbf{H} = \mathbf{I}$... $\mathbf{x} = \mathbf{s} + \mathbf{w}$

<u>Note</u>: Dimensionality Problem... # of "parms" = # of observations Classical Methods Fail... $\hat{s} = x$ Bayesian methods <u>can</u> solve it!!

For insight... consider "single sample" case:

$$\hat{s}[0] = \frac{R_s[0]}{R_s[0] + \sigma^2} x[0] = \frac{\eta}{\eta + 1} x[0] \qquad \eta = \frac{R_s[0]}{\sigma^2} \quad (SNR)$$

$$\frac{High SNR}{\hat{s}[0] \approx x[0]} \qquad \frac{Low SNR}{\hat{s}[0] \approx 0}$$
Data Driven Prior PDF Driven

Sub-Sub-Example: Specific Signal Model

Direct observation of **s** with $\mathbf{H} = \mathbf{I}$... $\mathbf{x} = \mathbf{s} + \mathbf{w}$

But here... the signal follows a specific random signal model

$$s[n] = -a_1 s[n-1] + u[n]$$

u[*n*] is White Gaussian "Driving Process"

This is a 1st-order "auto-regressive" model: AR(1) Such a random signal has an ACF & PSD of

$$P_s(f) = \frac{\sigma_u^2}{\left|1 + a_1 e^{-j2\pi f}\right|^2}$$

See Figures 11.9 & 11.10 in the Textbook