11.5 MAP Estimator

Recall that the “hit-or-miss” cost function gave the MAP
estimator... it maximizes the a posterior1 PDF

Q: Given that the MMSE estimator 1s “the most natural” one...
why would we consider the MAP estimator?

A: If x and O are not jointly Gaussian, the form for MMSE estimate
requires integration to find the conditional mean.
MAP avoids this Computational Problem!

Note: MAP doesn’t require this integration
Trade “natural criterion” vs. “computational ease”

What else do you gain? More flexibility to choose the prior PDF



Notation and Form for MAP

Notation: ,,,, maximizes the posterior PDF

Oriap =arg max p(6|x)
0

“arg max” extracts the value of
0 that causes the maximum

Equivalent Form (via Bayes’ Rule): éMA p =arg max [p(x|0) p(0)]
0

Proof: Use p(0]x)=2X10pr0)
p(x) 7

éMAp = arg max { (x|«9)p(6’)} = arg mglx [p(x|8) p(0)]

0 :
&t depend on 6 ’




Vector MAP

< Not as straight-forward as vector extension for MMSE >

The obvious extension leads to problems:

Choose 6 to minimize ®(6;)=E{C(6; -6,}}

Exp. over p(x,6) ’

— 0, =arg mgaX p(6; [x) 1-D marginal
: conditioned on x

‘ Need to integrate to get it!! p(0; |x) = J-J.p(G |x)d0,---d0,

" Problem: The whole point of MAP was to )
avold doing the integration needed in MMSE!!!

Is there a way around this?
\_ Can we find an Integration-Free Vector MAP? /




Circular Hit-or-Miss Cost Function — NotinBook |

First look at the p-dimensional cost function for this “troubling”
version of a vector map:

It consists of p individual applications of 1-D “Hit-or-Miss”

&)
0_,
S jS >gl

3

0, (&1,&,)1nsquare

C(glaEZ)Z{

1, (&1,&,)not in square

The corners of the square “let too much in”” = use a circle!

ASH )
o IR 0, llg|l<o
L 10% > C(g) =+ | |
. & 1, |le] > o

This actually seems more natural than the “square” cost function!!!
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MAP Estimate using Circular Hit-or-Miss

So... what vector Bayesian estimator comes from using this
circular hit-or-miss cost function?

Can show that it 1s the following “Vector MAP”

N _ Does Not Require
9]\414}) = arg mth p(ﬂ | X) Integration!!! j

That 1s... find the maximum of the joint conditional PDF




How Do These Vector MAP Versions Compare
In general: They are NOT the Same!!

6, p(91, 0, | x)
Example: p =2 2
1/6 6

1/3

N
AN
NN

The vector MAP using Circular Hit-or-Miss is: 0=[2.5 0.5]

To find the vector MAP using the element-wise maximization:
p(6,[x)

p(6,)x) _
A A
13 + , 23+ ——
A _ r
e s 0=[25 1.5]
—t———+—+> ——



“Bavesian MLE”

Recall... As we keep getting good data, p(0|x) becomes more
concentrated as a function of 0. But... since:

0,4p = arg max p(0]x) =arg max [p(x |0) p(0)]

.. p(x]|0) should also become more concentrated as a function of 0.
4 x19) « Note that the prior PDF is nearly
h 7 x| constant where p(x|0) is non-zero
/ p(9)
* This becomes truer as N — oo, and
(; p(x|0) gets more concentrated
B arg max [p(x[0) p(0)] ~ arg max p(x|0)
G 0 ) |\ 0 J
Y Y
MAP “Bayesian MLE”

Uses conditional PDF rather
than the parameterized PDF



11.6 Performance Characterization

The performance of Bayesian estimators 1s characterized by looking

at the estimation error: c—0_0
Random (due to hm (due to x) |
a priori PDF)

Performance characterized by error’s PDF p(¢)
We’ll focus on Mean and Variance
If € 1s Gaussian then these tell the whole story
This will be the case for the Bayesian Linear Model
(see Thm. 10.3)

We’ll also concentrate on the MMSE Estimator



Performance of Scalar MMSE Estimator

The estimator is: 9 = E{0|x}

_ jep(e | X)d@ %Function oij

So the estimation erroris: € =0 — E{0 |x} = f(x,0)

Function of
two RV’s

General Result for a function of two RVs: Z=7(X, Y)

E{Zy= [ £(x,) pxy () dx dy

var{z} = E(Z ~ E{Z} = [ (/ (e.9)~ E(Z}Y pyy (v.y) e dy



So... applying the mean result gives:

E{e}=E, 40— E{0|x}]

= B {Epy [0-E{0|x}]]

=F_

f \ -
x| Eon [0]- Egyx [E{Qﬁ

E{Ox}

N

See Chart on
“Decomposing Joint
Expectations” in

“Notes on 2 RVs”/

the terms

Vo

ass E |, through

TN

s

) Evaluated as
\L seen below

—~

——

= EX {E9|X [‘9] o E{H| X}} Two Notations for
_ EX {O} 0 the same thing

/ﬂ

E{e}=0

~

i.e., the Mean of the
Estimation Error (over data
& parm) is Zero!!!!

-

Egx[E{0|x}]= [ E{0|x} poy (0]%) d0

€ does not
depend on
0

= E{0|x}] poi (0]%)d6 = E{0|x}
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And... applying the variance result gives: .
SC
%E{g} — OJ

varig} = E{(E—E{E})2 }= E{ez}z E{(e_é)2}
- ”(‘9 -0)’ Px.0 (X,0) dx do

= Bmse(é)

So... the MMSE estimation error has:

* mean = 0 ﬁ). .. when we minimize Bmse
we are minimizing the variance
* var = Bmse L of the estimate

If ¢is Gaussian then ¢~ N (O,Bmse(é))
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Ex. 11.6: DC Level in WGN w/ Gaussian Prior

We SaAwW that Bmse(;l) — 5 1 >
N/ o~ + l/O'A
: . 2 o’ IN If X is Gaussian then
Wlth A= ©4 X+ H 4 _
o4 +0? /N ci+0’/N , Y—aX+b.
N FAANN P is also Gaussian
Y Y
constant constant

this is Gaussian because it is a
linear combo of the jointly
Gaussian data samples

A

So... 4 is Gaussian

1

e~ N| O,
N/0'2+1/0'124

Note: As N gets large this PDF collapses around O.

This estimate 1s “consistent in the Bayesian sense”
Bayesian Consistency: For large N A~ A

(regardless of the realization of A!)
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Performance of Vector MMSE Estimator

Vector estimation error: €e=0-0 The mean result 1s obvious.
Must extend the variance result: Some New Notation. ..
“Bayesian Mean Square

T A = -
COV{S} = Ca — EX,O {gg } — Mé \ Error Matrix

Look some more at this:

\
T See Chart
Mg = Eyo{[0-E£{8]x}][0-£{8]x}]"} Devomposing
Joint
= Ey{Eoy {[0-E{O|x}][0-E{0|x}]T}} \Lapectations™
=C X /,In general this 1s
= EX {C9|X} ° La function of Xj
/Geneml Vector Results: h
E{e} =0 C, =M, = E,{Cyy |




Why do we call the error covariance the “Bayesian MSE Matrix”?

[The Diagonal Elements of M are Bmse's of the Estimates ]

To see this:

[Ex,e feg’ }L‘

p

. :9' [6; — E{0; | X}]2 p(x,0;) dx db,

JX ¢

= Bmse(6;)

.:91“.,[9 [0, —E{6; |x}T° p(x,8)d

Integrate over
all the other

parameters...

marginalizing”

the PDF ~/
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Perf. of MMSE Est. for Jointly Gaussian Case

Let the data vector x and the parameter vector 0 be jointly Gaussian.

Nothing new to say about the mean result:| £ {8} =0

Now... look at the Error Covariance (1.e., Bayesian MSq Matrix):

Recall General Result: C, =M o = Ex {C9|X}

Thm 10.2 says that for Jointly Gaussian Vectors we get that. ..
Cgx does NOT depend on x

- Ce = M() = Ey {C0|X} = C0|x

Thm 10.2 also gives the form as:

CS — Mé — C9|X

—1
= CG - COXCX CXB




Pert. of MMSE Est. for Bavyesian Linear Model
Recall the model: X = HO + W iN(ue,Ce)]

Nothing new to say about the mean result:| £ {8} =0

Now... for the error covariance... this 1s nothing more than a
special case of the jointly Gaussian case we just saw:

/Results for Jointly Gaussian Case\ Evaluations for Bayesian Linear
Ce =M, = Cox Cp, =CoH’
3 il T
\ = CG _COXCX CXO y S CX = HCOH +CW/

T T B
C8 = Mé = C9|X = CO —CgH (HCOH +CW) HCG

Alternate Formw ! =
... see (10.33) = (Ca +H" C,, H)
D amm
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Summary of MMSE Est. Error Results

1. For all cases: Est. Error 1s zero mean | E{g} =0

2. Error Covariance for three “Nested” Cases: |Bmse(0;) = [M@]l

General Case:

Jointly Gaussian:

Bayesian Linear:
Jointly Gaussian
& Linear Observation

i

CS

M@ =Ly {CO|X}

N

—1
Ce = Mé = C0|x = Cy —CpxCx Cyo

'

T T B
CS :Mé = C0|X = Cﬂ —CBH (HCOH +CW) HCG

1
= (Cg1 +H! c;JH)
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[Main Bayesian Approaches]

—_—
MMSE MAP
“Squared” Cost Function “Hit-or-Miss”
(In General: Nonlinear Estimate) Cost Function

Estimate: 0 = arg max p(0|x)
0

Estimate: 0 = E{0|X}
Err. Cov.: M, = Ey |Cop | &
) I _ Hard to Implement. .. Easy to Implement
Jointly Gaussian x and 0 numerical integration Performance Analysis
(Yields Linear Estimate)

is Challenging

~—

Estimate: 0 = E{0}+ CBXC;i (x — E{x})

1 Easier to Implement...

Err. Cov.: Mg = Cgg — CoxCxxCxo Determining C,, can be
| hard to find

[ Bayesian Linear Model ]

(Yields Linear Estimate)

A —1 7 99
Estimate: 0 = E{O}Jr CGHT (HCOHT + CW) (x — Huﬁ) Easy” to Implement. ..
Only need accurate

—1
Err. Cov.: My = Cy — CoH' (HCGHT + CW) HC, model: Cy, C,,, H 18




11.7 Example: Bayesian Deconvolution

This example shows the power of Bayesian approaches over
classical methods 1n signal estimation problems (1.e. estimating the
signal rather than some parameters)

s(1)

>

h(?)

Model as a
Zero-mean
WSS
Gaussian
Process w/

known
)
J

ACF R (t

\

Assumed
Known

Q x()

w(?)

Gaussian
Bandlimited

White Noise
w/ Known

\_ Variance J

Measured Data =
Samples of x(7)

So... model as D-T System

(

Goal: Observe x(f) & Estimate s(?)

Note

.

: At Output...

~\

s(?) is Smeared & Noisy )
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Sampled-Data Formulation

- x[0] | h[0] 0 0o - 0 s[0]  w[0] |
x[1] h[1] h[0] 0 - 0 s[1] w[1]

| x[N -1]| (A[N-1] A[N-1] - - h (1| stng =11

[N =ng]]| sl ]
Measured Known Observation Signal Vector s
Data Vector x Matrix H to Estimate

We have modeled s(7) as zero-mean WSS process with known ACF...
So... s[n] 1s a D-T WSS process with known ACF R [m]...
So... vector s has a known covariance matrix (Toeplitz & Symmetric) given by:

[ RJ[0] R RJM2] - Rng 11
R,[1] R0] R - : C Model for Prior PDF is A
Co=| R([2] R ROl . R2 then s ~M0.C)
Rl '
s S and w are independent Y
_Rs [ns —1] o RS [2] RS [1] Rs [0] h 20




MMSE Solution for Deconvolution

We have the case of the Bayesian Linear Model... so:

_
§=C,H' (HCSHT 5 021) X
A\ _J
~"
Note that this 1s a linear estimate

This matrix is called “The Weiner Filter”

The performance of the filter 1s characterized by:

—1
C, = M; :(CS_1+HTH/02)
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Sub-Example: No Inverse Filtering, Noise Only

Direct observation of s with H=1... x=s+w
s(2) x(t) Goal: Observe x(7) & “De-Noise” s(7)
Note: At Output... s(f) with Noise
w(?)
A 21! 1 AR
SZCS(CS-I-G I) X C8:M§=(Cs +1/0 )

Note: Dimensionality Problem... # of “parms” = # of observations
Classical Methods Fail... =X Bayesian methods can solve it!l

For insight... consider “single sample” case:

R, [0] R[0]

3[0] = — x[0] =—"— x[0] n=—_= (SNR)
R [0]+ 0o n+1 o
High SNR Low SNR
s[0] ~ x[0] s[0]~0

Data Driven Prior PDF Driven 22



Sub-Sub-Example: Specific Signal Model

Direct observation of s with H=1...

14

1.2

08

R [

06

04

0.2

X=§S+WwW

But here... the signal follows a specific random signal model

S[I’l] = —da S[I’l — 1] + u[n u[n] is White Gaussian
: “Driving Process”

This 1s a 15t-order “auto-regressive” model: AR(1)
Such a random signal has an ACF & PSD of

Rs[k]:|:

2

1—611

-------------------------------------------

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

_________________________________________

-------------------------------------------

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

_________________________________________

Ps(f):

2
u

) 2
‘1 +a, e_]zﬂf‘

o}

See Figures 11.9

& 11.10 in the
Textbook
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