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11.5 MAP Estimator
Recall that the “hit-or-miss” cost function gave the MAP 
estimator… it maximizes the a posteriori PDF

Q: Given that the MMSE estimator is “the most natural” one…
why would we consider the MAP estimator?

A: If x and θ are not jointly Gaussian, the form for MMSE estimate 
requires integration to find the conditional mean.

MAP avoids this Computational Problem!
Note: MAP doesn’t require this integration

Trade “natural criterion” vs. “computational ease”

What else do you gain?   More flexibility to choose the prior PDF
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Notation and Form for MAP
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MAPθ̂Notation: maximizes the posterior PDF

“arg max” extracts the value of 
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Vector MAP 
< Not as straight-forward as vector extension for MMSE >

The obvious extension leads to problems:

iθ̂Choose to minimize }}ˆ({)ˆ( iii CE θθθ −=R

Exp. over p(x,θi)

⇒ )|(maxargˆ xii p
i

θθ
θ

= 1-D marginal 
conditioned on x

Need to integrate to get it!!

Problem: The whole point of MAP was to 
avoid doing the integration needed in MMSE!!!

Is there a way around this?
Can we find an Integration-Free Vector MAP?

pddpp θθθ 21 )|θ()|( ∫∫= xx
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Circular Hit-or-Miss Cost Function Not in Book

First look at the p-dimensional cost function for this “troubling”
version of a vector map:

It consists of p individual applications of 1-D “Hit-or-Miss”
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This actually seems more natural than the “square” cost function!!!
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MAP Estimate using Circular Hit-or-Miss Back to 
Book

So… what vector Bayesian estimator comes from using this 
circular hit-or-miss cost function?

Can show that it is the following “Vector MAP”

)|(maxargˆ xθθ
θ

pMAP = Does Not Require 
Integration!!!

That is… find the maximum of the joint conditional PDF

in all θi conditioned on x
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How Do These Vector MAP Versions Compare
In general:  They are NOT the Same!!

Example: p = 2
p(θ1, θ2 | x)

1/6

1/3

1/6

θ1

θ2

1 2 3 4 5

1

2

The vector MAP using Circular Hit-or-Miss is: [ ]T5.05.2ˆ =θ

To find the vector MAP using the element-wise maximization:

θ1

p(θ1|x)

1 2 3 4 5

1/6

1/3

θ2

p(θ2|x)

1 2

1/3

2/3
[ ]T5.15.2ˆ =θ



7

“Bayesian MLE”
Recall… As we keep getting good data,  p(θ|x) becomes more 
concentrated as a function of θ.    But… since: 

)]()|([maxarg)|(maxargˆ θθxxθθ
θθ

pppMAP ==

… p(x|θ) should also become more concentrated as a function of θ.

p(x|θ)
p(θ)

θ

• Note that the prior PDF is nearly  
constant where p(x|θ) is non-zero

• This becomes truer as N →∞, and 
p(x|θ) gets more concentrated 

)|(maxarg)]()|([maxarg θxθθx
θθ

ppp ≈

MAP “Bayesian MLE”

Uses conditional PDF rather 
than the parameterized PDF
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11.6 Performance Characterization
The performance of Bayesian estimators is characterized by looking 
at the estimation error: θθε ˆ−=

Random (due to 
a priori PDF)

Random (due to x)

Performance characterized by error’s PDF p(ε)
We’ll focus on Mean and Variance

If ε is Gaussian then these tell the whole story
This will be the case for the Bayesian Linear Model 
(see Thm. 10.3) 

We’ll also concentrate on the MMSE Estimator
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Performance of Scalar MMSE Estimator
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x

xThe estimator is:

Function of x

So the estimation error is: ),(}|{ θθθε xx fE =−=
Function of 
two RV’s

General Result for a function of two RVs:  Z = f (X, Y)
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Evaluated as 
seen below

So… applying the mean result gives: 
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See Chart on 
“Decomposing Joint 

Expectations” in 
“Notes on 2 RVs”

Pass Eθ |x through 
the terms

Two Notations for 
the same thing
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i.e.,  the Mean of the 
Estimation Error (over data 

& parm) is Zero!!!!
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And… applying the variance result gives: 
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Use 
E{ε} = 0

So… the MMSE estimation error has:

• mean = 0

• var = Bmse

So… when we minimize Bmse
we are minimizing the variance 

of the estimate

If ε is Gaussian then ( ))ˆ(,0~ θε BmseN
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Ex. 11.6: DC Level in WGN w/ Gaussian Prior
We saw that
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Note: As N gets large this PDF collapses around 0.

This estimate is “consistent in the Bayesian sense”

Bayesian Consistency: For large N

(regardless of the realization of A!)

AA ≈ˆ

this is Gaussian because it is a 
linear combo of the jointly 

Gaussian data  samples

If X is Gaussian then 
Y = aX + b

is  also Gaussian
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Performance of Vector MMSE Estimator
θθε ˆ−=Vector estimation error: The mean result is obvious. 

Must extend the variance result:

θθx,ε MεεCε ˆ}{}cov{ ∆=== TE

Some New Notation…
“Bayesian Mean Square 

Error Matrix”

Look some more at this:  
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General Vector Results:

See Chart on 
“Decomposing 

Joint 
Expectations”

= Cθ|x In general this is 
a function of x
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θM ˆThe Diagonal Elements of are Bmse’s of the Estimates
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To see this:

Why do we call the error covariance the “Bayesian MSE Matrix”?

Integrate over 
all the other

parameters…
“marginalizing”

the PDF
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Perf. of MMSE Est. for Jointly Gaussian Case
Let the data vector x and the parameter vector θ be jointly Gaussian.

0ε =}{ENothing new to say about the mean result:

Now… look at the Error Covariance (i.e., Bayesian MSq Matrix):  

}{ |ˆ xθxθε MC CE==Recall General Result:

Thm 10.2 says that for Jointly Gaussian Vectors we get that…
Cθ|x does NOT depend on x
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Thm 10.2 also gives the form as:
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Perf. of MMSE Est. for Bayesian Linear Model
wHθx += ~N(µθ,Cθ)

~N(0,Cw)
Recall the model:

0ε =}{ENothing new to say about the mean result:

Now… for the error covariance… this is nothing more than a 
special case of the jointly Gaussian case we just saw:
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Results for Jointly Gaussian Case
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Evaluations for Bayesian Linear
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Alternate Form 
… see (10.33)
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Summary of MMSE Est. Error Results
1. For all cases: Est. Error is zero mean 0ε =}{E

2. Error Covariance for three “Nested” Cases:
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[ ]
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General Case:

Jointly Gaussian: xθxθxθxθθε CCCCMC 1
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Bayesian Linear:
Jointly Gaussian 

& Linear Observation
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Main Bayesian Approaches

MAP
“Hit-or-Miss” 
Cost Function

MMSE
“Squared” Cost Function

(In General: Nonlinear Estimate)
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Jointly Gaussian x and θ
(Yields Linear Estimate)
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Bayesian Linear Model
(Yields Linear Estimate)
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)|(maxargˆ  :Estimate xθθ
θ

p=

Hard to Implement…
numerical integration

Easy to Implement…
Performance Analysis 

is Challenging

Easier to Implement…
Determining Cθx can be 

hard to find

“Easy” to Implement…
Only need accurate 
model: Cθ, Cw, H
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11.7 Example: Bayesian Deconvolution
This example shows the power of Bayesian approaches over 
classical methods in signal estimation problems (i.e. estimating the 
signal rather than some parameters)

h(t) Σ
s(t)

w(t)

x(t)

Model as a 
zero-mean 

WSS 
Gaussian 

Process w/ 
known 

ACF Rs(τ)

Assumed 
Known

Gaussian 
Bandlimited 
White Noise 
w/ Known 
Variance

Measured Data = 
Samples of x(t)

Goal: Observe x(t) & Estimate s(t)
Note: At Output…

s(t) is Smeared & Noisy 

So… model as D-T System
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Sampled-Data Formulation
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Measured 
Data Vector x

Known Observation 
Matrix H

Signal Vector s
to Estimate

AWGN: w
Cw = σ2I

We have modeled s(t) as zero-mean WSS process with known ACF…
So… s[n] is a D-T WSS process with known ACF Rs[m]…
So… vector s has a known covariance matrix (Toeplitz & Symmetric) given by:
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Model for Prior PDF is 
then s ~ N(0,Cs)

s and w are independent
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MMSE Solution for Deconvolution
We have the case of the Bayesian Linear Model… so:

( ) xIHHCHCs ss
12ˆ −

+= σTT

Note that this is a linear estimate
This matrix is called “The Weiner Filter”

( ) 121
ˆ /

−− +== σHHCMC ssε
T

The performance of the filter is characterized by:



22

Sub-Example: No Inverse Filtering, Noise Only
Direct observation of s with H = I…    x = s + w 

Σ
s(t)

w(t)

x(t) Goal: Observe x(t) & “De-Noise” s(t)
Note: At Output… s(t)  with  Noise

( ) xICCs ss
12ˆ −

+= σ ( ) 121
ˆ /

−− +== σICMC ssε

Note: Dimensionality Problem… # of “parms” = # of observations
Classical Methods Fail… xs =ˆ Bayesian methods can solve it!!

For insight… consider “single sample” case:
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]0[]0[ŝ 22 SNRRxx
R

R s

s

s

σ
η

η
η

σ
=

+
=

+
=

0]0[ˆ]0[]0[ˆ ≈≈ s
SNRLow
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SNRHigh

Data Driven Prior PDF Driven
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Sub-Sub-Example: Specific Signal Model
Direct observation of s with H = I…    x = s + w 

But here… the signal follows a specific random signal model

][]1[][ 1 nunsans +−−= u[n] is White Gaussian 
“Driving Process”

This is a 1st-order “auto-regressive” model: AR(1)
Such a random signal has an ACF & PSD of
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See Figures 11.9 
& 11.10 in the 

Textbook


